use ark_std::ops::Neg; use ark_ec::{ bls12, bls12::Bls12Parameters, models::CurveConfig, short_weierstrass::{Affine, Projective, SWCurveConfig}, AffineRepr, CurveGroup, Group, }; use ark_ff::{Field, MontFp, Zero}; use ark_serialize::{Compress, SerializationError}; use super::util::{serialize_fq, EncodingFlags, G2_SERIALIZED_SIZE}; use crate::{ util::{read_g2_compressed, read_g2_uncompressed}, *, }; pub type G2Affine = bls12::G2Affine; pub type G2Projective = bls12::G2Projective; #[derive(Clone, Default, PartialEq, Eq)] pub struct Parameters; impl CurveConfig for Parameters { type BaseField = Fq2; type ScalarField = Fr; /// COFACTOR = (x^8 - 4 x^7 + 5 x^6) - (4 x^4 + 6 x^3 - 4 x^2 - 4 x + 13) // /// 9 /// = 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109 #[rustfmt::skip] const COFACTOR: &'static [u64] = &[ 0xcf1c38e31c7238e5, 0x1616ec6e786f0c70, 0x21537e293a6691ae, 0xa628f1cb4d9e82ef, 0xa68a205b2e5a7ddf, 0xcd91de4547085aba, 0x91d50792876a202, 0x5d543a95414e7f1, ]; /// COFACTOR_INV = COFACTOR^{-1} mod r /// 26652489039290660355457965112010883481355318854675681319708643586776743290055 const COFACTOR_INV: Fr = MontFp!("26652489039290660355457965112010883481355318854675681319708643586776743290055"); } impl SWCurveConfig for Parameters { /// COEFF_A = [0, 0] const COEFF_A: Fq2 = Fq2::new(g1::Parameters::COEFF_A, g1::Parameters::COEFF_A); /// COEFF_B = [4, 4] const COEFF_B: Fq2 = Fq2::new(g1::Parameters::COEFF_B, g1::Parameters::COEFF_B); /// AFFINE_GENERATOR_COEFFS = (G2_GENERATOR_X, G2_GENERATOR_Y) const GENERATOR: G2Affine = G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y); #[inline(always)] fn mul_by_a(_: Self::BaseField) -> Self::BaseField { Self::BaseField::zero() } fn is_in_correct_subgroup_assuming_on_curve(point: &G2Affine) -> bool { // Algorithm from Section 4 of https://eprint.iacr.org/2021/1130. // // Checks that [p]P = [X]P let mut x_times_point = point.mul_bigint(crate::Parameters::X); if crate::Parameters::X_IS_NEGATIVE { x_times_point = -x_times_point; } let p_times_point = p_power_endomorphism(point); x_times_point.eq(&p_times_point) } #[inline] fn clear_cofactor(p: &G2Affine) -> G2Affine { // Based on Section 4.1 of https://eprint.iacr.org/2017/419.pdf // [h(ψ)]P = [x^2 − x − 1]P + [x − 1]ψ(P) + (ψ^2)(2P) // x = -15132376222941642752 // When multiplying, use -c1 instead, and then negate the result. That's much // more efficient, since the scalar -c1 has less limbs and a much lower Hamming // weight. let x: &'static [u64] = crate::Parameters::X; let p_projective = p.into_group(); // [x]P let x_p = Parameters::mul_affine(p, &x).neg(); // ψ(P) let psi_p = p_power_endomorphism(&p); // (ψ^2)(2P) let mut psi2_p2 = double_p_power_endomorphism(&p_projective.double()); // tmp = [x]P + ψ(P) let mut tmp = x_p.clone(); tmp += &psi_p; // tmp2 = [x^2]P + [x]ψ(P) let mut tmp2: Projective = tmp; tmp2 = tmp2.mul_bigint(x).neg(); // add up all the terms psi2_p2 += tmp2; psi2_p2 -= x_p; psi2_p2 += &-psi_p; (psi2_p2 - p_projective).into_affine() } fn deserialize_with_mode( mut reader: R, compress: ark_serialize::Compress, validate: ark_serialize::Validate, ) -> Result, ark_serialize::SerializationError> { let p = if compress == ark_serialize::Compress::Yes { read_g2_compressed(&mut reader)? } else { read_g2_uncompressed(&mut reader)? }; if validate == ark_serialize::Validate::Yes && !p.is_in_correct_subgroup_assuming_on_curve() { return Err(SerializationError::InvalidData); } Ok(p) } fn serialize_with_mode( item: &Affine, mut writer: W, compress: ark_serialize::Compress, ) -> Result<(), SerializationError> { let encoding = EncodingFlags { is_compressed: compress == ark_serialize::Compress::Yes, is_infinity: item.is_zero(), is_lexographically_largest: item.y > -item.y, }; let mut p = *item; if encoding.is_infinity { p = G2Affine::zero(); } let mut x_bytes = [0u8; G2_SERIALIZED_SIZE]; let c1_bytes = serialize_fq(p.x.c1); let c0_bytes = serialize_fq(p.x.c0); x_bytes[0..48].copy_from_slice(&c1_bytes[..]); x_bytes[48..96].copy_from_slice(&c0_bytes[..]); if encoding.is_compressed { let mut bytes: [u8; G2_SERIALIZED_SIZE] = x_bytes; encoding.encode_flags(&mut bytes); writer.write_all(&bytes)?; } else { let mut bytes = [0u8; 2 * G2_SERIALIZED_SIZE]; let mut y_bytes = [0u8; G2_SERIALIZED_SIZE]; let c1_bytes = serialize_fq(p.y.c1); let c0_bytes = serialize_fq(p.y.c0); y_bytes[0..48].copy_from_slice(&c1_bytes[..]); y_bytes[48..96].copy_from_slice(&c0_bytes[..]); bytes[0..G2_SERIALIZED_SIZE].copy_from_slice(&x_bytes); bytes[G2_SERIALIZED_SIZE..].copy_from_slice(&y_bytes); encoding.encode_flags(&mut bytes); writer.write_all(&bytes)?; }; Ok(()) } fn serialized_size(compress: ark_serialize::Compress) -> usize { if compress == Compress::Yes { G2_SERIALIZED_SIZE } else { 2 * G2_SERIALIZED_SIZE } } } pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1); pub const G2_GENERATOR_Y: Fq2 = Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1); /// G2_GENERATOR_X_C0 = /// 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160 pub const G2_GENERATOR_X_C0: Fq = MontFp!("352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160"); /// G2_GENERATOR_X_C1 = /// 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 pub const G2_GENERATOR_X_C1: Fq = MontFp!("3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758"); /// G2_GENERATOR_Y_C0 = /// 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905 pub const G2_GENERATOR_Y_C0: Fq = MontFp!("1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905"); /// G2_GENERATOR_Y_C1 = /// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 pub const G2_GENERATOR_Y_C1: Fq = MontFp!("927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582"); // psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed // with the quadratic twist and its inverse // PSI_X = 1/(u+1)^((p-1)/3) pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new( Fq::ZERO, MontFp!( "4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437" ) ); // PSI_Y = 1/(u+1)^((p-1)/2) pub const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new( MontFp!( "2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"), MontFp!( "1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257") ); pub const DOUBLE_P_POWER_ENDOMORPHISM: Fq2 = Fq2::new( MontFp!("4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939436"), Fq::ZERO ); pub fn p_power_endomorphism(p: &Affine) -> Affine { // The p-power endomorphism for G2 is defined as follows: // 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1). // To map a point (x, y) in E' to (s, t) in E, // one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)), // because E: y^2 = x^3 + 4. // 2. Apply the Frobenius endomorphism (s, t) => (s', t'), // another point on curve E, where s' = s^p, t' = t^p. // 3. Map the point from E back to E'; that is, // one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)). // // To sum up, it maps // (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2))) // as implemented in the code as follows. let mut res = *p; res.x.frobenius_map(1); res.y.frobenius_map(1); let tmp_x = res.x.clone(); res.x.c0 = -P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c1; res.x.c1 = P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c0; res.y *= P_POWER_ENDOMORPHISM_COEFF_1; res } /// For a p-power endomorphism psi(P), compute psi(psi(P)) pub fn double_p_power_endomorphism(p: &Projective) -> Projective { let mut res = *p; res.x *= DOUBLE_P_POWER_ENDOMORPHISM; res.y = res.y.neg(); res } #[cfg(test)] mod test { use super::*; use ark_std::UniformRand; #[test] fn test_cofactor_clearing() { // multiplying by h_eff and clearing the cofactor by the efficient // endomorphism-based method should yield the same result. let h_eff: &'static [u64] = &[ 0xe8020005aaa95551, 0x59894c0adebbf6b4, 0xe954cbc06689f6a3, 0x2ec0ec69d7477c1a, 0x6d82bf015d1212b0, 0x329c2f178731db95, 0x9986ff031508ffe1, 0x88e2a8e9145ad768, 0x584c6a0ea91b3528, 0xbc69f08f2ee75b3, ]; let mut rng = ark_std::test_rng(); const SAMPLES: usize = 10; for _ in 0..SAMPLES { let p = Affine::::rand(&mut rng); let optimised = p.clear_cofactor().into_group(); let naive = g2::Parameters::mul_affine(&p, h_eff); assert_eq!(optimised, naive); } } }