use ark_ec::{ bls12, bls12::Bls12Parameters, models::CurveConfig, short_weierstrass::{Affine, SWCurveConfig}, AffineCurve, ProjectiveCurve, }; use ark_ff::{Field, MontFp, Zero}; use ark_std::ops::Neg; use crate::*; pub type G1Affine = bls12::G1Affine; pub type G1Projective = bls12::G1Projective; #[derive(Clone, Default, PartialEq, Eq)] pub struct Parameters; impl CurveConfig for Parameters { type BaseField = Fq; type ScalarField = Fr; /// COFACTOR = (x - 1)^2 / 3 = 76329603384216526031706109802092473003 const COFACTOR: &'static [u64] = &[0x8c00aaab0000aaab, 0x396c8c005555e156]; /// COFACTOR_INV = COFACTOR^{-1} mod r /// = 52435875175126190458656871551744051925719901746859129887267498875565241663483 const COFACTOR_INV: Fr = MontFp!("52435875175126190458656871551744051925719901746859129887267498875565241663483"); } impl SWCurveConfig for Parameters { /// COEFF_A = 0 const COEFF_A: Fq = Fq::ZERO; /// COEFF_B = 4 const COEFF_B: Fq = MontFp!("4"); /// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y) const GENERATOR: G1Affine = G1Affine::new_unchecked(G1_GENERATOR_X, G1_GENERATOR_Y); #[inline(always)] fn mul_by_a(_: &Self::BaseField) -> Self::BaseField { Self::BaseField::zero() } #[inline] fn is_in_correct_subgroup_assuming_on_curve(p: &G1Affine) -> bool { // Algorithm from Section 6 of https://eprint.iacr.org/2021/1130. // // Check that endomorphism_p(P) == -[X^2]P // An early-out optimization described in Section 6. // If uP == P but P != point of infinity, then the point is not in the right // subgroup. let x_times_p = p.mul_bigint(crate::Parameters::X); if x_times_p.eq(p) && !p.infinity { return false; } let minus_x_squared_times_p = x_times_p.mul_bigint(crate::Parameters::X).neg(); let endomorphism_p = endomorphism(p); minus_x_squared_times_p.eq(&endomorphism_p) } } /// G1_GENERATOR_X = /// 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507 pub const G1_GENERATOR_X: Fq = MontFp!("3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507"); /// G1_GENERATOR_Y = /// 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569 pub const G1_GENERATOR_Y: Fq = MontFp!("1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569"); /// BETA is a non-trivial cubic root of unity in Fq. pub const BETA: Fq = MontFp!("793479390729215512621379701633421447060886740281060493010456487427281649075476305620758731620350"); pub fn endomorphism(p: &Affine) -> Affine { // Endomorphism of the points on the curve. // endomorphism_p(x,y) = (BETA * x, y) // where BETA is a non-trivial cubic root of unity in Fq. let mut res = (*p).clone(); res.x *= BETA; res }