use ark_ec::{ bls12, bls12::Bls12Parameters, models::CurveConfig, short_weierstrass::{Affine, SWCurveConfig}, AffineCurve, }; use ark_ff::{Field, MontFp, Zero}; use crate::*; pub type G2Affine = bls12::G2Affine; pub type G2Projective = bls12::G2Projective; #[derive(Clone, Default, PartialEq, Eq)] pub struct Parameters; impl CurveConfig for Parameters { type BaseField = Fq2; type ScalarField = Fr; /// COFACTOR = (x^8 - 4 x^7 + 5 x^6) - (4 x^4 + 6 x^3 - 4 x^2 - 4 x + 13) // /// 9 /// = 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109 #[rustfmt::skip] const COFACTOR: &'static [u64] = &[ 0xcf1c38e31c7238e5, 0x1616ec6e786f0c70, 0x21537e293a6691ae, 0xa628f1cb4d9e82ef, 0xa68a205b2e5a7ddf, 0xcd91de4547085aba, 0x91d50792876a202, 0x5d543a95414e7f1, ]; /// COFACTOR_INV = COFACTOR^{-1} mod r /// 26652489039290660355457965112010883481355318854675681319708643586776743290055 const COFACTOR_INV: Fr = MontFp!("26652489039290660355457965112010883481355318854675681319708643586776743290055"); } impl SWCurveConfig for Parameters { /// COEFF_A = [0, 0] const COEFF_A: Fq2 = Fq2::new(g1::Parameters::COEFF_A, g1::Parameters::COEFF_A); /// COEFF_B = [4, 4] const COEFF_B: Fq2 = Fq2::new(g1::Parameters::COEFF_B, g1::Parameters::COEFF_B); /// AFFINE_GENERATOR_COEFFS = (G2_GENERATOR_X, G2_GENERATOR_Y) const GENERATOR: G2Affine = G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y); #[inline(always)] fn mul_by_a(_: &Self::BaseField) -> Self::BaseField { Self::BaseField::zero() } fn is_in_correct_subgroup_assuming_on_curve(point: &G2Affine) -> bool { // Algorithm from Section 4 of https://eprint.iacr.org/2021/1130. // // Checks that [p]P = [X]P let mut x_times_point = point.mul_bigint(crate::Parameters::X); if crate::Parameters::X_IS_NEGATIVE { x_times_point = -x_times_point; } let p_times_point = p_power_endomorphism(point); x_times_point.eq(&p_times_point) } } pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1); pub const G2_GENERATOR_Y: Fq2 = Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1); /// G2_GENERATOR_X_C0 = /// 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160 pub const G2_GENERATOR_X_C0: Fq = MontFp!("352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160"); /// G2_GENERATOR_X_C1 = /// 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758 pub const G2_GENERATOR_X_C1: Fq = MontFp!("3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758"); /// G2_GENERATOR_Y_C0 = /// 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905 pub const G2_GENERATOR_Y_C0: Fq = MontFp!("1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905"); /// G2_GENERATOR_Y_C1 = /// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 pub const G2_GENERATOR_Y_C1: Fq = MontFp!("927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582"); // psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed // with the quadratic twist and its inverse // PSI_X = 1/(u+1)^((p-1)/3) pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new( Fq::ZERO, MontFp!( "4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437" ) ); // PSI_Y = 1/(u+1)^((p-1)/2) pub const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new( MontFp!( "2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"), MontFp!( "1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257") ); pub fn p_power_endomorphism(p: &Affine) -> Affine { // The p-power endomorphism for G2 is defined as follows: // 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1). // To map a point (x, y) in E' to (s, t) in E, // one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)), // because E: y^2 = x^3 + 4. // 2. Apply the Frobenius endomorphism (s, t) => (s', t'), // another point on curve E, where s' = s^p, t' = t^p. // 3. Map the point from E back to E'; that is, // one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)). // // To sum up, it maps // (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2))) // as implemented in the code as follows. let mut res = *p; res.x.frobenius_map(1); res.y.frobenius_map(1); let tmp_x = res.x.clone(); res.x.c0 = -P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c1; res.x.c1 = P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c0; res.y *= P_POWER_ENDOMORPHISM_COEFF_1; res }