#![allow(unused_imports)] use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve}; use ark_ff::{ fields::{Field, FpParameters, PrimeField, SquareRootField}, One, Zero, }; use ark_serialize::CanonicalSerialize; use ark_std::test_rng; use core::ops::{AddAssign, MulAssign}; use rand::Rng; use crate::{g1, g2, Bls12_381, Fq, Fq12, Fq2, Fr, G1Affine, G1Projective, G2Affine, G2Projective}; use ark_algebra_test_templates::{curves::*, groups::*}; #[test] fn test_g1_projective_curve() { curve_tests::(); sw_tests::(); } #[test] fn test_g1_projective_group() { let mut rng = test_rng(); let a: G1Projective = rng.gen(); let b: G1Projective = rng.gen(); group_test(a, b); } #[test] fn test_g1_generator() { let generator = G1Affine::prime_subgroup_generator(); assert!(generator.is_on_curve()); assert!(generator.is_in_correct_subgroup_assuming_on_curve()); } #[test] fn test_g2_projective_curve() { curve_tests::(); sw_tests::(); } #[test] fn test_g2_projective_group() { let mut rng = test_rng(); let a: G2Projective = rng.gen(); let b: G2Projective = rng.gen(); group_test(a, b); } #[test] fn test_g2_generator() { let generator = G2Affine::prime_subgroup_generator(); assert!(generator.is_on_curve()); assert!(generator.is_in_correct_subgroup_assuming_on_curve()); } #[test] fn test_bilinearity() { let mut rng = test_rng(); let a: G1Projective = rng.gen(); let b: G2Projective = rng.gen(); let s: Fr = rng.gen(); let mut sa = a; sa.mul_assign(s); let mut sb = b; sb.mul_assign(s); let ans1 = Bls12_381::pairing(sa, b); let ans2 = Bls12_381::pairing(a, sb); let ans3 = Bls12_381::pairing(a, b).pow(s.into_repr()); assert_eq!(ans1, ans2); assert_eq!(ans2, ans3); assert_ne!(ans1, Fq12::one()); assert_ne!(ans2, Fq12::one()); assert_ne!(ans3, Fq12::one()); assert_eq!(ans1.pow(Fr::characteristic()), Fq12::one()); assert_eq!(ans2.pow(Fr::characteristic()), Fq12::one()); assert_eq!(ans3.pow(Fr::characteristic()), Fq12::one()); } #[test] fn test_g1_generator_raw() { let mut x = Fq::zero(); let mut i = 0; loop { // y^2 = x^3 + b let mut rhs = x; rhs.square_in_place(); rhs.mul_assign(&x); rhs.add_assign(&g1::Parameters::COEFF_B); if let Some(y) = rhs.sqrt() { let p = G1Affine::new(x, if y < -y { y } else { -y }, false); assert!(!p.is_in_correct_subgroup_assuming_on_curve()); let g1 = p.scale_by_cofactor(); if !g1.is_zero() { assert_eq!(i, 4); let g1 = G1Affine::from(g1); assert!(g1.is_in_correct_subgroup_assuming_on_curve()); assert_eq!(g1, G1Affine::prime_subgroup_generator()); break; } } i += 1; x.add_assign(&Fq::one()); } }