//! This module implements the R1CS equivalent of `ark_vesta`. //! //! It implements field variables for `crate::Fq`, //! and group variables for `crate::Projective`. //! //! The field underlying these constraints is `crate::Fq`. //! //! # Examples //! //! One can perform standard algebraic operations on `FBaseVar`: //! //! ``` //! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> { //! use ark_std::UniformRand; //! use ark_relations::r1cs::*; //! use ark_r1cs_std::prelude::*; //! use ark_vesta::{*, constraints::*}; //! //! let cs = ConstraintSystem::::new_ref(); //! // This rng is just for test purposes; do not use it //! // in real applications. //! let mut rng = ark_std::test_rng(); //! //! // Generate some random `Fq` elements. //! let a_native = Fq::rand(&mut rng); //! let b_native = Fq::rand(&mut rng); //! //! // Allocate `a_native` and `b_native` as witness variables in `cs`. //! let a = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?; //! let b = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?; //! //! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any //! // constraints or variables. //! let a_const = FBaseVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?; //! let b_const = FBaseVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?; //! //! let one = FBaseVar::one(); //! let zero = FBaseVar::zero(); //! //! // Sanity check one + one = two //! let two = &one + &one + &zero; //! two.enforce_equal(&one.double()?)?; //! //! assert!(cs.is_satisfied()?); //! //! // Check that the value of &a + &b is correct. //! assert_eq!((&a + &b).value()?, a_native + &b_native); //! //! // Check that the value of &a * &b is correct. //! assert_eq!((&a * &b).value()?, a_native * &b_native); //! //! // Check that operations on variables and constants are equivalent. //! (&a + &b).enforce_equal(&(&a_const + &b_const))?; //! assert!(cs.is_satisfied()?); //! # Ok(()) //! # } //! ``` //! //! One can also perform standard algebraic operations on `GVar`: //! //! ``` //! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> { //! # use ark_std::UniformRand; //! # use ark_relations::r1cs::*; //! # use ark_r1cs_std::prelude::*; //! # use ark_vesta::{*, constraints::*}; //! //! # let cs = ConstraintSystem::::new_ref(); //! # let mut rng = ark_std::test_rng(); //! //! // Generate some random `Projective` elements. //! let a_native = Projective::rand(&mut rng); //! let b_native = Projective::rand(&mut rng); //! //! // Allocate `a_native` and `b_native` as witness variables in `cs`. //! let a = GVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?; //! let b = GVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?; //! //! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any //! // constraints or variables. //! let a_const = GVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?; //! let b_const = GVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?; //! //! // This returns the identity. //! let zero = GVar::zero(); //! //! // Sanity check one + one = two //! let two_a = &a + &a + &zero; //! two_a.enforce_equal(&a.double()?)?; //! //! assert!(cs.is_satisfied()?); //! //! // Check that the value of &a + &b is correct. //! assert_eq!((&a + &b).value()?, a_native + &b_native); //! //! // Check that operations on variables and constants are equivalent. //! (&a + &b).enforce_equal(&(&a_const + &b_const))?; //! assert!(cs.is_satisfied()?); //! # Ok(()) //! # } //! ``` mod curves; mod fields; pub use curves::*; pub use fields::*;