mirror of
https://github.com/arnaucube/ark-curves-cherry-picked.git
synced 2026-01-27 14:13:46 +01:00
* implementation of the fast subgroup check for bls12_381 * add a bench * subgroup check for g1 * subgroup check modifications * remove useless test * fmt * need the last version of arkworks/algebra * remove Parameters0 * using projective points is more efficient * use of projective coordinates in G2 * fmt * documentation on the constants and the psi function * references for algorithms of eprint 2021/1130 * fmt * sed ^ ** * minor improvement * fmt * fix Cargo toml * nits * some cleanup for g1 * add the beta test back * fmt * g2 * changelog * add a note on the Cargo.toml * nits * avoid variable name conflicts * add the early-out optimization Co-authored-by: weikeng <w.k@berkeley.edu>
88 lines
3.3 KiB
Rust
88 lines
3.3 KiB
Rust
use crate::*;
|
|
use ark_ec::{
|
|
bls12,
|
|
bls12::Bls12Parameters,
|
|
models::{ModelParameters, SWModelParameters},
|
|
short_weierstrass_jacobian::GroupAffine,
|
|
AffineCurve, ProjectiveCurve,
|
|
};
|
|
use ark_ff::{biginteger::BigInteger256, field_new, Zero};
|
|
use ark_std::ops::Neg;
|
|
|
|
pub type G1Affine = bls12::G1Affine<crate::Parameters>;
|
|
pub type G1Projective = bls12::G1Projective<crate::Parameters>;
|
|
|
|
#[derive(Clone, Default, PartialEq, Eq)]
|
|
pub struct Parameters;
|
|
|
|
impl ModelParameters for Parameters {
|
|
type BaseField = Fq;
|
|
type ScalarField = Fr;
|
|
}
|
|
|
|
impl SWModelParameters for Parameters {
|
|
/// COEFF_A = 0
|
|
const COEFF_A: Fq = field_new!(Fq, "0");
|
|
|
|
/// COEFF_B = 4
|
|
#[rustfmt::skip]
|
|
const COEFF_B: Fq = field_new!(Fq, "4");
|
|
|
|
/// COFACTOR = (x - 1)^2 / 3 = 76329603384216526031706109802092473003
|
|
const COFACTOR: &'static [u64] = &[0x8c00aaab0000aaab, 0x396c8c005555e156];
|
|
|
|
/// COFACTOR_INV = COFACTOR^{-1} mod r
|
|
/// = 52435875175126190458656871551744051925719901746859129887267498875565241663483
|
|
#[rustfmt::skip]
|
|
const COFACTOR_INV: Fr = field_new!(Fr, "52435875175126190458656871551744051925719901746859129887267498875565241663483");
|
|
|
|
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
|
|
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
|
(G1_GENERATOR_X, G1_GENERATOR_Y);
|
|
|
|
#[inline(always)]
|
|
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
|
|
Self::BaseField::zero()
|
|
}
|
|
|
|
fn is_in_correct_subgroup_assuming_on_curve(p: &GroupAffine<Parameters>) -> bool {
|
|
// Algorithm from Section 6 of https://eprint.iacr.org/2021/1130.
|
|
//
|
|
// Check that endomorphism_p(P) == -[X^2]P
|
|
|
|
let x = BigInteger256::new([crate::Parameters::X[0], 0, 0, 0]);
|
|
|
|
// An early-out optimization described in Section 6.
|
|
// If uP == P but P != point of infinity, then the point is not in the right subgroup.
|
|
let x_times_p = p.mul(x);
|
|
if x_times_p.eq(p) && !p.infinity {
|
|
return false;
|
|
}
|
|
|
|
let minus_x_squared_times_p = x_times_p.mul(x).neg();
|
|
let endomorphism_p = endomorphism(p);
|
|
minus_x_squared_times_p.eq(&endomorphism_p)
|
|
}
|
|
}
|
|
|
|
/// G1_GENERATOR_X =
|
|
/// 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
|
|
#[rustfmt::skip]
|
|
pub const G1_GENERATOR_X: Fq = field_new!(Fq, "3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507");
|
|
|
|
/// G1_GENERATOR_Y =
|
|
/// 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
|
|
#[rustfmt::skip]
|
|
pub const G1_GENERATOR_Y: Fq = field_new!(Fq, "1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569");
|
|
|
|
/// BETA is a non-trivial cubic root of unity in Fq.
|
|
pub const BETA: Fq = field_new!(Fq, "793479390729215512621379701633421447060886740281060493010456487427281649075476305620758731620350");
|
|
|
|
pub fn endomorphism(p: &GroupAffine<Parameters>) -> GroupAffine<Parameters> {
|
|
// Endomorphism of the points on the curve.
|
|
// endomorphism_p(x,y) = (BETA * x, y) where BETA is a non-trivial cubic root of unity in Fq.
|
|
let mut res = (*p).clone();
|
|
res.x *= BETA;
|
|
res
|
|
}
|