use ark_ec::{
|
|
models::CurveConfig,
|
|
scalar_mul::glv::GLVConfig,
|
|
short_weierstrass::{self as sw, SWCurveConfig},
|
|
};
|
|
use ark_ff::{AdditiveGroup, BigInt, Field, MontFp, PrimeField, Zero};
|
|
|
|
use crate::{fq::Fq, fr::Fr};
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
#[derive(Copy, Clone, Default, PartialEq, Eq)]
|
|
pub struct PallasConfig;
|
|
|
|
impl CurveConfig for PallasConfig {
|
|
type BaseField = Fq;
|
|
type ScalarField = Fr;
|
|
|
|
/// COFACTOR = 1
|
|
const COFACTOR: &'static [u64] = &[0x1];
|
|
|
|
/// COFACTOR_INV = 1
|
|
const COFACTOR_INV: Fr = Fr::ONE;
|
|
}
|
|
|
|
pub type Affine = sw::Affine<PallasConfig>;
|
|
pub type Projective = sw::Projective<PallasConfig>;
|
|
|
|
impl SWCurveConfig for PallasConfig {
|
|
/// COEFF_A = 0
|
|
const COEFF_A: Fq = Fq::ZERO;
|
|
|
|
/// COEFF_B = 5
|
|
const COEFF_B: Fq = MontFp!("5");
|
|
|
|
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
|
|
const GENERATOR: Affine = Affine::new_unchecked(G_GENERATOR_X, G_GENERATOR_Y);
|
|
|
|
#[inline(always)]
|
|
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
|
|
Self::BaseField::zero()
|
|
}
|
|
}
|
|
|
|
impl GLVConfig for PallasConfig {
|
|
const ENDO_COEFFS: &'static [Self::BaseField] = &[MontFp!(
|
|
"20444556541222657078399132219657928148671392403212669005631716460534733845831"
|
|
)];
|
|
|
|
const LAMBDA: Self::ScalarField =
|
|
MontFp!("26005156700822196841419187675678338661165322343552424574062261873906994770353");
|
|
|
|
const SCALAR_DECOMP_COEFFS: [(bool, <Self::ScalarField as PrimeField>::BigInt); 4] = [
|
|
(false, BigInt!("98231058071100081932162823354453065728")),
|
|
(true, BigInt!("98231058071186745657228807397848383489")),
|
|
(false, BigInt!("196462116142286827589391630752301449217")),
|
|
(false, BigInt!("98231058071100081932162823354453065728")),
|
|
];
|
|
|
|
fn endomorphism(p: &Projective) -> Projective {
|
|
// Endomorphism of the points on the curve.
|
|
// endomorphism_p(x,y) = (BETA * x, y)
|
|
// where BETA is a non-trivial cubic root of unity in Fq.
|
|
let mut res = (*p).clone();
|
|
res.x *= Self::ENDO_COEFFS[0];
|
|
res
|
|
}
|
|
|
|
fn endomorphism_affine(p: &Affine) -> Affine {
|
|
// Endomorphism of the points on the curve.
|
|
// endomorphism_p(x,y) = (BETA * x, y)
|
|
// where BETA is a non-trivial cubic root of unity in Fq.
|
|
let mut res = (*p).clone();
|
|
res.x *= Self::ENDO_COEFFS[0];
|
|
res
|
|
}
|
|
}
|
|
|
|
/// G_GENERATOR_X = -1
|
|
pub const G_GENERATOR_X: Fq = MontFp!("-1");
|
|
|
|
/// G_GENERATOR_Y = 2
|
|
pub const G_GENERATOR_Y: Fq = MontFp!("2");
|