28 lines
902 B

modulus = 6891450384315732539396789682275657542479668912536150109513790160209623422243491736087683183289411687640864567753786613451161759120554247759349511699125301598951605099378508850372543631423596795951899700429969112842764913119068299
assert(modulus.is_prime())
Fp = GF(modulus)
generator = Fp(0);
for i in range(0, 20):
i = Fp(i);
neg_i = Fp(-i)
if not(i.is_primitive_root() or neg_i.is_primitive_root()):
continue
elif i.is_primitive_root():
assert(i.is_primitive_root());
print("Generator: %d" % i)
generator = i
break
else:
assert(neg_i.is_primitive_root());
print("Generator: %d" % neg_i)
generator = neg_i
break
two_adicity = valuation(modulus - 1, 2);
trace = (modulus - 1) / 2**two_adicity;
two_adic_root_of_unity = generator^trace
print("2-adic Root of Unity: %d " % two_adic_root_of_unity)