#![no_std]
|
|
#![macro_use]
|
|
extern crate ark_relations;
|
|
|
|
pub mod fields {
|
|
use rand::{self, SeedableRng};
|
|
use rand_xorshift::XorShiftRng;
|
|
|
|
use ark_ff::{BitIteratorLE, Field, UniformRand};
|
|
use ark_r1cs_std::prelude::*;
|
|
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|
use ark_std::test_rng;
|
|
use ark_std::vec::Vec;
|
|
|
|
pub fn field_test<F, ConstraintF, AF>() -> Result<(), SynthesisError>
|
|
where
|
|
F: Field,
|
|
ConstraintF: Field,
|
|
AF: FieldVar<F, ConstraintF>,
|
|
AF: TwoBitLookupGadget<ConstraintF, TableConstant = F>,
|
|
for<'a> &'a AF: FieldOpsBounds<'a, F, AF>,
|
|
{
|
|
let cs = ConstraintSystem::<ConstraintF>::new_ref();
|
|
|
|
let mut rng = test_rng();
|
|
let a_native = F::rand(&mut rng);
|
|
let b_native = F::rand(&mut rng);
|
|
let a = AF::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
|
|
let b = AF::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
|
|
let b_const = AF::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|
|
|
let zero = AF::zero();
|
|
let zero_native = zero.value()?;
|
|
zero.enforce_equal(&zero)?;
|
|
|
|
let one = AF::one();
|
|
let one_native = one.value()?;
|
|
one.enforce_equal(&one)?;
|
|
|
|
one.enforce_not_equal(&zero)?;
|
|
|
|
let one_dup = &zero + &one;
|
|
one_dup.enforce_equal(&one)?;
|
|
|
|
let two = &one + &one;
|
|
two.enforce_equal(&two)?;
|
|
two.enforce_equal(&one.double()?)?;
|
|
two.enforce_not_equal(&one)?;
|
|
two.enforce_not_equal(&zero)?;
|
|
|
|
// a + 0 = a
|
|
let a_plus_zero = &a + &zero;
|
|
assert_eq!(a_plus_zero.value()?, a_native);
|
|
a_plus_zero.enforce_equal(&a)?;
|
|
a_plus_zero.enforce_not_equal(&a.double()?)?;
|
|
|
|
// a - 0 = a
|
|
let a_minus_zero = &a - &zero;
|
|
assert_eq!(a_minus_zero.value()?, a_native);
|
|
a_minus_zero.enforce_equal(&a)?;
|
|
|
|
// a - a = 0
|
|
let a_minus_a = &a - &a;
|
|
assert_eq!(a_minus_a.value()?, zero_native);
|
|
a_minus_a.enforce_equal(&zero)?;
|
|
|
|
// a + b = b + a
|
|
let a_b = &a + &b;
|
|
let b_a = &b + &a;
|
|
assert_eq!(a_b.value()?, a_native + &b_native);
|
|
a_b.enforce_equal(&b_a)?;
|
|
|
|
// (a + b) + a = a + (b + a)
|
|
let ab_a = &a_b + &a;
|
|
let a_ba = &a + &b_a;
|
|
assert_eq!(ab_a.value()?, a_native + &b_native + &a_native);
|
|
ab_a.enforce_equal(&a_ba)?;
|
|
|
|
let b_times_a_plus_b = &a_b * &b;
|
|
let b_times_b_plus_a = &b_a * &b;
|
|
assert_eq!(
|
|
b_times_a_plus_b.value()?,
|
|
b_native * &(b_native + &a_native)
|
|
);
|
|
assert_eq!(
|
|
b_times_a_plus_b.value()?,
|
|
(b_native + &a_native) * &b_native
|
|
);
|
|
assert_eq!(
|
|
b_times_a_plus_b.value()?,
|
|
(a_native + &b_native) * &b_native
|
|
);
|
|
b_times_b_plus_a.enforce_equal(&b_times_a_plus_b)?;
|
|
|
|
// a * 1 = a
|
|
assert_eq!((&a * &one).value()?, a_native * &one_native);
|
|
|
|
// a * b = b * a
|
|
let ab = &a * &b;
|
|
let ba = &b * &a;
|
|
assert_eq!(ab.value()?, ba.value()?);
|
|
assert_eq!(ab.value()?, a_native * &b_native);
|
|
|
|
let ab_const = &a * &b_const;
|
|
let b_const_a = &b_const * &a;
|
|
assert_eq!(ab_const.value()?, b_const_a.value()?);
|
|
assert_eq!(ab_const.value()?, ab.value()?);
|
|
assert_eq!(ab_const.value()?, a_native * &b_native);
|
|
|
|
// (a * b) * a = a * (b * a)
|
|
let ab_a = &ab * &a;
|
|
let a_ba = &a * &ba;
|
|
assert_eq!(ab_a.value()?, a_ba.value()?);
|
|
assert_eq!(ab_a.value()?, a_native * &b_native * &a_native);
|
|
|
|
let aa = &a * &a;
|
|
let a_squared = a.square()?;
|
|
a_squared.enforce_equal(&aa)?;
|
|
assert_eq!(aa.value()?, a_squared.value()?);
|
|
assert_eq!(aa.value()?, a_native.square());
|
|
|
|
let aa = &a * a.value()?;
|
|
a_squared.enforce_equal(&aa)?;
|
|
assert_eq!(aa.value()?, a_squared.value()?);
|
|
assert_eq!(aa.value()?, a_native.square());
|
|
|
|
let a_b2 = &a + b_native;
|
|
a_b.enforce_equal(&a_b2)?;
|
|
assert_eq!(a_b.value()?, a_b2.value()?);
|
|
|
|
let a_inv = a.inverse()?;
|
|
a_inv.mul_equals(&a, &one)?;
|
|
assert_eq!(a_inv.value()?, a.value()?.inverse().unwrap());
|
|
assert_eq!(a_inv.value()?, a_native.inverse().unwrap());
|
|
|
|
let a_b_inv = a.mul_by_inverse(&b)?;
|
|
a_b_inv.mul_equals(&b, &a)?;
|
|
assert_eq!(a_b_inv.value()?, a_native * b_native.inverse().unwrap());
|
|
|
|
// a * a * a = a^3
|
|
let bits = BitIteratorLE::without_trailing_zeros([3u64])
|
|
.map(Boolean::constant)
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(a_native.pow([0x3]), a.pow_le(&bits)?.value()?);
|
|
|
|
// a * a * a = a^3
|
|
assert_eq!(a_native.pow([0x3]), a.pow_by_constant(&[0x3])?.value()?);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// a * a * a = a^3
|
|
let mut constants = [F::zero(); 4];
|
|
for c in &mut constants {
|
|
*c = UniformRand::rand(&mut test_rng());
|
|
}
|
|
let bits = [
|
|
Boolean::<ConstraintF>::constant(false),
|
|
Boolean::constant(true),
|
|
];
|
|
let lookup_result = AF::two_bit_lookup(&bits, constants.as_ref())?;
|
|
assert_eq!(lookup_result.value()?, constants[2]);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
let f = F::from(1u128 << 64);
|
|
let f_bits = ark_ff::BitIteratorLE::new(&[0u64, 1u64]).collect::<Vec<_>>();
|
|
let fv = AF::new_witness(ark_relations::ns!(cs, "alloc u128"), || Ok(f))?;
|
|
assert_eq!(fv.to_bits_le()?.value().unwrap()[..128], f_bits[..128]);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
let r_native: F = UniformRand::rand(&mut test_rng());
|
|
|
|
let r = AF::new_witness(ark_relations::ns!(cs, "r_native"), || Ok(r_native)).unwrap();
|
|
let _ = r.to_non_unique_bits_le()?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
let _ = r.to_bits_le()?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
let bytes = r.to_non_unique_bytes()?;
|
|
assert_eq!(ark_ff::to_bytes!(r_native).unwrap(), bytes.value().unwrap());
|
|
assert!(cs.is_satisfied().unwrap());
|
|
let bytes = r.to_bytes()?;
|
|
assert_eq!(ark_ff::to_bytes!(r_native).unwrap(), bytes.value().unwrap());
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
let ab_false = &a + (AF::from(Boolean::Constant(false)) * b_native);
|
|
assert_eq!(ab_false.value()?, a_native);
|
|
let ab_true = &a + (AF::from(Boolean::Constant(true)) * b_native);
|
|
assert_eq!(ab_true.value()?, a_native + &b_native);
|
|
|
|
if !cs.is_satisfied().unwrap() {
|
|
panic!("{:?}", cs.which_is_unsatisfied().unwrap());
|
|
}
|
|
assert!(cs.is_satisfied().unwrap());
|
|
Ok(())
|
|
}
|
|
|
|
pub fn frobenius_tests<F: Field, ConstraintF, AF>(maxpower: usize) -> Result<(), SynthesisError>
|
|
where
|
|
F: Field,
|
|
ConstraintF: Field,
|
|
AF: FieldVar<F, ConstraintF>,
|
|
for<'a> &'a AF: FieldOpsBounds<'a, F, AF>,
|
|
{
|
|
let cs = ConstraintSystem::<ConstraintF>::new_ref();
|
|
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
|
for i in 0..=maxpower {
|
|
let mut a = F::rand(&mut rng);
|
|
let mut a_gadget = AF::new_witness(ark_relations::ns!(cs, "a"), || Ok(a))?;
|
|
a_gadget.frobenius_map_in_place(i)?;
|
|
a.frobenius_map(i);
|
|
|
|
assert_eq!(a_gadget.value()?, a);
|
|
}
|
|
|
|
assert!(cs.is_satisfied().unwrap());
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
pub mod curves {
|
|
use ark_ec::{
|
|
short_weierstrass_jacobian::GroupProjective as SWProjective,
|
|
twisted_edwards_extended::GroupProjective as TEProjective, AffineCurve, ProjectiveCurve,
|
|
};
|
|
use ark_ff::{test_rng, Field, PrimeField};
|
|
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|
use ark_std::vec::Vec;
|
|
|
|
use ark_r1cs_std::prelude::*;
|
|
|
|
pub fn group_test<C, ConstraintF, GG>() -> Result<(), SynthesisError>
|
|
where
|
|
C: ProjectiveCurve,
|
|
ConstraintF: Field,
|
|
GG: CurveVar<C, ConstraintF>,
|
|
for<'a> &'a GG: GroupOpsBounds<'a, C, GG>,
|
|
{
|
|
let cs = ConstraintSystem::<ConstraintF>::new_ref();
|
|
|
|
let mut rng = test_rng();
|
|
let a_native = C::rand(&mut rng);
|
|
let b_native = C::rand(&mut rng);
|
|
let a = GG::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native)).unwrap();
|
|
let b = GG::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native)).unwrap();
|
|
|
|
let zero = GG::zero();
|
|
assert_eq!(zero.value()?, zero.value()?);
|
|
|
|
// a == a
|
|
assert_eq!(a.value()?, a.value()?);
|
|
// a + 0 = a
|
|
assert_eq!((&a + &zero).value()?, a.value()?);
|
|
// a - 0 = a
|
|
assert_eq!((&a - &zero).value()?, a.value()?);
|
|
// a - a = 0
|
|
assert_eq!((&a - &a).value()?, zero.value()?);
|
|
// a + b = b + a
|
|
let a_b = &a + &b;
|
|
let b_a = &b + &a;
|
|
assert_eq!(a_b.value()?, b_a.value()?);
|
|
a_b.enforce_equal(&b_a)?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// (a + b) + a = a + (b + a)
|
|
let ab_a = &a_b + &a;
|
|
let a_ba = &a + &b_a;
|
|
assert_eq!(ab_a.value()?, a_ba.value()?);
|
|
ab_a.enforce_equal(&a_ba)?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// a.double() = a + a
|
|
let a_a = &a + &a;
|
|
let mut a2 = a.clone();
|
|
a2.double_in_place()?;
|
|
a2.enforce_equal(&a_a)?;
|
|
assert_eq!(a2.value()?, a_native.double());
|
|
assert_eq!(a_a.value()?, a_native.double());
|
|
assert_eq!(a2.value()?, a_a.value()?);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// b.double() = b + b
|
|
let mut b2 = b.clone();
|
|
b2.double_in_place()?;
|
|
let b_b = &b + &b;
|
|
b2.enforce_equal(&b_b)?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
assert_eq!(b2.value()?, b_b.value()?);
|
|
|
|
let _ = a.to_bytes()?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
let _ = a.to_non_unique_bytes()?;
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
let _ = b.to_bytes()?;
|
|
let _ = b.to_non_unique_bytes()?;
|
|
if !cs.is_satisfied().unwrap() {
|
|
panic!("{:?}", cs.which_is_unsatisfied().unwrap());
|
|
}
|
|
assert!(cs.is_satisfied().unwrap());
|
|
Ok(())
|
|
}
|
|
|
|
pub fn sw_test<P, GG>() -> Result<(), SynthesisError>
|
|
where
|
|
P: ark_ec::SWModelParameters,
|
|
GG: CurveVar<SWProjective<P>, <P::BaseField as Field>::BasePrimeField>,
|
|
for<'a> &'a GG: GroupOpsBounds<'a, SWProjective<P>, GG>,
|
|
{
|
|
use ark_ec::group::Group;
|
|
use ark_ff::{BitIteratorLE, UniformRand};
|
|
use ark_r1cs_std::prelude::*;
|
|
|
|
group_test::<SWProjective<P>, _, GG>()?;
|
|
|
|
let mut rng = test_rng();
|
|
|
|
let cs = ConstraintSystem::<<P::BaseField as Field>::BasePrimeField>::new_ref();
|
|
|
|
let a = SWProjective::<P>::rand(&mut rng);
|
|
let b = SWProjective::<P>::rand(&mut rng);
|
|
let a_affine = a.into_affine();
|
|
let b_affine = b.into_affine();
|
|
|
|
let ns = ark_relations::ns!(cs, "allocating variables");
|
|
let mut gadget_a = GG::new_witness(cs.clone(), || Ok(a))?;
|
|
let gadget_b = GG::new_witness(cs.clone(), || Ok(b))?;
|
|
drop(ns);
|
|
assert_eq!(gadget_a.value()?.into_affine().x, a_affine.x);
|
|
assert_eq!(gadget_a.value()?.into_affine().y, a_affine.y);
|
|
assert_eq!(gadget_b.value()?.into_affine().x, b_affine.x);
|
|
assert_eq!(gadget_b.value()?.into_affine().y, b_affine.y);
|
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), None);
|
|
|
|
// Check addition
|
|
let ab = a + &b;
|
|
let ab_affine = ab.into_affine();
|
|
let gadget_ab = &gadget_a + &gadget_b;
|
|
let gadget_ba = &gadget_b + &gadget_a;
|
|
gadget_ba.enforce_equal(&gadget_ab)?;
|
|
|
|
let ab_val = gadget_ab.value()?.into_affine();
|
|
assert_eq!(ab_val, ab_affine, "Result of addition is unequal");
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// Check doubling
|
|
let aa = Group::double(&a);
|
|
let aa_affine = aa.into_affine();
|
|
gadget_a.double_in_place()?;
|
|
let aa_val = gadget_a.value()?.into_affine();
|
|
assert_eq!(
|
|
aa_val, aa_affine,
|
|
"Gadget and native values are unequal after double."
|
|
);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// Check mul_bits
|
|
let scalar = P::ScalarField::rand(&mut rng);
|
|
let native_result = aa.into_affine().mul(scalar);
|
|
let native_result = native_result.into_affine();
|
|
|
|
let scalar: Vec<bool> = BitIteratorLE::new(scalar.into_repr()).collect();
|
|
let input: Vec<Boolean<_>> =
|
|
Vec::new_witness(ark_relations::ns!(cs, "bits"), || Ok(scalar)).unwrap();
|
|
let result = gadget_a.scalar_mul_le(input.iter())?;
|
|
let result_val = result.value()?.into_affine();
|
|
assert_eq!(
|
|
result_val, native_result,
|
|
"gadget & native values are diff. after scalar mul"
|
|
);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
if !cs.is_satisfied().unwrap() {
|
|
panic!("{:?}", cs.which_is_unsatisfied().unwrap());
|
|
}
|
|
|
|
assert!(cs.is_satisfied().unwrap());
|
|
Ok(())
|
|
}
|
|
|
|
pub fn te_test<P, GG>() -> Result<(), SynthesisError>
|
|
where
|
|
P: ark_ec::TEModelParameters,
|
|
GG: CurveVar<TEProjective<P>, <P::BaseField as Field>::BasePrimeField>,
|
|
for<'a> &'a GG: GroupOpsBounds<'a, TEProjective<P>, GG>,
|
|
{
|
|
use ark_ec::group::Group;
|
|
use ark_ff::{BitIteratorLE, UniformRand};
|
|
|
|
group_test::<TEProjective<P>, _, GG>()?;
|
|
|
|
let mut rng = test_rng();
|
|
|
|
let cs = ConstraintSystem::<<P::BaseField as Field>::BasePrimeField>::new_ref();
|
|
|
|
let a = TEProjective::<P>::rand(&mut rng);
|
|
let b = TEProjective::<P>::rand(&mut rng);
|
|
let a_affine = a.into_affine();
|
|
let b_affine = b.into_affine();
|
|
|
|
let ns = ark_relations::ns!(cs, "allocating variables");
|
|
let mut gadget_a = GG::new_witness(cs.clone(), || Ok(a))?;
|
|
let gadget_b = GG::new_witness(cs.clone(), || Ok(b))?;
|
|
drop(ns);
|
|
|
|
assert_eq!(gadget_a.value()?.into_affine().x, a_affine.x);
|
|
assert_eq!(gadget_a.value()?.into_affine().y, a_affine.y);
|
|
assert_eq!(gadget_b.value()?.into_affine().x, b_affine.x);
|
|
assert_eq!(gadget_b.value()?.into_affine().y, b_affine.y);
|
|
assert_eq!(cs.which_is_unsatisfied()?, None);
|
|
|
|
// Check addition
|
|
let ab = a + &b;
|
|
let ab_affine = ab.into_affine();
|
|
let gadget_ab = &gadget_a + &gadget_b;
|
|
let gadget_ba = &gadget_b + &gadget_a;
|
|
gadget_ba.enforce_equal(&gadget_ab)?;
|
|
|
|
let ab_val = gadget_ab.value()?.into_affine();
|
|
assert_eq!(ab_val, ab_affine, "Result of addition is unequal");
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// Check doubling
|
|
let aa = Group::double(&a);
|
|
let aa_affine = aa.into_affine();
|
|
gadget_a.double_in_place()?;
|
|
let aa_val = gadget_a.value()?.into_affine();
|
|
assert_eq!(
|
|
aa_val, aa_affine,
|
|
"Gadget and native values are unequal after double."
|
|
);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// Check mul_bits
|
|
let scalar = P::ScalarField::rand(&mut rng);
|
|
let native_result = AffineCurve::mul(&aa.into_affine(), scalar);
|
|
let native_result = native_result.into_affine();
|
|
|
|
let scalar: Vec<bool> = BitIteratorLE::new(scalar.into_repr()).collect();
|
|
let input: Vec<Boolean<_>> =
|
|
Vec::new_witness(ark_relations::ns!(cs, "bits"), || Ok(scalar)).unwrap();
|
|
let result = gadget_a.scalar_mul_le(input.iter())?;
|
|
let result_val = result.value()?.into_affine();
|
|
assert_eq!(
|
|
result_val, native_result,
|
|
"gadget & native values are diff. after scalar mul"
|
|
);
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
if !cs.is_satisfied().unwrap() {
|
|
panic!("{:?}", cs.which_is_unsatisfied().unwrap());
|
|
}
|
|
|
|
assert!(cs.is_satisfied().unwrap());
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
pub mod pairing {
|
|
use ark_ec::{PairingEngine, ProjectiveCurve};
|
|
use ark_ff::{test_rng, BitIteratorLE, Field, PrimeField, UniformRand};
|
|
use ark_r1cs_std::prelude::*;
|
|
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|
use ark_std::vec::Vec;
|
|
|
|
#[allow(dead_code)]
|
|
pub fn bilinearity_test<E: PairingEngine, P: PairingVar<E>>() -> Result<(), SynthesisError>
|
|
where
|
|
for<'a> &'a P::G1Var: GroupOpsBounds<'a, E::G1Projective, P::G1Var>,
|
|
for<'a> &'a P::G2Var: GroupOpsBounds<'a, E::G2Projective, P::G2Var>,
|
|
for<'a> &'a P::GTVar: FieldOpsBounds<'a, E::Fqk, P::GTVar>,
|
|
{
|
|
let cs = ConstraintSystem::<E::Fq>::new_ref();
|
|
|
|
let mut rng = test_rng();
|
|
let a = E::G1Projective::rand(&mut rng);
|
|
let b = E::G2Projective::rand(&mut rng);
|
|
let s = E::Fr::rand(&mut rng);
|
|
|
|
let mut sa = a;
|
|
sa *= s;
|
|
let mut sb = b;
|
|
sb *= s;
|
|
|
|
let a_g = P::G1Var::new_witness(cs.clone(), || Ok(a.into_affine()))?;
|
|
let b_g = P::G2Var::new_witness(cs.clone(), || Ok(b.into_affine()))?;
|
|
let sa_g = P::G1Var::new_witness(cs.clone(), || Ok(sa.into_affine()))?;
|
|
let sb_g = P::G2Var::new_witness(cs.clone(), || Ok(sb.into_affine()))?;
|
|
|
|
let mut _preparation_num_constraints = cs.num_constraints();
|
|
let a_prep_g = P::prepare_g1(&a_g)?;
|
|
let b_prep_g = P::prepare_g2(&b_g)?;
|
|
_preparation_num_constraints = cs.num_constraints() - _preparation_num_constraints;
|
|
|
|
let sa_prep_g = P::prepare_g1(&sa_g)?;
|
|
let sb_prep_g = P::prepare_g2(&sb_g)?;
|
|
|
|
let (ans1_g, ans1_n) = {
|
|
let _ml_constraints = cs.num_constraints();
|
|
let ml_g = P::miller_loop(&[sa_prep_g], &[b_prep_g.clone()])?;
|
|
let _fe_constraints = cs.num_constraints();
|
|
let ans_g = P::final_exponentiation(&ml_g)?;
|
|
let ans_n = E::pairing(sa, b);
|
|
(ans_g, ans_n)
|
|
};
|
|
|
|
let (ans2_g, ans2_n) = {
|
|
let ans_g = P::pairing(a_prep_g.clone(), sb_prep_g)?;
|
|
let ans_n = E::pairing(a, sb);
|
|
(ans_g, ans_n)
|
|
};
|
|
|
|
let (ans3_g, ans3_n) = {
|
|
let s_iter = BitIteratorLE::without_trailing_zeros(s.into_repr())
|
|
.map(Boolean::constant)
|
|
.collect::<Vec<_>>();
|
|
|
|
let mut ans_g = P::pairing(a_prep_g, b_prep_g)?;
|
|
let mut ans_n = E::pairing(a, b);
|
|
ans_n = ans_n.pow(s.into_repr());
|
|
ans_g = ans_g.pow_le(&s_iter)?;
|
|
|
|
(ans_g, ans_n)
|
|
};
|
|
|
|
ans1_g.enforce_equal(&ans2_g)?;
|
|
ans2_g.enforce_equal(&ans3_g)?;
|
|
|
|
assert_eq!(ans1_g.value()?, ans1_n, "Failed native test 1");
|
|
assert_eq!(ans2_g.value()?, ans2_n, "Failed native test 2");
|
|
assert_eq!(ans3_g.value()?, ans3_n, "Failed native test 3");
|
|
|
|
assert_eq!(ans1_n, ans2_n, "Failed ans1_native == ans2_native");
|
|
assert_eq!(ans2_n, ans3_n, "Failed ans2_native == ans3_native");
|
|
assert_eq!(ans1_g.value()?, ans3_g.value()?, "Failed ans1 == ans3");
|
|
assert_eq!(ans1_g.value()?, ans2_g.value()?, "Failed ans1 == ans2");
|
|
assert_eq!(ans2_g.value()?, ans3_g.value()?, "Failed ans2 == ans3");
|
|
|
|
if !cs.is_satisfied().unwrap() {
|
|
panic!("Unsatisfied: {:?}", cs.which_is_unsatisfied());
|
|
}
|
|
|
|
assert!(cs.is_satisfied().unwrap(), "cs is not satisfied");
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
#[test]
|
|
fn it_works() {
|
|
assert_eq!(2 + 2, 4);
|
|
}
|
|
}
|