You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

194 lines
6.4 KiB

use crate::*;
use ark_ec::{
bls12,
bls12::Bls12Config,
models::CurveConfig,
short_weierstrass::{Affine, SWCurveConfig},
AffineRepr, Group,
};
use ark_ff::{Field, MontFp, PrimeField, Zero};
use ark_serialize::{Compress, SerializationError};
use ark_std::{ops::Neg, One};
use crate::util::{
read_g1_compressed, read_g1_uncompressed, serialize_fq, EncodingFlags, G1_SERIALIZED_SIZE,
};
pub type G1Affine = bls12::G1Affine<crate::Config>;
pub type G1Projective = bls12::G1Projective<crate::Config>;
#[derive(Clone, Default, PartialEq, Eq)]
pub struct Config;
impl CurveConfig for Config {
type BaseField = Fq;
type ScalarField = Fr;
/// COFACTOR = (x - 1)^2 / 3 = 76329603384216526031706109802092473003
const COFACTOR: &'static [u64] = &[0x8c00aaab0000aaab, 0x396c8c005555e156];
/// COFACTOR_INV = COFACTOR^{-1} mod r
/// = 52435875175126190458656871551744051925719901746859129887267498875565241663483
const COFACTOR_INV: Fr =
MontFp!("52435875175126190458656871551744051925719901746859129887267498875565241663483");
}
impl SWCurveConfig for Config {
/// COEFF_A = 0
const COEFF_A: Fq = Fq::ZERO;
/// COEFF_B = 4
const COEFF_B: Fq = MontFp!("4");
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
const GENERATOR: G1Affine = G1Affine::new_unchecked(G1_GENERATOR_X, G1_GENERATOR_Y);
#[inline(always)]
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
#[inline]
fn is_in_correct_subgroup_assuming_on_curve(p: &G1Affine) -> bool {
// Algorithm from Section 6 of https://eprint.iacr.org/2021/1130.
//
// Check that endomorphism_p(P) == -[X^2]P
// An early-out optimization described in Section 6.
// If uP == P but P != point of infinity, then the point is not in the right
// subgroup.
let x_times_p = p.mul_bigint(crate::Config::X);
if x_times_p.eq(p) && !p.infinity {
return false;
}
let minus_x_squared_times_p = x_times_p.mul_bigint(crate::Config::X).neg();
let endomorphism_p = endomorphism(p);
minus_x_squared_times_p.eq(&endomorphism_p)
}
#[inline]
fn clear_cofactor(p: &G1Affine) -> G1Affine {
// Using the effective cofactor, as explained in
// Section 5 of https://eprint.iacr.org/2019/403.pdf.
//
// It is enough to multiply by (1 - x), instead of (x - 1)^2 / 3
let h_eff = one_minus_x().into_bigint();
Config::mul_affine(&p, h_eff.as_ref()).into()
}
fn deserialize_with_mode<R: ark_serialize::Read>(
mut reader: R,
compress: ark_serialize::Compress,
validate: ark_serialize::Validate,
) -> Result<Affine<Self>, ark_serialize::SerializationError> {
let p = if compress == ark_serialize::Compress::Yes {
read_g1_compressed(&mut reader)?
} else {
read_g1_uncompressed(&mut reader)?
};
if validate == ark_serialize::Validate::Yes && !p.is_in_correct_subgroup_assuming_on_curve()
{
return Err(SerializationError::InvalidData);
}
Ok(p)
}
fn serialize_with_mode<W: ark_serialize::Write>(
item: &Affine<Self>,
mut writer: W,
compress: ark_serialize::Compress,
) -> Result<(), SerializationError> {
let encoding = EncodingFlags {
is_compressed: compress == ark_serialize::Compress::Yes,
is_infinity: item.is_zero(),
is_lexographically_largest: item.y > -item.y,
};
let mut p = *item;
if encoding.is_infinity {
p = G1Affine::zero();
}
// need to access the field struct `x` directly, otherwise we get None from xy()
// method
let x_bytes = serialize_fq(p.x);
if encoding.is_compressed {
let mut bytes: [u8; G1_SERIALIZED_SIZE] = x_bytes;
encoding.encode_flags(&mut bytes);
writer.write_all(&bytes)?;
} else {
let mut bytes = [0u8; 2 * G1_SERIALIZED_SIZE];
bytes[0..G1_SERIALIZED_SIZE].copy_from_slice(&x_bytes[..]);
bytes[G1_SERIALIZED_SIZE..].copy_from_slice(&serialize_fq(p.y)[..]);
encoding.encode_flags(&mut bytes);
writer.write_all(&bytes)?;
};
Ok(())
}
fn serialized_size(compress: Compress) -> usize {
if compress == Compress::Yes {
G1_SERIALIZED_SIZE
} else {
G1_SERIALIZED_SIZE * 2
}
}
}
fn one_minus_x() -> Fr {
const X: Fr = Fr::from_sign_and_limbs(!crate::Config::X_IS_NEGATIVE, crate::Config::X);
Fr::one() - X
}
/// G1_GENERATOR_X =
/// 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
pub const G1_GENERATOR_X: Fq = MontFp!("3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507");
/// G1_GENERATOR_Y =
/// 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
pub const G1_GENERATOR_Y: Fq = MontFp!("1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569");
/// BETA is a non-trivial cubic root of unity in Fq.
pub const BETA: Fq = MontFp!("793479390729215512621379701633421447060886740281060493010456487427281649075476305620758731620350");
pub fn endomorphism(p: &Affine<Config>) -> Affine<Config> {
// Endomorphism of the points on the curve.
// endomorphism_p(x,y) = (BETA * x, y)
// where BETA is a non-trivial cubic root of unity in Fq.
let mut res = (*p).clone();
res.x *= BETA;
res
}
#[cfg(test)]
mod test {
use super::*;
use ark_std::{rand::Rng, UniformRand};
fn sample_unchecked() -> Affine<g1::Config> {
let mut rng = ark_std::test_rng();
loop {
let x = Fq::rand(&mut rng);
let greatest = rng.gen();
if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
return p;
}
}
}
#[test]
fn test_cofactor_clearing() {
const SAMPLES: usize = 100;
for _ in 0..SAMPLES {
let p: Affine<g1::Config> = sample_unchecked();
let p = p.clear_cofactor();
assert!(p.is_on_curve());
assert!(p.is_in_correct_subgroup_assuming_on_curve());
}
}
}