Add native implementation of Schnorr blind signatures and non-blind Schnorr signatures: https://eprint.iacr.org/2019/877main
@ -1,314 +1,2 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(clippy::many_single_char_names)]
|
|||
|
|||
// #[cfg(feature="r1cs")]
|
|||
pub mod constraints;
|
|||
|
|||
use ark_ec::{models::twisted_edwards_extended::GroupAffine, AffineCurve, ProjectiveCurve};
|
|||
|
|||
use ark_ff::{to_bytes, BigInteger256, Field, FpParameters, PrimeField};
|
|||
|
|||
use ark_std::marker::PhantomData;
|
|||
use ark_std::{rand::Rng, UniformRand};
|
|||
use derivative::Derivative;
|
|||
|
|||
// hash
|
|||
use arkworks_native_gadgets::poseidon;
|
|||
use arkworks_native_gadgets::poseidon::FieldHasher;
|
|||
use arkworks_utils::{
|
|||
bytes_matrix_to_f, bytes_vec_to_f, poseidon_params::setup_poseidon_params, Curve,
|
|||
};
|
|||
|
|||
// WIP
|
|||
use ark_ed_on_bn254::{EdwardsAffine, EdwardsParameters};
|
|||
|
|||
pub type ConstraintF<C> = <<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField;
|
|||
pub type SecretKey<C> = <C as ProjectiveCurve>::ScalarField;
|
|||
pub type PublicKey<C> = <C as ProjectiveCurve>::Affine;
|
|||
pub type BlindedSignature<C> = <C as ProjectiveCurve>::ScalarField;
|
|||
|
|||
// #[derive(Derivative)]
|
|||
#[derive(Clone, Default, Debug)]
|
|||
pub struct Signature<C: ProjectiveCurve> {
|
|||
s: C::ScalarField, // ScalarField == Fr
|
|||
r: <C as ProjectiveCurve>::Affine,
|
|||
}
|
|||
|
|||
#[derive(Clone, Default, Debug)]
|
|||
pub struct UserSecretData<C: ProjectiveCurve> {
|
|||
a: C::ScalarField,
|
|||
b: C::ScalarField,
|
|||
r: C::Affine,
|
|||
}
|
|||
impl<C: ProjectiveCurve> UserSecretData<C> {
|
|||
fn new_empty(parameters: &Parameters<C>) -> Self {
|
|||
UserSecretData {
|
|||
a: C::ScalarField::from(0_u32),
|
|||
b: C::ScalarField::from(0_u32),
|
|||
r: parameters.generator, // WIP
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[derive(Derivative)]
|
|||
#[derivative(Clone(bound = "C: ProjectiveCurve"), Debug)]
|
|||
pub struct Parameters<C: ProjectiveCurve> {
|
|||
pub generator: C::Affine,
|
|||
}
|
|||
|
|||
pub struct BlindSigScheme<C: ProjectiveCurve> {
|
|||
_group: PhantomData<C>,
|
|||
}
|
|||
|
|||
impl<C: ProjectiveCurve> BlindSigScheme<C>
|
|||
where
|
|||
C::ScalarField: PrimeField,
|
|||
GroupAffine<EdwardsParameters>: From<<C as ProjectiveCurve>::Affine>, // WIP
|
|||
{
|
|||
pub fn setup() -> Parameters<C> {
|
|||
let generator = C::prime_subgroup_generator().into();
|
|||
Parameters { generator }
|
|||
}
|
|||
|
|||
// signer
|
|||
pub fn keygen<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (PublicKey<C>, SecretKey<C>) {
|
|||
let secret_key = C::ScalarField::rand(rng);
|
|||
let public_key = parameters.generator.mul(secret_key).into();
|
|||
(public_key, secret_key)
|
|||
}
|
|||
|
|||
pub fn new_request_params<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
) -> (C::ScalarField, C::Affine) {
|
|||
let k = C::ScalarField::rand(rng);
|
|||
let R = parameters.generator.mul(k).into();
|
|||
(k, R)
|
|||
}
|
|||
|
|||
pub fn blind_sign(
|
|||
sk: SecretKey<C>,
|
|||
k: C::ScalarField,
|
|||
m_blinded: C::ScalarField,
|
|||
) -> BlindedSignature<C> {
|
|||
sk * m_blinded + k
|
|||
}
|
|||
|
|||
// new_k_and_R returns a new k \in Fr, and R=k * G, such that R.x \in Fr
|
|||
fn new_k_and_R<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (C::ScalarField, C::Affine)
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let k = C::ScalarField::rand(rng);
|
|||
|
|||
let R: C::Affine = parameters.generator.mul(k.into_repr()).into();
|
|||
let r = EdwardsAffine::from(R); // WIP
|
|||
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
// TODO maybe add a counter of attempts with a limit
|
|||
return Self::new_k_and_R(parameters, rng);
|
|||
}
|
|||
|
|||
(k, R)
|
|||
}
|
|||
|
|||
// non_blind_sign performs a non-blind signature, which can be verified with the same check
|
|||
// than a blind-signature
|
|||
pub fn non_blind_sign<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
sk: SecretKey<C>,
|
|||
m: &[ConstraintF<C>],
|
|||
) -> Result<Signature<C>, ark_crypto_primitives::Error>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let (k, R) = Self::new_k_and_R(parameters, rng);
|
|||
let r = EdwardsAffine::from(R); // WIP
|
|||
let x_fr = C::ScalarField::from(r.x.into_repr());
|
|||
|
|||
let hm = poseidon_hash.hash(m)?;
|
|||
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
|
|||
|
|||
let s = k + (x_fr * hm_fr) * sk;
|
|||
Ok(Signature { s, r: R })
|
|||
}
|
|||
|
|||
// requester
|
|||
pub fn new_blind_params<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
signer_r: C::Affine,
|
|||
) -> UserSecretData<C>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let mut u: UserSecretData<C> = UserSecretData::new_empty(parameters);
|
|||
u.a = C::ScalarField::rand(rng);
|
|||
u.b = C::ScalarField::rand(rng);
|
|||
|
|||
// R = aR' + bG
|
|||
let aR = signer_r.mul(u.a.into_repr());
|
|||
let bG = parameters.generator.mul(u.b.into_repr());
|
|||
u.r = aR.into_affine() + bG.into_affine();
|
|||
|
|||
let r = EdwardsAffine::from(u.r); // WIP
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
// TODO maybe add a counter of attempts with a limit
|
|||
return Self::new_blind_params(parameters, rng, signer_r);
|
|||
}
|
|||
u
|
|||
}
|
|||
|
|||
pub fn blind<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
m: &[ConstraintF<C>],
|
|||
signer_r: C::Affine,
|
|||
) -> Result<(C::ScalarField, UserSecretData<C>), ark_crypto_primitives::Error>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let u = Self::new_blind_params(parameters, rng, signer_r);
|
|||
|
|||
// get X coordinate, as in new_blind_params we already checked that R.x is inside Fr and
|
|||
// will not overflow (giving None)
|
|||
let r = EdwardsAffine::from(u.r); // WIP
|
|||
let x_fr = C::ScalarField::from(r.x.into_repr());
|
|||
|
|||
// m' = a^-1 rx h(m)
|
|||
// TODO hash(m) must be \in Fr
|
|||
let hm = poseidon_hash.hash(m)?;
|
|||
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
|
|||
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
|
|||
let m_blinded = u.a.inverse().unwrap() * x_fr * hm_fr;
|
|||
// let m_blinded = C::ScalarField::from(u.a.inverse().unwrap() * x_fr) * hm_fr;
|
|||
|
|||
Ok((m_blinded, u))
|
|||
}
|
|||
|
|||
pub fn unblind(s_blinded: C::ScalarField, u: &UserSecretData<C>) -> Signature<C> {
|
|||
// s = a s' + b
|
|||
let s = u.a * s_blinded + u.b;
|
|||
Signature { s, r: u.r }
|
|||
}
|
|||
|
|||
pub fn verify(
|
|||
parameters: &Parameters<C>,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
m: &[ConstraintF<C>],
|
|||
s: Signature<C>,
|
|||
q: PublicKey<C>,
|
|||
) -> bool |
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let sG = parameters.generator.mul(s.s.into_repr());
|
|||
|
|||
// TODO the output of hash(m) must be \in Fr
|
|||
let hm = poseidon_hash.hash(m).unwrap();
|
|||
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
|
|||
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm).unwrap()); // WIP TMP
|
|||
|
|||
// check that s.R.x is in Fr
|
|||
let r = EdwardsAffine::from(s.r); // WIP
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
return false;
|
|||
}
|
|||
// get s.R.x
|
|||
let x_fr = C::ScalarField::from(r.x.into_repr());
|
|||
let right = s.r + q.mul((x_fr * hm_fr).into_repr()).into_affine();
|
|||
|
|||
sG.into_affine() == right
|
|||
}
|
|||
}
|
|||
|
|||
// poseidon
|
|||
pub fn poseidon_setup_params<F: PrimeField>(
|
|||
curve: Curve,
|
|||
exp: i8,
|
|||
width: u8,
|
|||
) -> poseidon::PoseidonParameters<F> {
|
|||
let pos_data = setup_poseidon_params(curve, exp, width).unwrap();
|
|||
|
|||
let mds_f = bytes_matrix_to_f(&pos_data.mds);
|
|||
let rounds_f = bytes_vec_to_f(&pos_data.rounds);
|
|||
|
|||
poseidon::PoseidonParameters {
|
|||
mds_matrix: mds_f,
|
|||
round_keys: rounds_f,
|
|||
full_rounds: pos_data.full_rounds,
|
|||
partial_rounds: pos_data.partial_rounds,
|
|||
sbox: poseidon::sbox::PoseidonSbox(pos_data.exp),
|
|||
width: pos_data.width,
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use ark_ed_on_bn254::EdwardsProjective;
|
|||
pub type Fq = ark_ed_on_bn254::Fq; // base field
|
|||
// pub type Fr = ark_ed_on_bn254::Fr; // scalar field
|
|||
|
|||
#[test]
|
|||
fn test_blind_signature_flow_native() {
|
|||
type S = BlindSigScheme<EdwardsProjective>;
|
|||
|
|||
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
|
|||
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let params = S::setup();
|
|||
let (pk, sk) = S::keygen(¶ms, &mut rng);
|
|||
|
|||
let (k, signer_r) = S::new_request_params(¶ms, &mut rng);
|
|||
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
|
|||
|
|||
let (m_blinded, u) = S::blind(¶ms, &mut rng, &poseidon_hash, &m, signer_r).unwrap();
|
|||
|
|||
let s_blinded = S::blind_sign(sk, k, m_blinded);
|
|||
|
|||
let s = S::unblind(s_blinded, &u);
|
|||
|
|||
let verified = S::verify(¶ms, &poseidon_hash, &m, s, pk);
|
|||
assert!(verified);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_non_blind_signature() {
|
|||
type S = BlindSigScheme<EdwardsProjective>;
|
|||
|
|||
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
|
|||
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let params = S::setup();
|
|||
let (pk, sk) = S::keygen(¶ms, &mut rng);
|
|||
|
|||
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
|
|||
let s = S::non_blind_sign(¶ms, &mut rng, &poseidon_hash, sk, &m).unwrap();
|
|||
|
|||
// verify using the same verification method used for blind-signatures
|
|||
let verified = S::verify(¶ms, &poseidon_hash, &m, s, pk);
|
|||
assert!(verified);
|
|||
}
|
|||
}
|
|||
pub mod mala_nezhadansari;
|
|||
pub mod schnorr_blind;
|
@ -0,0 +1,314 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(clippy::many_single_char_names)]
|
|||
|
|||
// #[cfg(feature="r1cs")]
|
|||
pub mod constraints;
|
|||
|
|||
use ark_ec::{models::twisted_edwards_extended::GroupAffine, AffineCurve, ProjectiveCurve};
|
|||
|
|||
use ark_ff::{to_bytes, BigInteger256, Field, FpParameters, PrimeField};
|
|||
|
|||
use ark_std::marker::PhantomData;
|
|||
use ark_std::{rand::Rng, UniformRand};
|
|||
use derivative::Derivative;
|
|||
|
|||
// hash
|
|||
use arkworks_native_gadgets::poseidon;
|
|||
use arkworks_native_gadgets::poseidon::FieldHasher;
|
|||
use arkworks_utils::{
|
|||
bytes_matrix_to_f, bytes_vec_to_f, poseidon_params::setup_poseidon_params, Curve,
|
|||
};
|
|||
|
|||
// WIP
|
|||
use ark_ed_on_bn254::{EdwardsAffine, EdwardsParameters};
|
|||
|
|||
pub type ConstraintF<C> = <<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField;
|
|||
pub type SecretKey<C> = <C as ProjectiveCurve>::ScalarField;
|
|||
pub type PublicKey<C> = <C as ProjectiveCurve>::Affine;
|
|||
pub type BlindedSignature<C> = <C as ProjectiveCurve>::ScalarField;
|
|||
|
|||
// #[derive(Derivative)]
|
|||
#[derive(Clone, Default, Debug)]
|
|||
pub struct Signature<C: ProjectiveCurve> {
|
|||
s: C::ScalarField, // ScalarField == Fr
|
|||
r: <C as ProjectiveCurve>::Affine,
|
|||
}
|
|||
|
|||
#[derive(Clone, Default, Debug)]
|
|||
pub struct UserSecretData<C: ProjectiveCurve> {
|
|||
a: C::ScalarField,
|
|||
b: C::ScalarField,
|
|||
r: C::Affine,
|
|||
}
|
|||
impl<C: ProjectiveCurve> UserSecretData<C> {
|
|||
fn new_empty(parameters: &Parameters<C>) -> Self {
|
|||
UserSecretData {
|
|||
a: C::ScalarField::from(0_u32),
|
|||
b: C::ScalarField::from(0_u32),
|
|||
r: parameters.generator, // WIP
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[derive(Derivative)]
|
|||
#[derivative(Clone(bound = "C: ProjectiveCurve"), Debug)]
|
|||
pub struct Parameters<C: ProjectiveCurve> {
|
|||
pub generator: C::Affine,
|
|||
}
|
|||
|
|||
pub struct BlindSigScheme<C: ProjectiveCurve> {
|
|||
_group: PhantomData<C>,
|
|||
}
|
|||
|
|||
impl<C: ProjectiveCurve> BlindSigScheme<C>
|
|||
where
|
|||
C::ScalarField: PrimeField,
|
|||
GroupAffine<EdwardsParameters>: From<<C as ProjectiveCurve>::Affine>, // WIP
|
|||
{
|
|||
pub fn setup() -> Parameters<C> {
|
|||
let generator = C::prime_subgroup_generator().into();
|
|||
Parameters { generator }
|
|||
}
|
|||
|
|||
// signer
|
|||
pub fn keygen<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (PublicKey<C>, SecretKey<C>) {
|
|||
let secret_key = C::ScalarField::rand(rng);
|
|||
let public_key = parameters.generator.mul(secret_key).into();
|
|||
(public_key, secret_key)
|
|||
}
|
|||
|
|||
pub fn new_request_params<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
) -> (C::ScalarField, C::Affine) {
|
|||
let k = C::ScalarField::rand(rng);
|
|||
let R = parameters.generator.mul(k).into();
|
|||
(k, R)
|
|||
}
|
|||
|
|||
pub fn blind_sign(
|
|||
sk: SecretKey<C>,
|
|||
k: C::ScalarField,
|
|||
m_blinded: C::ScalarField,
|
|||
) -> BlindedSignature<C> {
|
|||
sk * m_blinded + k
|
|||
}
|
|||
|
|||
// new_k_and_R returns a new k \in Fr, and R=k * G, such that R.x \in Fr
|
|||
fn new_k_and_R<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (C::ScalarField, C::Affine)
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let k = C::ScalarField::rand(rng);
|
|||
|
|||
let R: C::Affine = parameters.generator.mul(k.into_repr()).into();
|
|||
let r = EdwardsAffine::from(R); // WIP
|
|||
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
// TODO maybe add a counter of attempts with a limit
|
|||
return Self::new_k_and_R(parameters, rng);
|
|||
}
|
|||
|
|||
(k, R)
|
|||
}
|
|||
|
|||
// non_blind_sign performs a non-blind signature, which can be verified with the same check
|
|||
// than a blind-signature
|
|||
pub fn non_blind_sign<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
sk: SecretKey<C>,
|
|||
m: &[ConstraintF<C>],
|
|||
) -> Result<Signature<C>, ark_crypto_primitives::Error>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let (k, R) = Self::new_k_and_R(parameters, rng);
|
|||
let r = EdwardsAffine::from(R); // WIP
|
|||
let x_fr = C::ScalarField::from(r.x.into_repr());
|
|||
|
|||
let hm = poseidon_hash.hash(m)?;
|
|||
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
|
|||
|
|||
let s = k + (x_fr * hm_fr) * sk;
|
|||
Ok(Signature { s, r: R })
|
|||
}
|
|||
|
|||
// requester
|
|||
pub fn new_blind_params<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
signer_r: C::Affine,
|
|||
) -> UserSecretData<C>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let mut u: UserSecretData<C> = UserSecretData::new_empty(parameters);
|
|||
u.a = C::ScalarField::rand(rng);
|
|||
u.b = C::ScalarField::rand(rng);
|
|||
|
|||
// R = aR' + bG
|
|||
let aR = signer_r.mul(u.a.into_repr());
|
|||
let bG = parameters.generator.mul(u.b.into_repr());
|
|||
u.r = aR.into_affine() + bG.into_affine();
|
|||
|
|||
let r = EdwardsAffine::from(u.r); // WIP
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
// TODO maybe add a counter of attempts with a limit
|
|||
return Self::new_blind_params(parameters, rng, signer_r);
|
|||
}
|
|||
u
|
|||
}
|
|||
|
|||
pub fn blind<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
m: &[ConstraintF<C>],
|
|||
signer_r: C::Affine,
|
|||
) -> Result<(C::ScalarField, UserSecretData<C>), ark_crypto_primitives::Error>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let u = Self::new_blind_params(parameters, rng, signer_r);
|
|||
|
|||
// get X coordinate, as in new_blind_params we already checked that R.x is inside Fr and
|
|||
// will not overflow (giving None)
|
|||
let r = EdwardsAffine::from(u.r); // WIP
|
|||
let x_fr = C::ScalarField::from(r.x.into_repr());
|
|||
|
|||
// m' = a^-1 rx h(m)
|
|||
// TODO hash(m) must be \in Fr
|
|||
let hm = poseidon_hash.hash(m)?;
|
|||
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
|
|||
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
|
|||
let m_blinded = u.a.inverse().unwrap() * x_fr * hm_fr;
|
|||
// let m_blinded = C::ScalarField::from(u.a.inverse().unwrap() * x_fr) * hm_fr;
|
|||
|
|||
Ok((m_blinded, u))
|
|||
}
|
|||
|
|||
pub fn unblind(s_blinded: C::ScalarField, u: &UserSecretData<C>) -> Signature<C> {
|
|||
// s = a s' + b
|
|||
let s = u.a * s_blinded + u.b;
|
|||
Signature { s, r: u.r }
|
|||
}
|
|||
|
|||
pub fn verify(
|
|||
parameters: &Parameters<C>,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
m: &[ConstraintF<C>],
|
|||
s: Signature<C>,
|
|||
q: PublicKey<C>,
|
|||
) -> bool |
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let sG = parameters.generator.mul(s.s.into_repr());
|
|||
|
|||
// TODO the output of hash(m) must be \in Fr
|
|||
let hm = poseidon_hash.hash(m).unwrap();
|
|||
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
|
|||
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm).unwrap()); // WIP TMP
|
|||
|
|||
// check that s.R.x is in Fr
|
|||
let r = EdwardsAffine::from(s.r); // WIP
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
return false;
|
|||
}
|
|||
// get s.R.x
|
|||
let x_fr = C::ScalarField::from(r.x.into_repr());
|
|||
let right = s.r + q.mul((x_fr * hm_fr).into_repr()).into_affine();
|
|||
|
|||
sG.into_affine() == right
|
|||
}
|
|||
}
|
|||
|
|||
// poseidon
|
|||
pub fn poseidon_setup_params<F: PrimeField>(
|
|||
curve: Curve,
|
|||
exp: i8,
|
|||
width: u8,
|
|||
) -> poseidon::PoseidonParameters<F> {
|
|||
let pos_data = setup_poseidon_params(curve, exp, width).unwrap();
|
|||
|
|||
let mds_f = bytes_matrix_to_f(&pos_data.mds);
|
|||
let rounds_f = bytes_vec_to_f(&pos_data.rounds);
|
|||
|
|||
poseidon::PoseidonParameters {
|
|||
mds_matrix: mds_f,
|
|||
round_keys: rounds_f,
|
|||
full_rounds: pos_data.full_rounds,
|
|||
partial_rounds: pos_data.partial_rounds,
|
|||
sbox: poseidon::sbox::PoseidonSbox(pos_data.exp),
|
|||
width: pos_data.width,
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use ark_ed_on_bn254::EdwardsProjective;
|
|||
pub type Fq = ark_ed_on_bn254::Fq; // base field
|
|||
// pub type Fr = ark_ed_on_bn254::Fr; // scalar field
|
|||
|
|||
#[test]
|
|||
fn test_blind_signature_flow_native() {
|
|||
type S = BlindSigScheme<EdwardsProjective>;
|
|||
|
|||
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
|
|||
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let params = S::setup();
|
|||
let (pk, sk) = S::keygen(¶ms, &mut rng);
|
|||
|
|||
let (k, signer_r) = S::new_request_params(¶ms, &mut rng);
|
|||
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
|
|||
|
|||
let (m_blinded, u) = S::blind(¶ms, &mut rng, &poseidon_hash, &m, signer_r).unwrap();
|
|||
|
|||
let s_blinded = S::blind_sign(sk, k, m_blinded);
|
|||
|
|||
let s = S::unblind(s_blinded, &u);
|
|||
|
|||
let verified = S::verify(¶ms, &poseidon_hash, &m, s, pk);
|
|||
assert!(verified);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_non_blind_signature() {
|
|||
type S = BlindSigScheme<EdwardsProjective>;
|
|||
|
|||
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
|
|||
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let params = S::setup();
|
|||
let (pk, sk) = S::keygen(¶ms, &mut rng);
|
|||
|
|||
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
|
|||
let s = S::non_blind_sign(¶ms, &mut rng, &poseidon_hash, sk, &m).unwrap();
|
|||
|
|||
// verify using the same verification method used for blind-signatures
|
|||
let verified = S::verify(¶ms, &poseidon_hash, &m, s, pk);
|
|||
assert!(verified);
|
|||
}
|
|||
}
|
@ -0,0 +1,320 @@ |
|||
#![allow(non_snake_case)]
|
|||
#![allow(clippy::many_single_char_names)]
|
|||
|
|||
// #[cfg(feature="r1cs")]
|
|||
// pub mod constraints;
|
|||
|
|||
use ark_ec::{models::twisted_edwards_extended::GroupAffine, AffineCurve, ProjectiveCurve};
|
|||
|
|||
use ark_ff::{to_bytes, BigInteger256, Field, Fp256, FpParameters, PrimeField};
|
|||
|
|||
use ark_std::marker::PhantomData;
|
|||
use ark_std::{rand::Rng, UniformRand};
|
|||
use derivative::Derivative;
|
|||
|
|||
// hash
|
|||
use arkworks_native_gadgets::poseidon;
|
|||
use arkworks_native_gadgets::poseidon::FieldHasher;
|
|||
use arkworks_utils::{
|
|||
bytes_matrix_to_f, bytes_vec_to_f, poseidon_params::setup_poseidon_params, Curve,
|
|||
};
|
|||
|
|||
// WIP
|
|||
use ark_ed_on_bn254::{EdwardsAffine, EdwardsParameters, FqParameters};
|
|||
|
|||
pub type ConstraintF<C> = <<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField;
|
|||
pub type SecretKey<C> = <C as ProjectiveCurve>::ScalarField;
|
|||
pub type PublicKey<C> = <C as ProjectiveCurve>::Affine;
|
|||
pub type BlindedSignature<C> = <C as ProjectiveCurve>::ScalarField;
|
|||
|
|||
// #[derive(Derivative)]
|
|||
#[derive(Clone, Default, Debug)]
|
|||
pub struct Signature<C: ProjectiveCurve> {
|
|||
s: C::ScalarField, // ScalarField == Fr
|
|||
r: <C as ProjectiveCurve>::Affine,
|
|||
}
|
|||
|
|||
#[derive(Clone, Default, Debug)]
|
|||
pub struct UserSecretData<C: ProjectiveCurve> {
|
|||
alpha: C::ScalarField,
|
|||
beta: C::ScalarField,
|
|||
R: C::Affine,
|
|||
}
|
|||
impl<C: ProjectiveCurve> UserSecretData<C> {
|
|||
fn new_empty(parameters: &Parameters<C>) -> Self {
|
|||
UserSecretData {
|
|||
alpha: C::ScalarField::from(0_u32),
|
|||
beta: C::ScalarField::from(0_u32),
|
|||
R: parameters.generator, // WIP
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[derive(Derivative)]
|
|||
#[derivative(Clone(bound = "C: ProjectiveCurve"), Debug)]
|
|||
pub struct Parameters<C: ProjectiveCurve> {
|
|||
pub generator: C::Affine,
|
|||
}
|
|||
|
|||
pub struct BlindSigScheme<C: ProjectiveCurve> {
|
|||
_group: PhantomData<C>,
|
|||
}
|
|||
|
|||
impl<C: ProjectiveCurve> BlindSigScheme<C>
|
|||
where
|
|||
C::ScalarField: PrimeField,
|
|||
GroupAffine<EdwardsParameters>: From<<C as ProjectiveCurve>::Affine>, // WIP
|
|||
{
|
|||
pub fn setup() -> Parameters<C> {
|
|||
let generator = C::prime_subgroup_generator().into();
|
|||
Parameters { generator }
|
|||
}
|
|||
|
|||
// signer
|
|||
pub fn keygen<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (PublicKey<C>, SecretKey<C>) {
|
|||
let secret_key = C::ScalarField::rand(rng);
|
|||
let public_key = parameters.generator.mul(secret_key).into();
|
|||
(public_key, secret_key)
|
|||
}
|
|||
|
|||
pub fn new_request_params<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
) -> (C::ScalarField, C::Affine) {
|
|||
let r = C::ScalarField::rand(rng);
|
|||
let R_ = parameters.generator.mul(r).into();
|
|||
(r, R_)
|
|||
}
|
|||
|
|||
pub fn blind_sign(
|
|||
sk: SecretKey<C>,
|
|||
r: C::ScalarField,
|
|||
m_blinded: C::ScalarField,
|
|||
) -> BlindedSignature<C> {
|
|||
r + m_blinded * sk
|
|||
}
|
|||
|
|||
// new_k_and_R returns a new k \in Fr, and R=k * G, such that R.x \in Fr
|
|||
fn new_k_and_R<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (C::ScalarField, C::Affine)
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
// TODO, for schorr, the H(R, m) needs to be \in Fr, not R.x
|
|||
let k = C::ScalarField::rand(rng);
|
|||
|
|||
let R: C::Affine = parameters.generator.mul(k.into_repr()).into();
|
|||
let r = EdwardsAffine::from(R); // WIP
|
|||
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
// TODO maybe add a counter of attempts with a limit
|
|||
return Self::new_k_and_R(parameters, rng);
|
|||
}
|
|||
|
|||
(k, R)
|
|||
}
|
|||
|
|||
// non_blind_sign performs a non-blind signature, which can be verified with the same check
|
|||
// than a blind-signature
|
|||
pub fn non_blind_sign<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
sk: SecretKey<C>,
|
|||
m: &[ConstraintF<C>],
|
|||
) -> Result<Signature<C>, ark_crypto_primitives::Error>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
<<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField: From<Fp256<FqParameters>>,
|
|||
{
|
|||
let (r, R) = Self::new_k_and_R(parameters, rng);
|
|||
let R_ed = EdwardsAffine::from(R); // WIP
|
|||
|
|||
let hm = poseidon_hash.hash(m)?;
|
|||
let to_hash: [ConstraintF<C>; 3] = [R_ed.x.into(), R_ed.y.into(), hm];
|
|||
let h = poseidon_hash.hash(&to_hash)?;
|
|||
let h_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(h)?); // WIP TMP
|
|||
|
|||
let s = r + h_fr * sk;
|
|||
Ok(Signature { s, r: R })
|
|||
}
|
|||
|
|||
// requester
|
|||
pub fn new_blind_params<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
signer_pk: PublicKey<C>,
|
|||
signer_r: C::Affine,
|
|||
) -> UserSecretData<C>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
{
|
|||
let mut u: UserSecretData<C> = UserSecretData::new_empty(parameters);
|
|||
u.alpha = C::ScalarField::rand(rng);
|
|||
u.beta = C::ScalarField::rand(rng);
|
|||
|
|||
// R = R' + alpha * G + beta * X
|
|||
let alphaG = parameters.generator.mul(u.alpha.into_repr());
|
|||
let betaPk = signer_pk.mul(u.beta.into_repr());
|
|||
u.R = signer_r + alphaG.into_affine() + betaPk.into_affine();
|
|||
|
|||
let R = EdwardsAffine::from(u.R); // WIP
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = R.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
// TODO maybe add a counter of attempts with a limit
|
|||
return Self::new_blind_params(parameters, rng, signer_pk, signer_r);
|
|||
}
|
|||
u
|
|||
}
|
|||
|
|||
pub fn blind<R: Rng>(
|
|||
parameters: &Parameters<C>,
|
|||
rng: &mut R,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
m: &[ConstraintF<C>],
|
|||
signer_pk: PublicKey<C>,
|
|||
signer_r: C::Affine,
|
|||
) -> Result<(C::ScalarField, UserSecretData<C>), ark_crypto_primitives::Error>
|
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
<<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField: From<Fp256<FqParameters>>,
|
|||
{
|
|||
let u = Self::new_blind_params(parameters, rng, signer_pk, signer_r);
|
|||
|
|||
// get X coordinate, as in new_blind_params we already checked that R.x is inside Fr and
|
|||
// will not overflow (giving None)
|
|||
let r = EdwardsAffine::from(u.R); // WIP
|
|||
|
|||
// m' = H(R, m) + beta
|
|||
// TODO hash(R, m) must be \in Fr
|
|||
let hm_0 = poseidon_hash.hash(m)?;
|
|||
let to_hash: [ConstraintF<C>; 3] = [r.x.into(), r.y.into(), hm_0];
|
|||
let h = poseidon_hash.hash(&to_hash)?;
|
|||
let h_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(h)?); // WIP TMP
|
|||
let m_blinded = h_fr + u.beta;
|
|||
|
|||
Ok((m_blinded, u))
|
|||
}
|
|||
|
|||
pub fn unblind(s_blinded: C::ScalarField, u: &UserSecretData<C>) -> Signature<C> {
|
|||
// s = s' + alpha
|
|||
let s = s_blinded + u.alpha;
|
|||
Signature { s, r: u.R }
|
|||
}
|
|||
|
|||
pub fn verify(
|
|||
parameters: &Parameters<C>,
|
|||
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
|
|||
m: &[ConstraintF<C>],
|
|||
s: Signature<C>,
|
|||
q: PublicKey<C>,
|
|||
) -> bool |
|||
where
|
|||
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
|
|||
<<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField: From<Fp256<FqParameters>>,
|
|||
{
|
|||
let sG = parameters.generator.mul(s.s.into_repr());
|
|||
|
|||
let r = EdwardsAffine::from(s.r); // WIP
|
|||
|
|||
// TODO the output of hash(R, m) must be \in Fr
|
|||
let hm_0 = poseidon_hash.hash(m).unwrap();
|
|||
let to_hash: [ConstraintF<C>; 3] = [r.x.into(), r.y.into(), hm_0];
|
|||
let h = poseidon_hash.hash(&to_hash).unwrap();
|
|||
let h_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(h).unwrap()); // WIP TMP
|
|||
|
|||
// TODO the output of hash(R, m) must be \in Fr
|
|||
let one = BigInteger256::from(1u64);
|
|||
let x_repr = r.x.into_repr();
|
|||
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
|
|||
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
|
|||
if !(x_repr >= one && x_repr < modulus_repr) {
|
|||
return false;
|
|||
}
|
|||
let right = s.r + q.mul(h_fr.into_repr()).into_affine();
|
|||
|
|||
sG.into_affine() == right
|
|||
}
|
|||
}
|
|||
|
|||
// poseidon
|
|||
pub fn poseidon_setup_params<F: PrimeField>(
|
|||
curve: Curve,
|
|||
exp: i8,
|
|||
width: u8,
|
|||
) -> poseidon::PoseidonParameters<F> {
|
|||
let pos_data = setup_poseidon_params(curve, exp, width).unwrap();
|
|||
|
|||
let mds_f = bytes_matrix_to_f(&pos_data.mds);
|
|||
let rounds_f = bytes_vec_to_f(&pos_data.rounds);
|
|||
|
|||
poseidon::PoseidonParameters {
|
|||
mds_matrix: mds_f,
|
|||
round_keys: rounds_f,
|
|||
full_rounds: pos_data.full_rounds,
|
|||
partial_rounds: pos_data.partial_rounds,
|
|||
sbox: poseidon::sbox::PoseidonSbox(pos_data.exp),
|
|||
width: pos_data.width,
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use ark_ed_on_bn254::EdwardsProjective;
|
|||
pub type Fq = ark_ed_on_bn254::Fq; // base field
|
|||
// pub type Fr = ark_ed_on_bn254::Fr; // scalar field
|
|||
|
|||
#[test]
|
|||
fn test_blind_signature_flow_native() {
|
|||
type S = BlindSigScheme<EdwardsProjective>;
|
|||
|
|||
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
|
|||
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let params = S::setup();
|
|||
let (pk, sk) = S::keygen(¶ms, &mut rng);
|
|||
|
|||
let (r, signer_r) = S::new_request_params(¶ms, &mut rng);
|
|||
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
|
|||
|
|||
let (m_blinded, u) = S::blind(¶ms, &mut rng, &poseidon_hash, &m, pk, signer_r).unwrap();
|
|||
|
|||
let s_blinded = S::blind_sign(sk, r, m_blinded);
|
|||
|
|||
let s = S::unblind(s_blinded, &u);
|
|||
|
|||
let verified = S::verify(¶ms, &poseidon_hash, &m, s, pk);
|
|||
assert!(verified);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_non_blind_signature() {
|
|||
type S = BlindSigScheme<EdwardsProjective>;
|
|||
|
|||
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
|
|||
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let params = S::setup();
|
|||
let (pk, sk) = S::keygen(¶ms, &mut rng);
|
|||
|
|||
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
|
|||
let s = S::non_blind_sign(¶ms, &mut rng, &poseidon_hash, sk, &m).unwrap();
|
|||
|
|||
// verify using the same verification method used for blind-signatures
|
|||
let verified = S::verify(¶ms, &poseidon_hash, &m, s, pk);
|
|||
assert!(verified);
|
|||
}
|
|||
}
|