Browse Source

Add native impl of Schnorr Blind Signatures

Add native implementation of Schnorr blind signatures and non-blind
Schnorr signatures:
https://eprint.iacr.org/2019/877
main
arnaucube 2 years ago
parent
commit
f6bf43c41b
4 changed files with 638 additions and 318 deletions
  1. +2
    -314
      src/lib.rs
  2. +2
    -4
      src/mala_nezhadansari/constraints.rs
  3. +314
    -0
      src/mala_nezhadansari/mod.rs
  4. +320
    -0
      src/schnorr_blind/mod.rs

+ 2
- 314
src/lib.rs

@ -1,314 +1,2 @@
#![allow(non_snake_case)]
#![allow(clippy::many_single_char_names)]
// #[cfg(feature="r1cs")]
pub mod constraints;
use ark_ec::{models::twisted_edwards_extended::GroupAffine, AffineCurve, ProjectiveCurve};
use ark_ff::{to_bytes, BigInteger256, Field, FpParameters, PrimeField};
use ark_std::marker::PhantomData;
use ark_std::{rand::Rng, UniformRand};
use derivative::Derivative;
// hash
use arkworks_native_gadgets::poseidon;
use arkworks_native_gadgets::poseidon::FieldHasher;
use arkworks_utils::{
bytes_matrix_to_f, bytes_vec_to_f, poseidon_params::setup_poseidon_params, Curve,
};
// WIP
use ark_ed_on_bn254::{EdwardsAffine, EdwardsParameters};
pub type ConstraintF<C> = <<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField;
pub type SecretKey<C> = <C as ProjectiveCurve>::ScalarField;
pub type PublicKey<C> = <C as ProjectiveCurve>::Affine;
pub type BlindedSignature<C> = <C as ProjectiveCurve>::ScalarField;
// #[derive(Derivative)]
#[derive(Clone, Default, Debug)]
pub struct Signature<C: ProjectiveCurve> {
s: C::ScalarField, // ScalarField == Fr
r: <C as ProjectiveCurve>::Affine,
}
#[derive(Clone, Default, Debug)]
pub struct UserSecretData<C: ProjectiveCurve> {
a: C::ScalarField,
b: C::ScalarField,
r: C::Affine,
}
impl<C: ProjectiveCurve> UserSecretData<C> {
fn new_empty(parameters: &Parameters<C>) -> Self {
UserSecretData {
a: C::ScalarField::from(0_u32),
b: C::ScalarField::from(0_u32),
r: parameters.generator, // WIP
}
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "C: ProjectiveCurve"), Debug)]
pub struct Parameters<C: ProjectiveCurve> {
pub generator: C::Affine,
}
pub struct BlindSigScheme<C: ProjectiveCurve> {
_group: PhantomData<C>,
}
impl<C: ProjectiveCurve> BlindSigScheme<C>
where
C::ScalarField: PrimeField,
GroupAffine<EdwardsParameters>: From<<C as ProjectiveCurve>::Affine>, // WIP
{
pub fn setup() -> Parameters<C> {
let generator = C::prime_subgroup_generator().into();
Parameters { generator }
}
// signer
pub fn keygen<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (PublicKey<C>, SecretKey<C>) {
let secret_key = C::ScalarField::rand(rng);
let public_key = parameters.generator.mul(secret_key).into();
(public_key, secret_key)
}
pub fn new_request_params<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
) -> (C::ScalarField, C::Affine) {
let k = C::ScalarField::rand(rng);
let R = parameters.generator.mul(k).into();
(k, R)
}
pub fn blind_sign(
sk: SecretKey<C>,
k: C::ScalarField,
m_blinded: C::ScalarField,
) -> BlindedSignature<C> {
sk * m_blinded + k
}
// new_k_and_R returns a new k \in Fr, and R=k * G, such that R.x \in Fr
fn new_k_and_R<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (C::ScalarField, C::Affine)
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let k = C::ScalarField::rand(rng);
let R: C::Affine = parameters.generator.mul(k.into_repr()).into();
let r = EdwardsAffine::from(R); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
// TODO maybe add a counter of attempts with a limit
return Self::new_k_and_R(parameters, rng);
}
(k, R)
}
// non_blind_sign performs a non-blind signature, which can be verified with the same check
// than a blind-signature
pub fn non_blind_sign<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
sk: SecretKey<C>,
m: &[ConstraintF<C>],
) -> Result<Signature<C>, ark_crypto_primitives::Error>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let (k, R) = Self::new_k_and_R(parameters, rng);
let r = EdwardsAffine::from(R); // WIP
let x_fr = C::ScalarField::from(r.x.into_repr());
let hm = poseidon_hash.hash(m)?;
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
let s = k + (x_fr * hm_fr) * sk;
Ok(Signature { s, r: R })
}
// requester
pub fn new_blind_params<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
signer_r: C::Affine,
) -> UserSecretData<C>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let mut u: UserSecretData<C> = UserSecretData::new_empty(parameters);
u.a = C::ScalarField::rand(rng);
u.b = C::ScalarField::rand(rng);
// R = aR' + bG
let aR = signer_r.mul(u.a.into_repr());
let bG = parameters.generator.mul(u.b.into_repr());
u.r = aR.into_affine() + bG.into_affine();
let r = EdwardsAffine::from(u.r); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
// TODO maybe add a counter of attempts with a limit
return Self::new_blind_params(parameters, rng, signer_r);
}
u
}
pub fn blind<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
m: &[ConstraintF<C>],
signer_r: C::Affine,
) -> Result<(C::ScalarField, UserSecretData<C>), ark_crypto_primitives::Error>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let u = Self::new_blind_params(parameters, rng, signer_r);
// get X coordinate, as in new_blind_params we already checked that R.x is inside Fr and
// will not overflow (giving None)
let r = EdwardsAffine::from(u.r); // WIP
let x_fr = C::ScalarField::from(r.x.into_repr());
// m' = a^-1 rx h(m)
// TODO hash(m) must be \in Fr
let hm = poseidon_hash.hash(m)?;
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
let m_blinded = u.a.inverse().unwrap() * x_fr * hm_fr;
// let m_blinded = C::ScalarField::from(u.a.inverse().unwrap() * x_fr) * hm_fr;
Ok((m_blinded, u))
}
pub fn unblind(s_blinded: C::ScalarField, u: &UserSecretData<C>) -> Signature<C> {
// s = a s' + b
let s = u.a * s_blinded + u.b;
Signature { s, r: u.r }
}
pub fn verify(
parameters: &Parameters<C>,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
m: &[ConstraintF<C>],
s: Signature<C>,
q: PublicKey<C>,
) -> bool
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let sG = parameters.generator.mul(s.s.into_repr());
// TODO the output of hash(m) must be \in Fr
let hm = poseidon_hash.hash(m).unwrap();
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm).unwrap()); // WIP TMP
// check that s.R.x is in Fr
let r = EdwardsAffine::from(s.r); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
return false;
}
// get s.R.x
let x_fr = C::ScalarField::from(r.x.into_repr());
let right = s.r + q.mul((x_fr * hm_fr).into_repr()).into_affine();
sG.into_affine() == right
}
}
// poseidon
pub fn poseidon_setup_params<F: PrimeField>(
curve: Curve,
exp: i8,
width: u8,
) -> poseidon::PoseidonParameters<F> {
let pos_data = setup_poseidon_params(curve, exp, width).unwrap();
let mds_f = bytes_matrix_to_f(&pos_data.mds);
let rounds_f = bytes_vec_to_f(&pos_data.rounds);
poseidon::PoseidonParameters {
mds_matrix: mds_f,
round_keys: rounds_f,
full_rounds: pos_data.full_rounds,
partial_rounds: pos_data.partial_rounds,
sbox: poseidon::sbox::PoseidonSbox(pos_data.exp),
width: pos_data.width,
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ed_on_bn254::EdwardsProjective;
pub type Fq = ark_ed_on_bn254::Fq; // base field
// pub type Fr = ark_ed_on_bn254::Fr; // scalar field
#[test]
fn test_blind_signature_flow_native() {
type S = BlindSigScheme<EdwardsProjective>;
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
let mut rng = ark_std::test_rng();
let params = S::setup();
let (pk, sk) = S::keygen(&params, &mut rng);
let (k, signer_r) = S::new_request_params(&params, &mut rng);
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
let (m_blinded, u) = S::blind(&params, &mut rng, &poseidon_hash, &m, signer_r).unwrap();
let s_blinded = S::blind_sign(sk, k, m_blinded);
let s = S::unblind(s_blinded, &u);
let verified = S::verify(&params, &poseidon_hash, &m, s, pk);
assert!(verified);
}
#[test]
fn test_non_blind_signature() {
type S = BlindSigScheme<EdwardsProjective>;
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
let mut rng = ark_std::test_rng();
let params = S::setup();
let (pk, sk) = S::keygen(&params, &mut rng);
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
let s = S::non_blind_sign(&params, &mut rng, &poseidon_hash, sk, &m).unwrap();
// verify using the same verification method used for blind-signatures
let verified = S::verify(&params, &poseidon_hash, &m, s, pk);
assert!(verified);
}
}
pub mod mala_nezhadansari;
pub mod schnorr_blind;

src/constraints.rs → src/mala_nezhadansari/constraints.rs

@ -1,4 +1,4 @@
use crate::{Parameters, PublicKey, Signature};
use crate::mala_nezhadansari::{ConstraintF, Parameters, PublicKey, Signature};
use ark_ec::ProjectiveCurve;
use ark_ed_on_bn254::{constraints::EdwardsVar, EdwardsParameters, FqParameters};
@ -24,8 +24,6 @@ use arkworks_native_gadgets::poseidon as poseidon_native;
// use arkworks_r1cs_gadgets::poseidon;
use arkworks_r1cs_gadgets::poseidon::{FieldHasherGadget, PoseidonGadget};
use crate::ConstraintF;
#[derive(Derivative)]
#[derivative(
Debug(bound = "C: ProjectiveCurve, GC: CurveVar<C, ConstraintF<C>>"),
@ -470,7 +468,7 @@ where
#[cfg(test)]
mod test {
use super::*;
use crate::{poseidon_setup_params, BlindSigScheme};
use crate::mala_nezhadansari::{poseidon_setup_params, BlindSigScheme};
use ark_ed_on_bn254::constraints::EdwardsVar as BabyJubJubVar;
use ark_ed_on_bn254::EdwardsProjective as BabyJubJub;

+ 314
- 0
src/mala_nezhadansari/mod.rs

@ -0,0 +1,314 @@
#![allow(non_snake_case)]
#![allow(clippy::many_single_char_names)]
// #[cfg(feature="r1cs")]
pub mod constraints;
use ark_ec::{models::twisted_edwards_extended::GroupAffine, AffineCurve, ProjectiveCurve};
use ark_ff::{to_bytes, BigInteger256, Field, FpParameters, PrimeField};
use ark_std::marker::PhantomData;
use ark_std::{rand::Rng, UniformRand};
use derivative::Derivative;
// hash
use arkworks_native_gadgets::poseidon;
use arkworks_native_gadgets::poseidon::FieldHasher;
use arkworks_utils::{
bytes_matrix_to_f, bytes_vec_to_f, poseidon_params::setup_poseidon_params, Curve,
};
// WIP
use ark_ed_on_bn254::{EdwardsAffine, EdwardsParameters};
pub type ConstraintF<C> = <<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField;
pub type SecretKey<C> = <C as ProjectiveCurve>::ScalarField;
pub type PublicKey<C> = <C as ProjectiveCurve>::Affine;
pub type BlindedSignature<C> = <C as ProjectiveCurve>::ScalarField;
// #[derive(Derivative)]
#[derive(Clone, Default, Debug)]
pub struct Signature<C: ProjectiveCurve> {
s: C::ScalarField, // ScalarField == Fr
r: <C as ProjectiveCurve>::Affine,
}
#[derive(Clone, Default, Debug)]
pub struct UserSecretData<C: ProjectiveCurve> {
a: C::ScalarField,
b: C::ScalarField,
r: C::Affine,
}
impl<C: ProjectiveCurve> UserSecretData<C> {
fn new_empty(parameters: &Parameters<C>) -> Self {
UserSecretData {
a: C::ScalarField::from(0_u32),
b: C::ScalarField::from(0_u32),
r: parameters.generator, // WIP
}
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "C: ProjectiveCurve"), Debug)]
pub struct Parameters<C: ProjectiveCurve> {
pub generator: C::Affine,
}
pub struct BlindSigScheme<C: ProjectiveCurve> {
_group: PhantomData<C>,
}
impl<C: ProjectiveCurve> BlindSigScheme<C>
where
C::ScalarField: PrimeField,
GroupAffine<EdwardsParameters>: From<<C as ProjectiveCurve>::Affine>, // WIP
{
pub fn setup() -> Parameters<C> {
let generator = C::prime_subgroup_generator().into();
Parameters { generator }
}
// signer
pub fn keygen<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (PublicKey<C>, SecretKey<C>) {
let secret_key = C::ScalarField::rand(rng);
let public_key = parameters.generator.mul(secret_key).into();
(public_key, secret_key)
}
pub fn new_request_params<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
) -> (C::ScalarField, C::Affine) {
let k = C::ScalarField::rand(rng);
let R = parameters.generator.mul(k).into();
(k, R)
}
pub fn blind_sign(
sk: SecretKey<C>,
k: C::ScalarField,
m_blinded: C::ScalarField,
) -> BlindedSignature<C> {
sk * m_blinded + k
}
// new_k_and_R returns a new k \in Fr, and R=k * G, such that R.x \in Fr
fn new_k_and_R<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (C::ScalarField, C::Affine)
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let k = C::ScalarField::rand(rng);
let R: C::Affine = parameters.generator.mul(k.into_repr()).into();
let r = EdwardsAffine::from(R); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
// TODO maybe add a counter of attempts with a limit
return Self::new_k_and_R(parameters, rng);
}
(k, R)
}
// non_blind_sign performs a non-blind signature, which can be verified with the same check
// than a blind-signature
pub fn non_blind_sign<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
sk: SecretKey<C>,
m: &[ConstraintF<C>],
) -> Result<Signature<C>, ark_crypto_primitives::Error>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let (k, R) = Self::new_k_and_R(parameters, rng);
let r = EdwardsAffine::from(R); // WIP
let x_fr = C::ScalarField::from(r.x.into_repr());
let hm = poseidon_hash.hash(m)?;
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
let s = k + (x_fr * hm_fr) * sk;
Ok(Signature { s, r: R })
}
// requester
pub fn new_blind_params<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
signer_r: C::Affine,
) -> UserSecretData<C>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let mut u: UserSecretData<C> = UserSecretData::new_empty(parameters);
u.a = C::ScalarField::rand(rng);
u.b = C::ScalarField::rand(rng);
// R = aR' + bG
let aR = signer_r.mul(u.a.into_repr());
let bG = parameters.generator.mul(u.b.into_repr());
u.r = aR.into_affine() + bG.into_affine();
let r = EdwardsAffine::from(u.r); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
// TODO maybe add a counter of attempts with a limit
return Self::new_blind_params(parameters, rng, signer_r);
}
u
}
pub fn blind<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
m: &[ConstraintF<C>],
signer_r: C::Affine,
) -> Result<(C::ScalarField, UserSecretData<C>), ark_crypto_primitives::Error>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let u = Self::new_blind_params(parameters, rng, signer_r);
// get X coordinate, as in new_blind_params we already checked that R.x is inside Fr and
// will not overflow (giving None)
let r = EdwardsAffine::from(u.r); // WIP
let x_fr = C::ScalarField::from(r.x.into_repr());
// m' = a^-1 rx h(m)
// TODO hash(m) must be \in Fr
let hm = poseidon_hash.hash(m)?;
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm)?); // WIP TMP
let m_blinded = u.a.inverse().unwrap() * x_fr * hm_fr;
// let m_blinded = C::ScalarField::from(u.a.inverse().unwrap() * x_fr) * hm_fr;
Ok((m_blinded, u))
}
pub fn unblind(s_blinded: C::ScalarField, u: &UserSecretData<C>) -> Signature<C> {
// s = a s' + b
let s = u.a * s_blinded + u.b;
Signature { s, r: u.r }
}
pub fn verify(
parameters: &Parameters<C>,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
m: &[ConstraintF<C>],
s: Signature<C>,
q: PublicKey<C>,
) -> bool
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let sG = parameters.generator.mul(s.s.into_repr());
// TODO the output of hash(m) must be \in Fr
let hm = poseidon_hash.hash(m).unwrap();
// let hm_fr = C::ScalarField::from_repr(hm.into_repr()).unwrap();
let hm_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(hm).unwrap()); // WIP TMP
// check that s.R.x is in Fr
let r = EdwardsAffine::from(s.r); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
return false;
}
// get s.R.x
let x_fr = C::ScalarField::from(r.x.into_repr());
let right = s.r + q.mul((x_fr * hm_fr).into_repr()).into_affine();
sG.into_affine() == right
}
}
// poseidon
pub fn poseidon_setup_params<F: PrimeField>(
curve: Curve,
exp: i8,
width: u8,
) -> poseidon::PoseidonParameters<F> {
let pos_data = setup_poseidon_params(curve, exp, width).unwrap();
let mds_f = bytes_matrix_to_f(&pos_data.mds);
let rounds_f = bytes_vec_to_f(&pos_data.rounds);
poseidon::PoseidonParameters {
mds_matrix: mds_f,
round_keys: rounds_f,
full_rounds: pos_data.full_rounds,
partial_rounds: pos_data.partial_rounds,
sbox: poseidon::sbox::PoseidonSbox(pos_data.exp),
width: pos_data.width,
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ed_on_bn254::EdwardsProjective;
pub type Fq = ark_ed_on_bn254::Fq; // base field
// pub type Fr = ark_ed_on_bn254::Fr; // scalar field
#[test]
fn test_blind_signature_flow_native() {
type S = BlindSigScheme<EdwardsProjective>;
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
let mut rng = ark_std::test_rng();
let params = S::setup();
let (pk, sk) = S::keygen(&params, &mut rng);
let (k, signer_r) = S::new_request_params(&params, &mut rng);
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
let (m_blinded, u) = S::blind(&params, &mut rng, &poseidon_hash, &m, signer_r).unwrap();
let s_blinded = S::blind_sign(sk, k, m_blinded);
let s = S::unblind(s_blinded, &u);
let verified = S::verify(&params, &poseidon_hash, &m, s, pk);
assert!(verified);
}
#[test]
fn test_non_blind_signature() {
type S = BlindSigScheme<EdwardsProjective>;
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
let mut rng = ark_std::test_rng();
let params = S::setup();
let (pk, sk) = S::keygen(&params, &mut rng);
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
let s = S::non_blind_sign(&params, &mut rng, &poseidon_hash, sk, &m).unwrap();
// verify using the same verification method used for blind-signatures
let verified = S::verify(&params, &poseidon_hash, &m, s, pk);
assert!(verified);
}
}

+ 320
- 0
src/schnorr_blind/mod.rs

@ -0,0 +1,320 @@
#![allow(non_snake_case)]
#![allow(clippy::many_single_char_names)]
// #[cfg(feature="r1cs")]
// pub mod constraints;
use ark_ec::{models::twisted_edwards_extended::GroupAffine, AffineCurve, ProjectiveCurve};
use ark_ff::{to_bytes, BigInteger256, Field, Fp256, FpParameters, PrimeField};
use ark_std::marker::PhantomData;
use ark_std::{rand::Rng, UniformRand};
use derivative::Derivative;
// hash
use arkworks_native_gadgets::poseidon;
use arkworks_native_gadgets::poseidon::FieldHasher;
use arkworks_utils::{
bytes_matrix_to_f, bytes_vec_to_f, poseidon_params::setup_poseidon_params, Curve,
};
// WIP
use ark_ed_on_bn254::{EdwardsAffine, EdwardsParameters, FqParameters};
pub type ConstraintF<C> = <<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField;
pub type SecretKey<C> = <C as ProjectiveCurve>::ScalarField;
pub type PublicKey<C> = <C as ProjectiveCurve>::Affine;
pub type BlindedSignature<C> = <C as ProjectiveCurve>::ScalarField;
// #[derive(Derivative)]
#[derive(Clone, Default, Debug)]
pub struct Signature<C: ProjectiveCurve> {
s: C::ScalarField, // ScalarField == Fr
r: <C as ProjectiveCurve>::Affine,
}
#[derive(Clone, Default, Debug)]
pub struct UserSecretData<C: ProjectiveCurve> {
alpha: C::ScalarField,
beta: C::ScalarField,
R: C::Affine,
}
impl<C: ProjectiveCurve> UserSecretData<C> {
fn new_empty(parameters: &Parameters<C>) -> Self {
UserSecretData {
alpha: C::ScalarField::from(0_u32),
beta: C::ScalarField::from(0_u32),
R: parameters.generator, // WIP
}
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "C: ProjectiveCurve"), Debug)]
pub struct Parameters<C: ProjectiveCurve> {
pub generator: C::Affine,
}
pub struct BlindSigScheme<C: ProjectiveCurve> {
_group: PhantomData<C>,
}
impl<C: ProjectiveCurve> BlindSigScheme<C>
where
C::ScalarField: PrimeField,
GroupAffine<EdwardsParameters>: From<<C as ProjectiveCurve>::Affine>, // WIP
{
pub fn setup() -> Parameters<C> {
let generator = C::prime_subgroup_generator().into();
Parameters { generator }
}
// signer
pub fn keygen<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (PublicKey<C>, SecretKey<C>) {
let secret_key = C::ScalarField::rand(rng);
let public_key = parameters.generator.mul(secret_key).into();
(public_key, secret_key)
}
pub fn new_request_params<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
) -> (C::ScalarField, C::Affine) {
let r = C::ScalarField::rand(rng);
let R_ = parameters.generator.mul(r).into();
(r, R_)
}
pub fn blind_sign(
sk: SecretKey<C>,
r: C::ScalarField,
m_blinded: C::ScalarField,
) -> BlindedSignature<C> {
r + m_blinded * sk
}
// new_k_and_R returns a new k \in Fr, and R=k * G, such that R.x \in Fr
fn new_k_and_R<R: Rng>(parameters: &Parameters<C>, rng: &mut R) -> (C::ScalarField, C::Affine)
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
// TODO, for schorr, the H(R, m) needs to be \in Fr, not R.x
let k = C::ScalarField::rand(rng);
let R: C::Affine = parameters.generator.mul(k.into_repr()).into();
let r = EdwardsAffine::from(R); // WIP
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
// TODO maybe add a counter of attempts with a limit
return Self::new_k_and_R(parameters, rng);
}
(k, R)
}
// non_blind_sign performs a non-blind signature, which can be verified with the same check
// than a blind-signature
pub fn non_blind_sign<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
sk: SecretKey<C>,
m: &[ConstraintF<C>],
) -> Result<Signature<C>, ark_crypto_primitives::Error>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
<<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField: From<Fp256<FqParameters>>,
{
let (r, R) = Self::new_k_and_R(parameters, rng);
let R_ed = EdwardsAffine::from(R); // WIP
let hm = poseidon_hash.hash(m)?;
let to_hash: [ConstraintF<C>; 3] = [R_ed.x.into(), R_ed.y.into(), hm];
let h = poseidon_hash.hash(&to_hash)?;
let h_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(h)?); // WIP TMP
let s = r + h_fr * sk;
Ok(Signature { s, r: R })
}
// requester
pub fn new_blind_params<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
signer_pk: PublicKey<C>,
signer_r: C::Affine,
) -> UserSecretData<C>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
{
let mut u: UserSecretData<C> = UserSecretData::new_empty(parameters);
u.alpha = C::ScalarField::rand(rng);
u.beta = C::ScalarField::rand(rng);
// R = R' + alpha * G + beta * X
let alphaG = parameters.generator.mul(u.alpha.into_repr());
let betaPk = signer_pk.mul(u.beta.into_repr());
u.R = signer_r + alphaG.into_affine() + betaPk.into_affine();
let R = EdwardsAffine::from(u.R); // WIP
let one = BigInteger256::from(1u64);
let x_repr = R.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
// TODO maybe add a counter of attempts with a limit
return Self::new_blind_params(parameters, rng, signer_pk, signer_r);
}
u
}
pub fn blind<R: Rng>(
parameters: &Parameters<C>,
rng: &mut R,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
m: &[ConstraintF<C>],
signer_pk: PublicKey<C>,
signer_r: C::Affine,
) -> Result<(C::ScalarField, UserSecretData<C>), ark_crypto_primitives::Error>
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
<<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField: From<Fp256<FqParameters>>,
{
let u = Self::new_blind_params(parameters, rng, signer_pk, signer_r);
// get X coordinate, as in new_blind_params we already checked that R.x is inside Fr and
// will not overflow (giving None)
let r = EdwardsAffine::from(u.R); // WIP
// m' = H(R, m) + beta
// TODO hash(R, m) must be \in Fr
let hm_0 = poseidon_hash.hash(m)?;
let to_hash: [ConstraintF<C>; 3] = [r.x.into(), r.y.into(), hm_0];
let h = poseidon_hash.hash(&to_hash)?;
let h_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(h)?); // WIP TMP
let m_blinded = h_fr + u.beta;
Ok((m_blinded, u))
}
pub fn unblind(s_blinded: C::ScalarField, u: &UserSecretData<C>) -> Signature<C> {
// s = s' + alpha
let s = s_blinded + u.alpha;
Signature { s, r: u.R }
}
pub fn verify(
parameters: &Parameters<C>,
poseidon_hash: &poseidon::Poseidon<ConstraintF<C>>,
m: &[ConstraintF<C>],
s: Signature<C>,
q: PublicKey<C>,
) -> bool
where
<C as ProjectiveCurve>::ScalarField: From<BigInteger256>,
<<C as ProjectiveCurve>::BaseField as Field>::BasePrimeField: From<Fp256<FqParameters>>,
{
let sG = parameters.generator.mul(s.s.into_repr());
let r = EdwardsAffine::from(s.r); // WIP
// TODO the output of hash(R, m) must be \in Fr
let hm_0 = poseidon_hash.hash(m).unwrap();
let to_hash: [ConstraintF<C>; 3] = [r.x.into(), r.y.into(), hm_0];
let h = poseidon_hash.hash(&to_hash).unwrap();
let h_fr = C::ScalarField::from_le_bytes_mod_order(&to_bytes!(h).unwrap()); // WIP TMP
// TODO the output of hash(R, m) must be \in Fr
let one = BigInteger256::from(1u64);
let x_repr = r.x.into_repr();
let modulus = <<C::ScalarField as PrimeField>::Params as FpParameters>::MODULUS;
let modulus_repr = BigInteger256::try_from(modulus.into()).unwrap();
if !(x_repr >= one && x_repr < modulus_repr) {
return false;
}
let right = s.r + q.mul(h_fr.into_repr()).into_affine();
sG.into_affine() == right
}
}
// poseidon
pub fn poseidon_setup_params<F: PrimeField>(
curve: Curve,
exp: i8,
width: u8,
) -> poseidon::PoseidonParameters<F> {
let pos_data = setup_poseidon_params(curve, exp, width).unwrap();
let mds_f = bytes_matrix_to_f(&pos_data.mds);
let rounds_f = bytes_vec_to_f(&pos_data.rounds);
poseidon::PoseidonParameters {
mds_matrix: mds_f,
round_keys: rounds_f,
full_rounds: pos_data.full_rounds,
partial_rounds: pos_data.partial_rounds,
sbox: poseidon::sbox::PoseidonSbox(pos_data.exp),
width: pos_data.width,
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ed_on_bn254::EdwardsProjective;
pub type Fq = ark_ed_on_bn254::Fq; // base field
// pub type Fr = ark_ed_on_bn254::Fr; // scalar field
#[test]
fn test_blind_signature_flow_native() {
type S = BlindSigScheme<EdwardsProjective>;
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
let mut rng = ark_std::test_rng();
let params = S::setup();
let (pk, sk) = S::keygen(&params, &mut rng);
let (r, signer_r) = S::new_request_params(&params, &mut rng);
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
let (m_blinded, u) = S::blind(&params, &mut rng, &poseidon_hash, &m, pk, signer_r).unwrap();
let s_blinded = S::blind_sign(sk, r, m_blinded);
let s = S::unblind(s_blinded, &u);
let verified = S::verify(&params, &poseidon_hash, &m, s, pk);
assert!(verified);
}
#[test]
fn test_non_blind_signature() {
type S = BlindSigScheme<EdwardsProjective>;
let poseidon_params = poseidon_setup_params::<Fq>(Curve::Bn254, 5, 4);
let poseidon_hash = poseidon::Poseidon::new(poseidon_params);
let mut rng = ark_std::test_rng();
let params = S::setup();
let (pk, sk) = S::keygen(&params, &mut rng);
let m = [Fq::from(1234), Fq::from(5689), Fq::from(3456)];
let s = S::non_blind_sign(&params, &mut rng, &poseidon_hash, sk, &m).unwrap();
// verify using the same verification method used for blind-signatures
let verified = S::verify(&params, &poseidon_hash, &m, s, pk);
assert!(verified);
}
}

Loading…
Cancel
Save