|
|
@ -1,5 +1,5 @@ |
|
|
|
use crate::poly::domain::vanishing_poly::VanishingPolynomial;
|
|
|
|
use ark_ff::{batch_inversion, PrimeField};
|
|
|
|
use ark_ff::{batch_inversion_and_mul, PrimeField};
|
|
|
|
use ark_std::vec::Vec;
|
|
|
|
/// Struct describing Lagrange interpolation for a multiplicative coset I,
|
|
|
|
/// with |I| a power of 2.
|
|
|
@ -71,21 +71,18 @@ impl LagrangeInterpolator { |
|
|
|
- Z_{H}(t) = \prod_{j} (t-h*g^j) = (t^m-h^m), and
|
|
|
|
- v_{i} = 1 / \prod_{j \neq i} h(g^i-g^j).
|
|
|
|
Below we use the fact that v_{0} = 1/(m * h^(m-1)) and v_{i+1} = g * v_{i}.
|
|
|
|
We compute the inverse of each coefficient, and then batch invert the entire result.
|
|
|
|
We first compute the inverse of each coefficient, except for the Z_H(t) term.
|
|
|
|
We then batch invert the entire result, and multiply by Z_H(t).
|
|
|
|
*/
|
|
|
|
let vp_t_inv = self
|
|
|
|
.domain_vp
|
|
|
|
.evaluate(&interpolation_point)
|
|
|
|
.inverse()
|
|
|
|
.unwrap();
|
|
|
|
let mut inverted_lagrange_coeffs: Vec<F> = Vec::with_capacity(self.all_domain_elems.len());
|
|
|
|
for i in 0..self.domain_order {
|
|
|
|
let l = vp_t_inv * self.v_inv_elems[i];
|
|
|
|
let l = self.v_inv_elems[i];
|
|
|
|
let r = self.all_domain_elems[i];
|
|
|
|
inverted_lagrange_coeffs.push(l * (interpolation_point - r));
|
|
|
|
}
|
|
|
|
let vp_t = self.domain_vp.evaluate(&interpolation_point);
|
|
|
|
let lagrange_coeffs = inverted_lagrange_coeffs.as_mut_slice();
|
|
|
|
batch_inversion::<F>(lagrange_coeffs);
|
|
|
|
batch_inversion_and_mul::<F>(lagrange_coeffs, &vp_t);
|
|
|
|
lagrange_coeffs.iter().cloned().collect()
|
|
|
|
}
|
|
|
|
|
|
|
|