@ -25,7 +25,7 @@ where
F : FieldVar < P ::BaseField , < P ::BaseField as Field > ::BasePrimeField > ,
for < 'a > & 'a F : FieldOpsBounds < 'a , P ::BaseField , F > ,
{
pub ( crate ) fn new ( x : F , y : F ) -> Self {
pub fn new ( x : F , y : F ) -> Self {
Self {
x ,
y ,
@ -35,13 +35,13 @@ where
/// Converts self into a non-zero projective point.
#[ tracing::instrument(target = " r1cs " , skip(self)) ]
pub ( crate ) fn into_projective ( & self ) -> ProjectiveVar < P , F > {
pub fn into_projective ( & self ) -> ProjectiveVar < P , F > {
ProjectiveVar ::new ( self . x . clone ( ) , self . y . clone ( ) , F ::one ( ) )
}
/// Performs an addition without checking that other != ±self.
#[ tracing::instrument(target = " r1cs " , skip(self, other)) ]
pub ( crate ) fn add_unchecked ( & self , other : & Self ) -> Result < Self , SynthesisError > {
pub fn add_unchecked ( & self , other : & Self ) -> Result < Self , SynthesisError > {
if [ self , other ] . is_constant ( ) {
let result =
( self . value ( ) ? . into_projective ( ) + other . value ( ) ? . into_projective ( ) ) . into_affine ( ) ;
@ -67,7 +67,7 @@ where
/// Doubles `self`. As this is a prime order curve point,
/// the output is guaranteed to not be the point at infinity.
#[ tracing::instrument(target = " r1cs " , skip(self)) ]
pub ( crate ) fn double ( & self ) -> Result < Self , SynthesisError > {
pub fn double ( & self ) -> Result < Self , SynthesisError > {
if [ self ] . is_constant ( ) {
let result = self . value ( ) ? . into_projective ( ) . double ( ) . into_affine ( ) ;
// Panic if the result is zero.
@ -96,7 +96,7 @@ where
///
/// This follows the formulae from [\[ELM03\]](https://arxiv.org/abs/math/0208038).
#[ tracing::instrument(target = " r1cs " , skip(self)) ]
pub ( crate ) fn double_and_add_unchecked ( & self , other : & Self ) -> Result < Self , SynthesisError > {
pub fn double_and_add_unchecked ( & self , other : & Self ) -> Result < Self , SynthesisError > {
if [ self ] . is_constant ( ) | | other . is_constant ( ) {
self . double ( ) ? . add_unchecked ( other )
} else {
@ -126,7 +126,7 @@ where
/// Doubles `self` in place.
#[ tracing::instrument(target = " r1cs " , skip(self)) ]
pub ( crate ) fn double_in_place ( & mut self ) -> Result < ( ) , SynthesisError > {
pub fn double_in_place ( & mut self ) -> Result < ( ) , SynthesisError > {
* self = self . double ( ) ? ;
Ok ( ( ) )
}
@ -169,9 +169,62 @@ where
}
}
impl < P , F > EqGadget < < P ::BaseField as Field > ::BasePrimeField > for NonZeroAffineVar < P , F >
where
P : SWModelParameters ,
F : FieldVar < P ::BaseField , < P ::BaseField as Field > ::BasePrimeField > ,
for < 'a > & 'a F : FieldOpsBounds < 'a , P ::BaseField , F > ,
{
#[ tracing::instrument(target = " r1cs " ) ]
fn is_eq (
& self ,
other : & Self ,
) -> Result < Boolean < < P ::BaseField as Field > ::BasePrimeField > , SynthesisError > {
let x_equal = self . x . is_eq ( & other . x ) ? ;
let y_equal = self . y . is_eq ( & other . y ) ? ;
x_equal . and ( & y_equal )
}
#[ inline ]
#[ tracing::instrument(target = " r1cs " ) ]
fn conditional_enforce_equal (
& self ,
other : & Self ,
condition : & Boolean < < P ::BaseField as Field > ::BasePrimeField > ,
) -> Result < ( ) , SynthesisError > {
let x_equal = self . x . is_eq ( & other . x ) ? ;
let y_equal = self . y . is_eq ( & other . y ) ? ;
let coordinates_equal = x_equal . and ( & y_equal ) ? ;
coordinates_equal . conditional_enforce_equal ( & Boolean ::Constant ( true ) , condition ) ? ;
Ok ( ( ) )
}
#[ inline ]
#[ tracing::instrument(target = " r1cs " ) ]
fn enforce_equal ( & self , other : & Self ) -> Result < ( ) , SynthesisError > {
self . x . enforce_equal ( & other . x ) ? ;
self . y . enforce_equal ( & other . y ) ? ;
Ok ( ( ) )
}
#[ inline ]
#[ tracing::instrument(target = " r1cs " ) ]
fn conditional_enforce_not_equal (
& self ,
other : & Self ,
condition : & Boolean < < P ::BaseField as Field > ::BasePrimeField > ,
) -> Result < ( ) , SynthesisError > {
let is_equal = self . is_eq ( other ) ? ;
is_equal
. and ( condition ) ?
. enforce_equal ( & Boolean ::Constant ( false ) )
}
}
#[ cfg(test) ]
mod test_non_zero_affine {
use crate ::alloc ::AllocVar ;
use crate ::eq ::EqGadget ;
use crate ::fields ::fp ::{ AllocatedFp , FpVar } ;
use crate ::groups ::curves ::short_weierstrass ::non_zero_affine ::NonZeroAffineVar ;
use crate ::groups ::curves ::short_weierstrass ::ProjectiveVar ;
@ -300,4 +353,50 @@ mod test_non_zero_affine {
assert_eq ! ( sum_a . 0 , sum_b . 0 ) ;
assert_eq ! ( sum_a . 1 , sum_b . 1 ) ;
}
#[ test ]
fn correctness_test_eq ( ) {
let cs = ConstraintSystem ::< Fq > ::new_ref ( ) ;
let x = FpVar ::Var (
AllocatedFp ::< Fq > ::new_witness ( cs . clone ( ) , | | {
Ok ( G1Parameters ::AFFINE_GENERATOR_COEFFS . 0 )
} )
. unwrap ( ) ,
) ;
let y = FpVar ::Var (
AllocatedFp ::< Fq > ::new_witness ( cs . clone ( ) , | | {
Ok ( G1Parameters ::AFFINE_GENERATOR_COEFFS . 1 )
} )
. unwrap ( ) ,
) ;
let a = NonZeroAffineVar ::< G1Parameters , FpVar < Fq > > ::new ( x , y ) ;
let n = 10 ;
let a_multiples : Vec < NonZeroAffineVar < G1Parameters , FpVar < Fq > > > =
std ::iter ::successors ( Some ( a . clone ( ) ) , | acc | Some ( acc . add_unchecked ( & a ) . unwrap ( ) ) )
. take ( n )
. collect ( ) ;
let all_equal : Vec < NonZeroAffineVar < G1Parameters , FpVar < Fq > > > = ( 0 . . n / 2 )
. map ( | i | {
a_multiples [ i ]
. add_unchecked ( & a_multiples [ n - i - 1 ] )
. unwrap ( )
} )
. collect ( ) ;
for i in 0 . . n - 1 {
a_multiples [ i ]
. enforce_not_equal ( & a_multiples [ i + 1 ] )
. unwrap ( ) ;
}
for i in 0 . . all_equal . len ( ) - 1 {
all_equal [ i ] . enforce_equal ( & all_equal [ i + 1 ] ) . unwrap ( ) ;
}
assert ! ( cs . is_satisfied ( ) . unwrap ( ) ) ;
}
}