|
@ -509,8 +509,18 @@ where |
|
|
}
|
|
|
}
|
|
|
let self_affine = self.to_affine()?;
|
|
|
let self_affine = self.to_affine()?;
|
|
|
let (x, y, infinity) = (self_affine.x, self_affine.y, self_affine.infinity);
|
|
|
let (x, y, infinity) = (self_affine.x, self_affine.y, self_affine.infinity);
|
|
|
// We first handle the non-zero case, and then later
|
|
|
|
|
|
// will conditionally select zero if `self` was zero.
|
|
|
|
|
|
|
|
|
// We first handle the non-zero case, and then later will conditionally select
|
|
|
|
|
|
// zero if `self` was zero. However, we also want to make sure that generated
|
|
|
|
|
|
// constraints are satisfiable in both cases.
|
|
|
|
|
|
//
|
|
|
|
|
|
// In particular, using non-sensible values for `x` and `y` in zero-case may cause
|
|
|
|
|
|
// `unchecked` operations to generate constraints that can never be satisfied, depending
|
|
|
|
|
|
// on the curve equation coefficients.
|
|
|
|
|
|
//
|
|
|
|
|
|
// The safest approach is to use coordinates of some point from the curve, thus not
|
|
|
|
|
|
// violating assumptions of `NonZeroAffine`. For instance, generator point.
|
|
|
|
|
|
let x = infinity.select(&F::constant(P::GENERATOR.x), &x)?;
|
|
|
|
|
|
let y = infinity.select(&F::constant(P::GENERATOR.y), &y)?;
|
|
|
let non_zero_self = NonZeroAffineVar::new(x, y);
|
|
|
let non_zero_self = NonZeroAffineVar::new(x, y);
|
|
|
|
|
|
|
|
|
let mut bits = bits.collect::<Vec<_>>();
|
|
|
let mut bits = bits.collect::<Vec<_>>();
|
|
@ -965,3 +975,61 @@ where |
|
|
Ok(bytes)
|
|
|
Ok(bytes)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
|
mod test_sw_curve {
|
|
|
|
|
|
use crate::{
|
|
|
|
|
|
alloc::AllocVar,
|
|
|
|
|
|
eq::EqGadget,
|
|
|
|
|
|
fields::{fp::FpVar, nonnative::NonNativeFieldVar},
|
|
|
|
|
|
groups::{curves::short_weierstrass::ProjectiveVar, CurveVar},
|
|
|
|
|
|
ToBitsGadget,
|
|
|
|
|
|
};
|
|
|
|
|
|
use ark_ec::{
|
|
|
|
|
|
short_weierstrass::{Projective, SWCurveConfig},
|
|
|
|
|
|
CurveGroup,
|
|
|
|
|
|
};
|
|
|
|
|
|
use ark_ff::PrimeField;
|
|
|
|
|
|
use ark_relations::r1cs::{ConstraintSystem, Result};
|
|
|
|
|
|
use ark_std::UniformRand;
|
|
|
|
|
|
use num_traits::Zero;
|
|
|
|
|
|
|
|
|
|
|
|
fn zero_point_scalar_mul_satisfied<G>() -> Result<bool>
|
|
|
|
|
|
where
|
|
|
|
|
|
G: CurveGroup,
|
|
|
|
|
|
G::BaseField: PrimeField,
|
|
|
|
|
|
G::Config: SWCurveConfig,
|
|
|
|
|
|
{
|
|
|
|
|
|
let mut rng = ark_std::test_rng();
|
|
|
|
|
|
|
|
|
|
|
|
let cs = ConstraintSystem::new_ref();
|
|
|
|
|
|
let point_in = Projective::<G::Config>::zero();
|
|
|
|
|
|
let point_out = Projective::<G::Config>::zero();
|
|
|
|
|
|
let scalar = G::ScalarField::rand(&mut rng);
|
|
|
|
|
|
|
|
|
|
|
|
let point_in =
|
|
|
|
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_witness(cs.clone(), || {
|
|
|
|
|
|
Ok(point_in)
|
|
|
|
|
|
})?;
|
|
|
|
|
|
let point_out =
|
|
|
|
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_input(cs.clone(), || {
|
|
|
|
|
|
Ok(point_out)
|
|
|
|
|
|
})?;
|
|
|
|
|
|
let scalar = NonNativeFieldVar::new_input(cs.clone(), || Ok(scalar))?;
|
|
|
|
|
|
|
|
|
|
|
|
let mul = point_in.scalar_mul_le(scalar.to_bits_le().unwrap().iter())?;
|
|
|
|
|
|
|
|
|
|
|
|
point_out.enforce_equal(&mul)?;
|
|
|
|
|
|
|
|
|
|
|
|
cs.is_satisfied()
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
|
fn test_zero_point_scalar_mul() {
|
|
|
|
|
|
assert!(zero_point_scalar_mul_satisfied::<ark_bls12_381::G1Projective>().unwrap());
|
|
|
|
|
|
assert!(zero_point_scalar_mul_satisfied::<ark_pallas::Projective>().unwrap());
|
|
|
|
|
|
assert!(zero_point_scalar_mul_satisfied::<ark_mnt4_298::G1Projective>().unwrap());
|
|
|
|
|
|
assert!(zero_point_scalar_mul_satisfied::<ark_mnt6_298::G1Projective>().unwrap());
|
|
|
|
|
|
assert!(zero_point_scalar_mul_satisfied::<ark_bn254::G1Projective>().unwrap());
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|