Browse Source

Update field variables in `r1cs-std`

master
Pratyush Mishra 4 years ago
parent
commit
8022b598fb
11 changed files with 2276 additions and 6153 deletions
  1. +521
    -0
      r1cs-std/src/fields/cubic_extension.rs
  2. +94
    -220
      r1cs-std/src/fields/fp/cmp.rs
  3. +726
    -464
      r1cs-std/src/fields/fp/mod.rs
  4. +132
    -885
      r1cs-std/src/fields/fp12.rs
  5. +6
    -689
      r1cs-std/src/fields/fp2.rs
  6. +10
    -950
      r1cs-std/src/fields/fp3.rs
  7. +7
    -753
      r1cs-std/src/fields/fp4.rs
  8. +8
    -745
      r1cs-std/src/fields/fp6_2over3.rs
  9. +37
    -1010
      r1cs-std/src/fields/fp6_3over2.rs
  10. +231
    -437
      r1cs-std/src/fields/mod.rs
  11. +504
    -0
      r1cs-std/src/fields/quadratic_extension.rs

+ 521
- 0
r1cs-std/src/fields/cubic_extension.rs

@ -0,0 +1,521 @@
use algebra::{
fields::{CubicExtField, CubicExtParameters, Field},
One,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystemRef, Namespace, SynthesisError};
use crate::{
fields::{FieldOpsBounds, FieldVar},
prelude::*,
Assignment, Vec,
};
#[derive(Derivative)]
#[derivative(Debug(bound = "BF: core::fmt::Debug"), Clone(bound = "BF: Clone"))]
#[must_use]
pub struct CubicExtVar<BF: FieldVar<P::BaseField, P::BasePrimeField>, P: CubicExtVarParams<BF>>
where
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
{
pub c0: BF,
pub c1: BF,
pub c2: BF,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
pub trait CubicExtVarParams<BF: FieldVar<Self::BaseField, Self::BasePrimeField>>:
CubicExtParameters
where
for<'a> &'a BF: FieldOpsBounds<'a, Self::BaseField, BF>,
{
fn mul_base_field_vars_by_frob_coeff(c1: &mut BF, c2: &mut BF, power: usize);
}
impl<BF: FieldVar<P::BaseField, P::BasePrimeField>, P: CubicExtVarParams<BF>> CubicExtVar<BF, P>
where
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
{
#[inline]
pub fn new(c0: BF, c1: BF, c2: BF) -> Self {
let _params = PhantomData;
Self {
c0,
c1,
c2,
_params,
}
}
/// Multiply a BF by cubic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_base_field_by_nonresidue(fe: &BF) -> Result<BF, SynthesisError> {
Ok(fe * P::NONRESIDUE)
}
/// Multiply a CubicExtVar by an element of `P::BaseField`.
#[inline]
pub fn mul_by_base_field_constant(&self, fe: P::BaseField) -> Self {
let c0 = &self.c0 * fe;
let c1 = &self.c1 * fe;
let c2 = &self.c2 * fe;
Self::new(c0, c1, c2)
}
#[inline]
pub fn mul_assign_by_base_field_constant(&mut self, fe: P::BaseField) {
*self = (&*self).mul_by_base_field_constant(fe);
}
}
impl<BF, P> R1CSVar<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
type Value = CubicExtField<P>;
fn cs(&self) -> Option<ConstraintSystemRef<P::BasePrimeField>> {
[&self.c0, &self.c1, &self.c2].cs()
}
#[inline]
fn value(&self) -> Result<Self::Value, SynthesisError> {
match (self.c0.value(), self.c1.value(), self.c2.value()) {
(Ok(c0), Ok(c1), Ok(c2)) => Ok(CubicExtField::new(c0, c1, c2)),
(..) => Err(SynthesisError::AssignmentMissing),
}
}
}
impl<BF, P> From<Boolean<P::BasePrimeField>> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
fn from(other: Boolean<P::BasePrimeField>) -> Self {
let c0 = BF::from(other);
let c1 = BF::zero();
let c2 = BF::zero();
Self::new(c0, c1, c2)
}
}
impl<'a, BF, P> FieldOpsBounds<'a, CubicExtField<P>, CubicExtVar<BF, P>> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
}
impl<'a, BF, P> FieldOpsBounds<'a, CubicExtField<P>, CubicExtVar<BF, P>> for &'a CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
}
impl<BF, P> FieldVar<CubicExtField<P>, P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
fn constant(other: CubicExtField<P>) -> Self {
let c0 = BF::constant(other.c0);
let c1 = BF::constant(other.c1);
let c2 = BF::constant(other.c2);
Self::new(c0, c1, c2)
}
fn zero() -> Self {
let c0 = BF::zero();
let c1 = BF::zero();
let c2 = BF::zero();
Self::new(c0, c1, c2)
}
fn one() -> Self {
let c0 = BF::one();
let c1 = BF::zero();
let c2 = BF::zero();
Self::new(c0, c1, c2)
}
#[inline]
fn double(&self) -> Result<Self, SynthesisError> {
let c0 = self.c0.double()?;
let c1 = self.c1.double()?;
let c2 = self.c2.double()?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate(&self) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.c0.negate_in_place()?;
result.c1.negate_in_place()?;
result.c2.negate_in_place()?;
Ok(result)
}
/// Use the Chung-Hasan asymmetric squaring formula.
///
/// (Devegili OhEig Scott Dahab --- Multiplication and Squaring on
/// Abstract Pairing-Friendly
/// Fields.pdf; Section 4 (CH-SQR2))
#[inline]
fn square(&self) -> Result<Self, SynthesisError> {
let a = self.c0.clone();
let b = self.c1.clone();
let c = self.c2.clone();
let s0 = a.square()?;
let ab = &a * &b;
let s1 = ab.double()?;
let s2 = (&a - &b + &c).square()?;
let s3 = (&b * &c).double()?;
let s4 = c.square()?;
let c0 = Self::mul_base_field_by_nonresidue(&s3)? + &s0;
let c1 = Self::mul_base_field_by_nonresidue(&s4)? + &s1;
let c2 = s1 + &s2 + &s3 - &s0 - &s4;
Ok(Self::new(c0, c1, c2))
}
fn mul_equals(&self, other: &Self, result: &Self) -> Result<(), SynthesisError> {
// Karatsuba multiplication for cubic extensions:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// v2 = A.c2 * B.c2
// result.c0 = v0 + β((a1 + a2)(b1 + b2) − v1 − v2)
// result.c1 = (a0 + a1)(b0 + b1) − v0 − v1 + βv2
// result.c2 = (a0 + a2)(b0 + b2) − v0 + v1 − v2,
// We enforce this with six constraints:
//
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// v2 = A.c2 * B.c2
//
// result.c0 - v0 + \beta*(v1 + v2) = β(a1 + a2)(b1 + b2))
// result.c1 + v0 + v1 - βv2 = (a0 + a1)(b0 + b1)
// result.c2 + v0 - v1 + v2 = (a0 + a2)(b0 + b2)
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
//
// This implementation adapted from
// https://github.com/ZencashOfficial/ginger-lib/blob/development/r1cs/gadgets/std/src/fields/fp3.rs
let v0 = &self.c0 * &other.c0;
let v1 = &self.c1 * &other.c1;
let v2 = &self.c2 * &other.c2;
// Check c0
let nr_a1_plus_a2 = (&self.c1 + &self.c2) * P::NONRESIDUE;
let b1_plus_b2 = &other.c1 + &other.c2;
let nr_v1 = &v1 * P::NONRESIDUE;
let nr_v2 = &v2 * P::NONRESIDUE;
let to_check = &result.c0 - &v0 + &nr_v1 + &nr_v2;
nr_a1_plus_a2.mul_equals(&b1_plus_b2, &to_check)?;
// Check c1
let a0_plus_a1 = &self.c0 + &self.c1;
let b0_plus_b1 = &other.c0 + &other.c1;
let to_check = &result.c1 - &nr_v2 + &v0 + &v1;
a0_plus_a1.mul_equals(&b0_plus_b1, &to_check)?;
// Check c2
let a0_plus_a2 = &self.c0 + &self.c2;
let b0_plus_b2 = &other.c0 + &other.c2;
let to_check = &result.c2 + &v0 - &v1 + &v2;
a0_plus_a2.mul_equals(&b0_plus_b2, &to_check)?;
Ok(())
}
fn frobenius_map(&self, power: usize) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.c0.frobenius_map_in_place(power)?;
result.c1.frobenius_map_in_place(power)?;
result.c2.frobenius_map_in_place(power)?;
P::mul_base_field_vars_by_frob_coeff(&mut result.c1, &mut result.c2, power);
Ok(result)
}
fn inverse(&self) -> Result<Self, SynthesisError> {
let cs = self.cs().get()?.clone();
let one = Self::new_constant(cs.clone(), CubicExtField::one())?;
let inverse = Self::new_witness(cs, || self.value().and_then(|v| v.inverse().get()))?;
self.mul_equals(&inverse, &one)?;
Ok(inverse)
}
}
impl_bounded_ops!(
CubicExtVar<BF, P>,
CubicExtField<P>,
Add,
add,
AddAssign,
add_assign,
|this: &'a CubicExtVar<BF, P>, other: &'a CubicExtVar<BF, P>| {
let c0 = &this.c0 + &other.c0;
let c1 = &this.c1 + &other.c1;
let c2 = &this.c2 + &other.c2;
CubicExtVar::new(c0, c1, c2)
},
|this: &'a CubicExtVar<BF, P>, other: CubicExtField<P>| {
this + CubicExtVar::constant(other)
},
(BF: FieldVar<P::BaseField, P::BasePrimeField>, P: CubicExtVarParams<BF>),
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
);
impl_bounded_ops!(
CubicExtVar<BF, P>,
CubicExtField<P>,
Sub,
sub,
SubAssign,
sub_assign,
|this: &'a CubicExtVar<BF, P>, other: &'a CubicExtVar<BF, P>| {
let c0 = &this.c0 - &other.c0;
let c1 = &this.c1 - &other.c1;
let c2 = &this.c2 - &other.c2;
CubicExtVar::new(c0, c1, c2)
},
|this: &'a CubicExtVar<BF, P>, other: CubicExtField<P>| {
this - CubicExtVar::constant(other)
},
(BF: FieldVar<P::BaseField, P::BasePrimeField>, P: CubicExtVarParams<BF>),
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
);
impl_bounded_ops!(
CubicExtVar<BF, P>,
CubicExtField<P>,
Mul,
mul,
MulAssign,
mul_assign,
|this: &'a CubicExtVar<BF, P>, other: &'a CubicExtVar<BF, P>| {
// Karatsuba multiplication for cubic extensions:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// v2 = A.c2 * B.c2
// result.c0 = v0 + β((a1 + a2)(b1 + b2) − v1 − v2)
// result.c1 = (a0 + a1)(b0 + b1) − v0 − v1 + βv2
// result.c2 = (a0 + a2)(b0 + b2) − v0 + v1 − v2,
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let v0 = &this.c0 * &other.c0;
let v1 = &this.c1 * &other.c1;
let v2 = &this.c2 * &other.c2;
let c0 =
(((&this.c1 + &this.c2) * (&other.c1 + &other.c2) - &v1 - &v2) * P::NONRESIDUE) + &v0 ;
let c1 =
(&this.c0 + &this.c1) * (&other.c0 + &other.c1) - &v0 - &v1 + (&v2 * P::NONRESIDUE);
let c2 =
(&this.c0 + &this.c2) * (&other.c0 + &other.c2) - &v0 + &v1 - &v2;
CubicExtVar::new(c0, c1, c2)
},
|this: &'a CubicExtVar<BF, P>, other: CubicExtField<P>| {
this * CubicExtVar::constant(other)
},
(BF: FieldVar<P::BaseField, P::BasePrimeField>, P: CubicExtVarParams<BF>),
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
);
impl<BF, P> EqGadget<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
fn is_eq(&self, other: &Self) -> Result<Boolean<P::BasePrimeField>, SynthesisError> {
let b0 = self.c0.is_eq(&other.c0)?;
let b1 = self.c1.is_eq(&other.c1)?;
let b2 = self.c2.is_eq(&other.c2)?;
b0.and(&b1)?.and(&b2)
}
#[inline]
fn conditional_enforce_equal(
&self,
other: &Self,
condition: &Boolean<P::BasePrimeField>,
) -> Result<(), SynthesisError> {
self.c0.conditional_enforce_equal(&other.c0, condition)?;
self.c1.conditional_enforce_equal(&other.c1, condition)?;
self.c2.conditional_enforce_equal(&other.c2, condition)?;
Ok(())
}
#[inline]
fn conditional_enforce_not_equal(
&self,
other: &Self,
condition: &Boolean<P::BasePrimeField>,
) -> Result<(), SynthesisError> {
let is_equal = self.is_eq(other)?;
is_equal
.and(condition)?
.enforce_equal(&Boolean::Constant(false))
}
}
impl<BF, P> ToBitsGadget<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
fn to_bits(&self) -> Result<Vec<Boolean<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_bits()?;
let mut c1 = self.c1.to_bits()?;
let mut c2 = self.c2.to_bits()?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bits(&self) -> Result<Vec<Boolean<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits()?;
let mut c1 = self.c1.to_non_unique_bits()?;
let mut c2 = self.c2.to_non_unique_bits()?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<BF, P> ToBytesGadget<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
fn to_bytes(&self) -> Result<Vec<UInt8<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_bytes()?;
let mut c1 = self.c1.to_bytes()?;
let mut c2 = self.c2.to_bytes()?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bytes(&self) -> Result<Vec<UInt8<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes()?;
let mut c1 = self.c1.to_non_unique_bytes()?;
let mut c2 = self.c2.to_non_unique_bytes()?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<BF, P> CondSelectGadget<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
#[inline]
fn conditionally_select(
cond: &Boolean<P::BasePrimeField>,
true_value: &Self,
false_value: &Self,
) -> Result<Self, SynthesisError> {
let c0 = BF::conditionally_select(cond, &true_value.c0, &false_value.c0)?;
let c1 = BF::conditionally_select(cond, &true_value.c1, &false_value.c1)?;
let c2 = BF::conditionally_select(cond, &true_value.c2, &false_value.c2)?;
Ok(Self::new(c0, c1, c2))
}
}
impl<BF, P> TwoBitLookupGadget<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>
+ TwoBitLookupGadget<P::BasePrimeField, TableConstant = P::BaseField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
type TableConstant = CubicExtField<P>;
fn two_bit_lookup(
b: &[Boolean<P::BasePrimeField>],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = BF::two_bit_lookup(b, &c0s)?;
let c1 = BF::two_bit_lookup(b, &c1s)?;
let c2 = BF::two_bit_lookup(b, &c2s)?;
Ok(Self::new(c0, c1, c2))
}
}
impl<BF, P> ThreeBitCondNegLookupGadget<P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>
+ ThreeBitCondNegLookupGadget<P::BasePrimeField, TableConstant = P::BaseField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
type TableConstant = CubicExtField<P>;
fn three_bit_cond_neg_lookup(
b: &[Boolean<P::BasePrimeField>],
b0b1: &Boolean<P::BasePrimeField>,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = BF::three_bit_cond_neg_lookup(b, b0b1, &c0s)?;
let c1 = BF::three_bit_cond_neg_lookup(b, b0b1, &c1s)?;
let c2 = BF::three_bit_cond_neg_lookup(b, b0b1, &c2s)?;
Ok(Self::new(c0, c1, c2))
}
}
impl<BF, P> AllocVar<CubicExtField<P>, P::BasePrimeField> for CubicExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: CubicExtVarParams<BF>,
{
fn new_variable<T: Borrow<CubicExtField<P>>>(
cs: impl Into<Namespace<P::BasePrimeField>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
let ns = cs.into();
let cs = ns.cs();
use SynthesisError::*;
let (c0, c1, c2) = match f() {
Ok(fe) => (Ok(fe.borrow().c0), Ok(fe.borrow().c1), Ok(fe.borrow().c2)),
Err(_) => (
Err(AssignmentMissing),
Err(AssignmentMissing),
Err(AssignmentMissing),
),
};
let c0 = BF::new_variable(cs.ns("c0"), || c0, mode)?;
let c1 = BF::new_variable(cs.ns("c1"), || c1, mode)?;
let c2 = BF::new_variable(cs.ns("c2"), || c2, mode)?;
Ok(Self::new(c0, c1, c2))
}
}

+ 94
- 220
r1cs-std/src/fields/fp/cmp.rs

@ -1,127 +1,89 @@
use crate::{
boolean::Boolean,
fields::{fp::FpGadget, FieldGadget},
fields::{fp::FpVar, FieldVar},
prelude::*,
ToBitsGadget,
};
use algebra::PrimeField;
use core::cmp::Ordering;
use r1cs_core::{ConstraintSystem, SynthesisError};
use r1cs_core::{lc, SynthesisError, Variable};
impl<F: PrimeField> FpGadget<F> {
/// This function enforces the ordering between `self` and `b`. The
impl<F: PrimeField> FpVar<F> {
/// This function enforces the ordering between `self` and `other`. The
/// constraint system will not be satisfied otherwise. If `self` should
/// also be checked for equality, e.g. `a <= b` instead of `a < b`, set
/// `should_also_check_quality` to `true`. This variant verifies `a` and `b`
/// also be checked for equality, e.g. `self <= other` instead of `self < other`, set
/// `should_also_check_quality` to `true`. This variant verifies `self` and `other`
/// are `<= (p-1)/2`.
pub fn enforce_cmp<CS: ConstraintSystem<F>>(
pub fn enforce_cmp(
&self,
mut cs: CS,
b: &FpGadget<F>,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<(), SynthesisError> {
let (left, right) = Self::process_cmp_inputs(
cs.ns(|| "process cmp inputs"),
&self,
b,
ordering,
should_also_check_equality,
)?;
Self::enforce_smaller_than(cs.ns(|| "enforce smaller than"), &left, &right)
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.enforce_smaller_than(&right)
}
/// This function enforces the ordering between `self` and `b`. The
/// This function enforces the ordering between `self` and `other`. The
/// constraint system will not be satisfied otherwise. If `self` should
/// also be checked for equality, e.g. `a <= b` instead of `a < b`, set
/// `should_also_check_quality` to `true`. This variant assumes `a` and `b`
/// also be checked for equality, e.g. `self <= other` instead of `self < other`, set
/// `should_also_check_quality` to `true`. This variant assumes `self` and `other`
/// are `<= (p-1)/2` and does not generate constraints to verify that.
pub fn enforce_cmp_unchecked<CS: ConstraintSystem<F>>(
pub fn enforce_cmp_unchecked(
&self,
mut cs: CS,
b: &FpGadget<F>,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<(), SynthesisError> {
let (left, right) = Self::process_cmp_inputs(
cs.ns(|| "process cmp inputs"),
&self,
b,
ordering,
should_also_check_equality,
)?;
Self::enforce_smaller_than_unchecked(cs.ns(|| "enforce smaller than"), &left, &right)
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.enforce_smaller_than_unchecked(&right)
}
/// This function checks the ordering between `self` and `b`. It outputs a
/// This function checks the ordering between `self` and `other`. It outputs self
/// `Boolean` that contains the result - `1` if true, `0` otherwise. The
/// constraint system will be satisfied in any case. If `self` should
/// also be checked for equality, e.g. `a <= b` instead of `a < b`, set
/// `should_also_check_quality` to `true`. This variant verifies `a` and `b`
/// also be checked for equality, e.g. `self <= other` instead of `self < other`, set
/// `should_also_check_quality` to `true`. This variant verifies `self` and `other`
/// are `<= (p-1)/2`.
pub fn is_cmp<CS: ConstraintSystem<F>>(
pub fn is_cmp(
&self,
mut cs: CS,
b: &FpGadget<F>,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<Boolean, SynthesisError> {
let (left, right) = Self::process_cmp_inputs(
cs.ns(|| "process cmp inputs"),
&self,
b,
ordering,
should_also_check_equality,
)?;
Self::is_smaller_than(cs.ns(|| "enforce smaller than"), &left, &right)
) -> Result<Boolean<F>, SynthesisError> {
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.is_smaller_than(&right)
}
/// This function checks the ordering between `self` and `b`. It outputs a
/// This function checks the ordering between `self` and `other`. It outputs a
/// `Boolean` that contains the result - `1` if true, `0` otherwise. The
/// constraint system will be satisfied in any case. If `self` should
/// also be checked for equality, e.g. `a <= b` instead of `a < b`, set
/// `should_also_check_quality` to `true`. This variant assumes `a` and `b`
/// also be checked for equality, e.g. `self <= other` instead of `self < other`, set
/// `should_also_check_quality` to `true`. This variant assumes `self` and `other`
/// are `<= (p-1)/2` and does not generate constraints to verify that.
pub fn is_cmp_unchecked<CS: ConstraintSystem<F>>(
pub fn is_cmp_unchecked(
&self,
mut cs: CS,
b: &FpGadget<F>,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<Boolean, SynthesisError> {
let (left, right) = Self::process_cmp_inputs(
cs.ns(|| "process cmp inputs"),
&self,
b,
ordering,
should_also_check_equality,
)?;
Self::is_smaller_than_unchecked(cs.ns(|| "enforce smaller than"), &left, &right)
) -> Result<Boolean<F>, SynthesisError> {
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.is_smaller_than_unchecked(&right)
}
fn process_cmp_inputs<CS: ConstraintSystem<F>>(
mut cs: CS,
a: &FpGadget<F>,
b: &FpGadget<F>,
fn process_cmp_inputs(
&self,
other: &Self,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<(FpGadget<F>, FpGadget<F>), SynthesisError> {
let left;
let right;
match ordering {
Ordering::Less => {
left = a;
right = b;
}
Ordering::Greater => {
left = b;
right = a;
}
Ordering::Equal => {
return Err(SynthesisError::Unsatisfiable);
}
) -> Result<(Self, Self), SynthesisError> {
let (left, right) = match ordering {
Ordering::Less => (self, other),
Ordering::Greater => (other, self),
Ordering::Equal => Err(SynthesisError::Unsatisfiable)?,
};
let right_for_check = if should_also_check_equality {
right.add_constant(cs.ns(|| "plus one"), &F::one())?
right + F::one()
} else {
right.clone()
};
@ -129,77 +91,47 @@ impl FpGadget {
Ok((left.clone(), right_for_check))
}
// Helper function to enforce `a <= (p-1)/2`.
pub fn enforce_smaller_or_equal_than_mod_minus_one_div_two<CS: ConstraintSystem<F>>(
mut cs: CS,
a: &FpGadget<F>,
// Helper function to enforce `self <= (p-1)/2`.
pub fn enforce_smaller_or_equal_than_mod_minus_one_div_two(
&self,
) -> Result<(), SynthesisError> {
let a_bits = a.to_bits(cs.ns(|| "a to bits"))?;
Boolean::enforce_smaller_or_equal_than::<_, _, F, _>(
cs.ns(|| "enforce smaller than modulus minus one div two"),
&a_bits,
let _ = Boolean::enforce_smaller_or_equal_than(
&self.to_bits()?,
F::modulus_minus_one_div_two(),
)?;
Ok(())
}
/// Helper function to check `a < b` and output a result bit. This function
/// verifies `a` and `b` are `<= (p-1)/2`.
fn is_smaller_than<CS: ConstraintSystem<F>>(
mut cs: CS,
a: &FpGadget<F>,
b: &FpGadget<F>,
) -> Result<Boolean, SynthesisError> {
Self::enforce_smaller_or_equal_than_mod_minus_one_div_two(cs.ns(|| "check a in range"), a)?;
Self::enforce_smaller_or_equal_than_mod_minus_one_div_two(cs.ns(|| "check b in range"), b)?;
Self::is_smaller_than_unchecked(cs.ns(|| "enforce smaller than"), a, b)
/// Helper function to check `self < other` and output a result bit. This function
/// verifies `self` and `other` are `<= (p-1)/2`.
fn is_smaller_than(&self, other: &FpVar<F>) -> Result<Boolean<F>, SynthesisError> {
self.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
other.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
self.is_smaller_than_unchecked(other)
}
/// Helper function to check `a < b` and output a result bit. This function
/// assumes `a` and `b` are `<= (p-1)/2` and does not generate constraints
/// Helper function to check `self < other` and output a result bit. This function
/// assumes `self` and `other` are `<= (p-1)/2` and does not generate constraints
/// to verify that.
fn is_smaller_than_unchecked<CS: ConstraintSystem<F>>(
mut cs: CS,
a: &FpGadget<F>,
b: &FpGadget<F>,
) -> Result<Boolean, SynthesisError> {
let two = F::one() + F::one();
let d0 = a.sub(cs.ns(|| "a - b"), b)?;
let d = d0.mul_by_constant(cs.ns(|| "mul 2"), &two)?;
let d_bits = d.to_bits(cs.ns(|| "d to bits"))?;
let d_bits_len = d_bits.len();
Ok(d_bits[d_bits_len - 1])
fn is_smaller_than_unchecked(&self, other: &FpVar<F>) -> Result<Boolean<F>, SynthesisError> {
Ok((self - other).double()?.to_bits()?.last().unwrap().clone())
}
/// Helper function to enforce `a < b`. This function verifies `a` and `b`
/// Helper function to enforce `self < other`. This function verifies `self` and `other`
/// are `<= (p-1)/2`.
fn enforce_smaller_than<CS: ConstraintSystem<F>>(
mut cs: CS,
a: &FpGadget<F>,
b: &FpGadget<F>,
) -> Result<(), SynthesisError> {
Self::enforce_smaller_or_equal_than_mod_minus_one_div_two(cs.ns(|| "check a in range"), a)?;
Self::enforce_smaller_or_equal_than_mod_minus_one_div_two(cs.ns(|| "check b in range"), b)?;
Self::enforce_smaller_than_unchecked(cs.ns(|| "enforce smaller than"), a, b)
fn enforce_smaller_than(&self, other: &FpVar<F>) -> Result<(), SynthesisError> {
self.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
other.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
self.enforce_smaller_than_unchecked(other)
}
/// Helper function to enforce `a < b`. This function assumes `a` and `b`
/// Helper function to enforce `self < other`. This function assumes `self` and `other`
/// are `<= (p-1)/2` and does not generate constraints to verify that.
fn enforce_smaller_than_unchecked<CS: ConstraintSystem<F>>(
mut cs: CS,
a: &FpGadget<F>,
b: &FpGadget<F>,
) -> Result<(), SynthesisError> {
let is_smaller_than = Self::is_smaller_than_unchecked(cs.ns(|| "is smaller than"), a, b)?;
cs.enforce(
|| "enforce smaller than",
|_| is_smaller_than.lc(CS::one(), F::one()),
|lc| lc + (F::one(), CS::one()),
|lc| lc + (F::one(), CS::one()),
);
Ok(())
fn enforce_smaller_than_unchecked(&self, other: &FpVar<F>) -> Result<(), SynthesisError> {
let cs = [self, other].cs().unwrap();
let is_smaller_than = self.is_smaller_than_unchecked(other)?;
let lc_one = lc!() + Variable::One;
cs.enforce_constraint(is_smaller_than.lc(), lc_one.clone(), lc_one)
}
}
@ -209,9 +141,7 @@ mod test {
use rand_xorshift::XorShiftRng;
use std::cmp::Ordering;
use crate::{
alloc::AllocGadget, fields::fp::FpGadget, test_constraint_system::TestConstraintSystem,
};
use crate::{alloc::AllocVar, fields::fp::FpVar};
use algebra::{bls12_381::Fr, PrimeField, UniformRand};
use r1cs_core::ConstraintSystem;
@ -233,43 +163,20 @@ mod test {
r
}
for i in 0..10 {
let mut cs = TestConstraintSystem::<Fr>::new();
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpGadget::<Fr>::alloc(cs.ns(|| "a"), || Ok(a)).unwrap();
let a_var = FpVar::<Fr>::new_witness(cs.ns("a"), || Ok(a)).unwrap();
let b = rand_in_range(&mut rng);
let b_var = FpGadget::<Fr>::alloc(cs.ns(|| "b"), || Ok(b)).unwrap();
let b_var = FpVar::<Fr>::new_witness(cs.ns("b"), || Ok(b)).unwrap();
match a.cmp(&b) {
Ordering::Less => {
a_var
.enforce_cmp(cs.ns(|| "smaller than test"), &b_var, Ordering::Less, false)
.unwrap();
a_var
.enforce_cmp(
cs.ns(|| "smaller than test 2"),
&b_var,
Ordering::Less,
true,
)
.unwrap();
a_var.enforce_cmp(&b_var, Ordering::Less, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Less, true).unwrap();
}
Ordering::Greater => {
a_var
.enforce_cmp(
cs.ns(|| "smaller than test"),
&b_var,
Ordering::Greater,
false,
)
.unwrap();
a_var
.enforce_cmp(
cs.ns(|| "smaller than test 2"),
&b_var,
Ordering::Greater,
true,
)
.unwrap();
a_var.enforce_cmp(&b_var, Ordering::Greater, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Greater, true).unwrap();
}
_ => {}
}
@ -277,79 +184,46 @@ mod test {
if i == 0 {
println!("number of constraints: {}", cs.num_constraints());
}
assert!(cs.is_satisfied());
assert!(cs.is_satisfied().unwrap());
}
for _i in 0..10 {
let mut cs = TestConstraintSystem::<Fr>::new();
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpGadget::<Fr>::alloc(cs.ns(|| "a"), || Ok(a)).unwrap();
let a_var = FpVar::<Fr>::new_witness(cs.ns("a"), || Ok(a)).unwrap();
let b = rand_in_range(&mut rng);
let b_var = FpGadget::<Fr>::alloc(cs.ns(|| "b"), || Ok(b)).unwrap();
let b_var = FpVar::<Fr>::new_witness(cs.ns("b"), || Ok(b)).unwrap();
match b.cmp(&a) {
Ordering::Less => {
a_var
.enforce_cmp(cs.ns(|| "smaller than test"), &b_var, Ordering::Less, false)
.unwrap();
a_var
.enforce_cmp(
cs.ns(|| "smaller than test 2"),
&b_var,
Ordering::Less,
true,
)
.unwrap();
a_var.enforce_cmp(&b_var, Ordering::Less, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Less, true).unwrap();
}
Ordering::Greater => {
a_var
.enforce_cmp(
cs.ns(|| "smaller than test"),
&b_var,
Ordering::Greater,
false,
)
.unwrap();
a_var
.enforce_cmp(
cs.ns(|| "smaller than test 2"),
&b_var,
Ordering::Greater,
true,
)
.unwrap();
a_var.enforce_cmp(&b_var, Ordering::Greater, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Greater, true).unwrap();
}
_ => {}
}
assert!(!cs.is_satisfied());
assert!(!cs.is_satisfied().unwrap());
}
for _i in 0..10 {
let mut cs = TestConstraintSystem::<Fr>::new();
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpGadget::<Fr>::alloc(cs.ns(|| "a"), || Ok(a)).unwrap();
a_var
.enforce_cmp(cs.ns(|| "smaller than test"), &a_var, Ordering::Less, false)
.unwrap();
let a_var = FpVar::<Fr>::new_witness(cs.ns("a"), || Ok(a)).unwrap();
a_var.enforce_cmp(&a_var, Ordering::Less, false).unwrap();
assert!(!cs.is_satisfied());
assert!(!cs.is_satisfied().unwrap());
}
for _i in 0..10 {
let mut cs = TestConstraintSystem::<Fr>::new();
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpGadget::<Fr>::alloc(cs.ns(|| "a"), || Ok(a)).unwrap();
a_var
.enforce_cmp(
cs.ns(|| "smaller than or equal to test"),
&a_var,
Ordering::Less,
true,
)
.unwrap();
assert!(cs.is_satisfied());
let a_var = FpVar::<Fr>::new_witness(cs.ns("a"), || Ok(a)).unwrap();
a_var.enforce_cmp(&a_var, Ordering::Less, true).unwrap();
assert!(cs.is_satisfied().unwrap());
}
}
}

+ 726
- 464
r1cs-std/src/fields/fp/mod.rs
File diff suppressed because it is too large
View File


+ 132
- 885
r1cs-std/src/fields/fp12.rs
File diff suppressed because it is too large
View File


+ 6
- 689
r1cs-std/src/fields/fp2.rs

@ -1,693 +1,10 @@
use algebra::{
fields::{Fp2, Fp2Parameters},
PrimeField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, ConstraintVar, SynthesisError};
use crate::fields::{fp::FpVar, quadratic_extension::*};
use algebra::fields::{Fp2Parameters, Fp2ParamsWrapper, QuadExtParameters};
use crate::{fields::fp::FpGadget, prelude::*, Vec};
pub type Fp2Var<P> = QuadExtVar<FpVar<<P as Fp2Parameters>::Fp>, Fp2ParamsWrapper<P>>;
#[derive(Derivative)]
#[derivative(Debug(bound = "P: Fp2Parameters, ConstraintF: PrimeField"))]
#[must_use]
pub struct Fp2Gadget<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> {
pub c0: FpGadget<ConstraintF>,
pub c1: FpGadget<ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField>
ToConstraintFieldGadget<ConstraintF> for Fp2Gadget<P, ConstraintF>
{
fn to_constraint_field<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<FpGadget<ConstraintF>>, SynthesisError> {
let mut res = Vec::new();
let mut c0_gadget = self.c0.to_constraint_field(&mut cs.ns(|| "c0"))?;
let mut c1_gadget = self.c1.to_constraint_field(&mut cs.ns(|| "c1"))?;
res.append(&mut c0_gadget);
res.append(&mut c1_gadget);
Ok(res)
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> Fp2Gadget<P, ConstraintF> {
pub fn new(c0: FpGadget<ConstraintF>, c1: FpGadget<ConstraintF>) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply a FpGadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &FpGadget<ConstraintF>,
) -> Result<FpGadget<ConstraintF>, SynthesisError> {
fe.mul_by_constant(cs, &P::NONRESIDUE)
}
/// Multiply a Fp2Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
fe: &P::Fp,
) -> Result<&mut Self, SynthesisError> {
self.c0.mul_by_constant_in_place(cs.ns(|| "c0"), fe)?;
self.c1.mul_by_constant_in_place(cs.ns(|| "c1"), fe)?;
Ok(self)
}
/// Multiply a Fp2Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
fe: &P::Fp,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.mul_by_fp_constant_in_place(cs, fe)?;
Ok(result)
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> FieldGadget<Fp2<P>, ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
type Variable = (ConstraintVar<ConstraintF>, ConstraintVar<ConstraintF>);
#[inline]
fn get_value(&self) -> Option<Fp2<P>> {
match (self.c0.value, self.c1.value) {
(Some(c0), Some(c1)) => Some(Fp2::new(c0, c1)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(self.c0.get_variable(), self.c1.get_variable())
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = FpGadget::zero(cs.ns(|| "c0"))?;
let c1 = FpGadget::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = FpGadget::one(cs.ns(|| "c0"))?;
let c1 = FpGadget::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp2<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn double<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.double_in_place(cs)?;
Ok(result)
}
#[inline]
fn double_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.double_in_place(&mut cs.ns(|| "double c0"))?;
self.c1.double_in_place(&mut cs.ns(|| "double c1"))?;
Ok(self)
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.negate_in_place(cs)?;
Ok(result)
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
Ok(self)
}
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication for Fp2:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
let v0 = self.c0.mul(mul_cs.ns(|| "v0"), &other.c0)?;
let v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
let c0 = {
let non_residue_times_v1 =
v1.mul_by_constant(mul_cs.ns(|| "non_residue * v0"), &P::NONRESIDUE)?;
v0.add(mul_cs.ns(|| "v0 + beta * v1"), &non_residue_times_v1)?
};
let c1 = {
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let a0_plus_a1_times_b0_plus_b1 =
a0_plus_a1.mul(&mut mul_cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?;
a0_plus_a1_times_b0_plus_b1
.sub(mul_cs.ns(|| "res - v0"), &v0)?
.sub(mul_cs.ns(|| "res - v0 - v1"), &v1)?
};
Ok(Self::new(c0, c1))
}
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// From Libsnark/fp2_gadget.tcc
// Complex multiplication for Fp2:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let non_residue_c1 = self
.c1
.mul_by_constant(cs.ns(|| "non_residue * a1"), &P::NONRESIDUE)?;
let a0_plus_non_residue_c1 = self
.c0
.add(cs.ns(|| "a0 + non_residue * a1"), &non_residue_c1)?;
let one_plus_non_residue_v0 = v0.mul_by_constant(
cs.ns(|| "1 + non_residue * v0"),
&(P::Fp::one() + &P::NONRESIDUE),
)?;
let c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_c1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
let c1 = v0;
Ok(Self::new(c0, c1))
}
#[inline]
fn square_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
// From Libsnark/fp2_gadget.tcc
// Complex multiplication for Fp2:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let _ = self
.c1
.mul_by_constant_in_place(cs.ns(|| "non_residue * a1"), &P::NONRESIDUE)?;
let a0_plus_non_residue_c1 = self.c0.add(cs.ns(|| "a0 + non_residue * a1"), &self.c1)?;
let one_plus_non_residue_v0 = v0.mul_by_constant(
cs.ns(|| "1 + non_residue * v0"),
&(P::Fp::one() + &P::NONRESIDUE),
)?;
self.c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_c1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
self.c1 = v0;
Ok(self)
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp2:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
// Compute v1
let mut v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
// Perform second check
let non_residue_times_v1 =
v1.mul_by_constant(mul_cs.ns(|| "non_residue * v0"), &P::NONRESIDUE)?;
let rhs = result
.c0
.sub(mul_cs.ns(|| "sub from result.c0"), &non_residue_times_v1)?;
self.c0
.mul_equals(mul_cs.ns(|| "second check"), &other.c0, &rhs)?;
// Last check
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let one_minus_non_residue_v1 =
v1.sub_in_place(mul_cs.ns(|| "sub from v1"), &non_residue_times_v1)?;
let result_c1_plus_result_c0_plus_one_minus_non_residue_v1 = result
.c1
.add(mul_cs.ns(|| "c1 + c0"), &result.c0)?
.add(mul_cs.ns(|| "rest of stuff"), one_minus_non_residue_v1)?;
a0_plus_a1.mul_equals(
mul_cs.ns(|| "third check"),
&b0_plus_b1,
&result_c1_plus_result_c0_plus_one_minus_non_residue_v1,
)?;
Ok(())
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c1
.mul_by_constant_in_place(cs, &P::FROBENIUS_COEFF_FP2_C1[power % 2])?;
Ok(self)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
other: &Fp2<P>,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.add_constant_in_place(cs, other)?;
Ok(result)
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp2<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
fe: &Fp2<P>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication (see mul above).
// Doesn't need any constraints; returns linear combinations of
// `self`'s variables.
//
// (The operations below are guaranteed to return linear combinations)
let (a0, a1) = (&self.c0, &self.c1);
let (b0, b1) = (fe.c0, fe.c1);
let mut v0 = a0.mul_by_constant(&mut cs.ns(|| "v0"), &b0)?;
let beta_v1 = a1.mul_by_constant(&mut cs.ns(|| "v1"), &(b1 * &P::NONRESIDUE))?;
v0.add_in_place(&mut cs.ns(|| "c0"), &beta_v1)?;
let c0 = v0;
let mut a0b1 = a0.mul_by_constant(&mut cs.ns(|| "a0b1"), &b1)?;
let a1b0 = a1.mul_by_constant(&mut cs.ns(|| "a1b0"), &b0)?;
a0b1.add_in_place(&mut cs.ns(|| "c1"), &a1b0)?;
let c1 = a0b1;
Ok(Self::new(c0, c1))
}
fn cost_of_mul() -> usize {
3 * FpGadget::<ConstraintF>::cost_of_mul()
}
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> PartialEq
for Fp2Gadget<P, ConstraintF>
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> Eq for Fp2Gadget<P, ConstraintF> {}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> EqGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> ConditionalEqGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
Ok(())
}
fn cost() -> usize {
2
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> NEqGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
Ok(())
}
fn cost() -> usize {
2
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> ToBitsGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> ToBytesGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> Clone
for Fp2Gadget<P, ConstraintF>
{
fn clone(&self) -> Self {
Self {
c0: self.c0.clone(),
c1: self.c1.clone(),
_params: PhantomData,
}
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> CondSelectGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
true_value: &Self,
false_value: &Self,
) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&true_value.c0,
&false_value.c0,
)?;
let c1 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&true_value.c1,
&false_value.c1,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> TwoBitLookupGadget<ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
type TableConstant = Fp2<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = FpGadget::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = FpGadget::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <FpGadget<ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField>
ThreeBitCondNegLookupGadget<ConstraintF> for Fp2Gadget<P, ConstraintF>
{
type TableConstant = Fp2<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = FpGadget::three_bit_cond_neg_lookup(cs.ns(|| "Lookup c0"), b, b0b1, &c0s)?;
let c1 = FpGadget::three_bit_cond_neg_lookup(cs.ns(|| "Lookup c1"), b, b0b1, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <FpGadget<ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P: Fp2Parameters<Fp = ConstraintF>, ConstraintF: PrimeField> AllocGadget<Fp2<P>, ConstraintF>
for Fp2Gadget<P, ConstraintF>
{
#[inline]
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
t: T,
) -> Result<Self, SynthesisError>
where
T: Borrow<Fp2<P>>,
{
Self::zero(cs.ns(|| "zero"))?.add_constant(cs.ns(|| "add constant"), t.borrow())
}
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp2<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
}
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = FpGadget::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = FpGadget::alloc(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp2<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
}
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = FpGadget::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = FpGadget::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
impl<P: Fp2Parameters> QuadExtVarParams<FpVar<P::Fp>> for Fp2ParamsWrapper<P> {
fn mul_base_field_var_by_frob_coeff(fe: &mut FpVar<P::Fp>, power: usize) {
*fe *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
}
}

+ 10
- 950
r1cs-std/src/fields/fp3.rs

@ -1,955 +1,15 @@
use algebra::{
fields::fp3::{Fp3, Fp3Parameters},
PrimeField, SquareRootField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, ConstraintVar, SynthesisError};
use crate::fields::{cubic_extension::*, fp::FpVar};
use algebra::fields::{CubicExtParameters, Fp3Parameters, Fp3ParamsWrapper};
use crate::{fields::fp::FpGadget, prelude::*, Vec};
pub type Fp3Var<P> = CubicExtVar<FpVar<<P as Fp3Parameters>::Fp>, Fp3ParamsWrapper<P>>;
#[derive(Derivative)]
#[derivative(Debug(
bound = "P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField"
))]
#[must_use]
pub struct Fp3Gadget<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
{
pub c0: FpGadget<ConstraintF>,
pub c1: FpGadget<ConstraintF>,
pub c2: FpGadget<ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ToConstraintFieldGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
fn to_constraint_field<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<FpGadget<ConstraintF>>, SynthesisError> {
let mut res = Vec::new();
let mut c0_gadget = self.c0.to_constraint_field(&mut cs.ns(|| "c0"))?;
let mut c1_gadget = self.c1.to_constraint_field(&mut cs.ns(|| "c1"))?;
let mut c2_gadget = self.c2.to_constraint_field(&mut cs.ns(|| "c2"))?;
res.append(&mut c0_gadget);
res.append(&mut c1_gadget);
res.append(&mut c2_gadget);
Ok(res)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
Fp3Gadget<P, ConstraintF>
{
#[inline]
pub fn new(
c0: FpGadget<ConstraintF>,
c1: FpGadget<ConstraintF>,
c2: FpGadget<ConstraintF>,
) -> Self {
Self {
c0,
c1,
c2,
_params: PhantomData,
}
}
/// Multiply a FpGadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &FpGadget<ConstraintF>,
) -> Result<FpGadget<ConstraintF>, SynthesisError> {
fe.mul_by_constant(cs, &P::NONRESIDUE)
}
/// Multiply a Fp3Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
fe: &P::Fp,
) -> Result<&mut Self, SynthesisError> {
self.c0.mul_by_constant_in_place(cs.ns(|| "c0"), fe)?;
self.c1.mul_by_constant_in_place(cs.ns(|| "c1"), fe)?;
self.c2.mul_by_constant_in_place(cs.ns(|| "c2"), fe)?;
Ok(self)
}
/// Multiply a Fp3Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
fe: &P::Fp,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.mul_by_fp_constant_in_place(cs, fe)?;
Ok(result)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
FieldGadget<Fp3<P>, ConstraintF> for Fp3Gadget<P, ConstraintF>
{
type Variable = (
ConstraintVar<ConstraintF>,
ConstraintVar<ConstraintF>,
ConstraintVar<ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp3<P>> {
match (
self.c0.get_value(),
self.c1.get_value(),
self.c2.get_value(),
) {
(Some(c0), Some(c1), Some(c2)) => Some(Fp3::new(c0, c1, c2)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(
self.c0.get_variable(),
self.c1.get_variable(),
self.c2.get_variable(),
)
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c1"))?;
let c2 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c1"))?;
let c2 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp3<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
let c2 = self
.c2
.conditionally_add_constant(cs.ns(|| "c2"), bit, coeff.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
let c2 = self.c2.add(&mut cs.ns(|| "add c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
let c2 = self.c2.sub(&mut cs.ns(|| "sub c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.negate(&mut cs.ns(|| "negate c0"))?;
let c1 = self.c1.negate(&mut cs.ns(|| "negate c1"))?;
let c2 = self.c2.negate(&mut cs.ns(|| "negate c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
self.c2.negate_in_place(&mut cs.ns(|| "negate c2"))?;
Ok(self)
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cook-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)b(0) = a0 * b0
let v0 = self.c0.mul(&mut cs.ns(|| "Calc v0"), &other.c0)?;
// v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
let v1 = {
let mut v1_cs = cs.ns(|| "compute v1");
let a0_plus_a1_plus_a2 = self
.c0
.add(v1_cs.ns(|| "a0 + a1"), &self.c1)?
.add(v1_cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
let b0_plus_b1_plus_b2 = other
.c0
.add(v1_cs.ns(|| "b0 + b1"), &other.c1)?
.add(v1_cs.ns(|| "b0 + b1 + b2"), &other.c2)?;
a0_plus_a1_plus_a2.mul(
v1_cs.ns(|| "(a0 + a1 + a2)(b0 + b1 + b2)"),
&b0_plus_b1_plus_b2,
)?
};
// v2 = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2)
let v2 = {
let mut v2_cs = cs.ns(|| "compute v2");
let a0_minus_a1_plus_a2 = self
.c0
.sub(v2_cs.ns(|| "a0 - a1"), &self.c1)?
.add(v2_cs.ns(|| "a0 - a1 + a2"), &self.c2)?;
let b0_minus_b1_plus_b2 = other
.c0
.sub(v2_cs.ns(|| "b0 - b1"), &other.c1)?
.add(v2_cs.ns(|| "b0 - b1 + b2"), &other.c2)?;
a0_minus_a1_plus_a2.mul(
v2_cs.ns(|| "(a0 - a1 + a2)(b0 - b1 + b2)"),
&b0_minus_b1_plus_b2,
)?
};
// v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
let v3 = {
let v3_cs = &mut cs.ns(|| "compute v3");
let a1_double = self.c1.double(v3_cs.ns(|| "2 * a1"))?;
let a2_quad = self
.c2
.double(v3_cs.ns(|| "2 * a2"))?
.double(v3_cs.ns(|| "4 * a2"))?;
let a0_plus_2_a1_plus_4_a2 = self
.c0
.add(v3_cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(v3_cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
let b1_double = other.c1.double(v3_cs.ns(|| "2 * b1"))?;
let b2_quad = other
.c2
.double(v3_cs.ns(|| "2 * b2"))?
.double(v3_cs.ns(|| "4 * b2"))?;
let b0_plus_2_b1_plus_4_b2 = other
.c0
.add(v3_cs.ns(|| "b0 + 2b1"), &b1_double)?
.add(v3_cs.ns(|| "b0 + 2b1 + 4b2"), &b2_quad)?;
a0_plus_2_a1_plus_4_a2.mul(
v3_cs.ns(|| "(a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)"),
&b0_plus_2_b1_plus_4_b2,
)?
};
// v4 = a(∞)b(∞) = a2 * b2
let v4 = self.c2.mul(cs.ns(|| "v2: a2 * b2"), &other.c2)?;
let two = P::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let half_v0 = v0.mul_by_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let one_sixth_v2 = v2.mul_by_constant(cs.ns(|| "v2_by_six"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_constant(cs.ns(|| "v3_by_six"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "2 * v4"))?;
// c0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
let c0 = {
let c0_cs = &mut cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let temp = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
temp.mul_by_constant(&mut c0_cs.ns(|| "mul5"), &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add6"), &non_residue_times_inner)?
};
// −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4
let c1 = {
let c1_cs = &mut cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double(&mut c1_cs.ns(|| "v2_by_3"))?;
let non_residue_v4 =
v4.mul_by_constant(&mut c1_cs.ns(|| "mul_by_beta"), &P::NONRESIDUE)?;
let result = half_v0
.negate(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add2"), &v1)?
.sub(c1_cs.ns(|| "sub3"), &one_third_v2)?
.sub(c1_cs.ns(|| "sub4"), &one_sixth_v3)?
.add(c1_cs.ns(|| "sub5"), &two_v4)?
.add(c1_cs.ns(|| "sub6"), &non_residue_v4)?;
result
};
// -v0 + (1/2)v1 + (1/2)v2 −v4
let c2 = {
let c2_cs = &mut cs.ns(|| "c2");
let half_v2 = v2.mul_by_constant(&mut c2_cs.ns(|| "mul1"), &two_inverse)?;
let result = half_v1
.add(c2_cs.ns(|| "add1"), &half_v2)?
.sub(c2_cs.ns(|| "sub1"), &v4)?
.sub(c2_cs.ns(|| "sub2"), &v0)?;
result
};
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp3:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// v2 = A.c2 * B.c2
// result.c0 = v0 + β((a1 + a2)(b1 + b2) − v1 − v2)
// result.c1 = (a0 + a1)(b0 + b1) − v0 − v1 + βv2
// result.c2 = (a0 + a2)(b0 + b2) − v0 + v1 − v2,
// We enforce this with six constraints:
//
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// v2 = A.c2 * B.c2
//
// result.c0 - v0 + \beta*(v1 + v2) = β(a1 + a2)(b1 + b2))
// result.c1 + v0 + v1 - βv2 = (a0 + a1)(b0 + b1)
// result.c2 + v0 - v1 + v2 = (a0 + a2)(b0 + b2)
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
//
// This implementation adapted from
// https://github.com/ZencashOfficial/ginger-lib/blob/development/r1cs/gadgets/std/src/fields/fp3.rs
let v0 = self.c0.mul(cs.ns(|| "v0 = a0 * b0"), &other.c0)?;
let v1 = self.c1.mul(cs.ns(|| "v1 = a1 * b1"), &other.c1)?;
let v2 = self.c2.mul(cs.ns(|| "v2 = a2 * b2"), &other.c2)?;
// Check c0
let nr_a1_plus_a2 = self
.c1
.add(cs.ns(|| "a1 + a2"), &self.c2)?
.mul_by_constant(cs.ns(|| "nr*(a1 + a2)"), &P::NONRESIDUE)?;
let b1_plus_b2 = other.c1.add(cs.ns(|| "b1 + b2"), &other.c2)?;
let nr_v1 = v1.mul_by_constant(cs.ns(|| "nr * v1"), &P::NONRESIDUE)?;
let nr_v2 = v2.mul_by_constant(cs.ns(|| "nr * v2"), &P::NONRESIDUE)?;
let to_check = result
.c0
.sub(cs.ns(|| "c0 - v0"), &v0)?
.add(cs.ns(|| "c0 - v0 + nr * v1"), &nr_v1)?
.add(cs.ns(|| "c0 - v0 + nr * v1 + nr * v2"), &nr_v2)?;
nr_a1_plus_a2.mul_equals(cs.ns(|| "check c0"), &b1_plus_b2, &to_check)?;
// Check c1
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(cs.ns(|| "b0 + b1"), &other.c1)?;
let to_check = result
.c1
.sub(cs.ns(|| "c1 - nr * v2"), &nr_v2)?
.add(cs.ns(|| "c1 - nr * v2 + v0"), &v0)?
.add(cs.ns(|| "c1 - nr * v2 + v0 + v1"), &v1)?;
a0_plus_a1.mul_equals(cs.ns(|| "check c1"), &b0_plus_b1, &to_check)?;
// Check c2
let a0_plus_a2 = self.c0.add(cs.ns(|| "a0 + a2"), &self.c2)?;
let b0_plus_b2 = other.c0.add(cs.ns(|| "b0 + b2"), &other.c2)?;
let to_check = result
.c2
.add(cs.ns(|| "c2 + v0"), &v0)?
.sub(cs.ns(|| "c2 + v0 - v1"), &v1)?
.add(cs.ns(|| "c2 + v0 - v1 + v2"), &v2)?;
a0_plus_a2.mul_equals(cs.ns(|| "check c2"), &b0_plus_b2, &to_check)?;
Ok(())
}
/// Use the Chung-Hasan asymmetric squaring formula.
///
/// (Devegili OhEig Scott Dahab --- Multiplication and Squaring on
/// Abstract Pairing-Friendly
/// Fields.pdf; Section 4 (CH-SQR2))
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let a = self.c0.clone();
let b = self.c1.clone();
let c = self.c2.clone();
let s0 = a.square(cs.ns(|| "s0"))?;
let ab = a.mul(cs.ns(|| "ab"), &b)?;
let s1 = ab.double(cs.ns(|| "s1"))?;
let s2 = a
.sub(cs.ns(|| "a-b"), &b)?
.add(cs.ns(|| "plus c"), &c)?
.square(cs.ns(|| "s2"))?;
let s3 = b.mul(cs.ns(|| "bc"), &c)?.double(cs.ns(|| "s3"))?;
let s4 = c.square(cs.ns(|| "s4"))?;
let c0 = Self::mul_fp_gadget_by_nonresidue(cs.ns(|| "c0 part 1"), &s3)?
.add(cs.ns(|| "c0"), &s0)?;
let c1 = Self::mul_fp_gadget_by_nonresidue(cs.ns(|| "c1 part 1"), &s4)?
.add(cs.ns(|| "c1"), &s1)?;
let c2 = s1
.add(cs.ns(|| "c2 part1"), &s2)?
.add(cs.ns(|| "c2 part2"), &s3)?
.sub(cs.ns(|| "c2 part3"), &s0)?
.sub(cs.ns(|| "c2 part4"), &s4)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp3<P>,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add_constant(cs.ns(|| "c0"), &other.c0)?;
let c1 = self.c1.add_constant(cs.ns(|| "c1"), &other.c1)?;
let c2 = self.c2.add_constant(cs.ns(|| "c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp3<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
self.c2.add_constant_in_place(cs.ns(|| "c2"), &other.c2)?;
Ok(self)
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp3<P>,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cook-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)b(0) = a0 * b0
let v0 = self.c0.mul_by_constant(cs.ns(|| "v0"), &other.c0)?;
// v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
let v1 = {
let mut v1_cs = cs.ns(|| "v1");
let mut a0_plus_a1_plus_a2 = self
.c0
.add(v1_cs.ns(|| "a0 + a1"), &self.c1)?
.add(v1_cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
let b0_plus_b1_plus_b2 = other.c0 + &other.c1 + &other.c2;
a0_plus_a1_plus_a2.mul_by_constant_in_place(
v1_cs.ns(|| "(a0 + a1 + a2)*(b0 + b1 + b2)"),
&b0_plus_b1_plus_b2,
)?;
a0_plus_a1_plus_a2
};
// v2 = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2)
let mut v2 = {
let mut v2_cs = cs.ns(|| "v2");
let mut a0_minus_a1_plus_a2 = self
.c0
.sub(v2_cs.ns(|| "sub1"), &self.c1)?
.add(v2_cs.ns(|| "add2"), &self.c2)?;
let b0_minus_b1_plus_b2 = other.c0 - &other.c1 + &other.c2;
a0_minus_a1_plus_a2.mul_by_constant_in_place(
v2_cs.ns(|| "(a0 - a1 + a2)*(b0 - b1 + b2)"),
&b0_minus_b1_plus_b2,
)?;
a0_minus_a1_plus_a2
};
// v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
let mut v3 = {
let mut v3_cs = cs.ns(|| "v3");
let a1_double = self.c1.double(v3_cs.ns(|| "2a1"))?;
let a2_quad = self
.c2
.double(v3_cs.ns(|| "2a2"))?
.double(v3_cs.ns(|| "4a2"))?;
let mut a0_plus_2_a1_plus_4_a2 = self
.c0
.add(v3_cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(v3_cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
let b1_double = other.c1.double();
let b2_quad = other.c2.double().double();
let b0_plus_2_b1_plus_4_b2 = other.c0 + &b1_double + &b2_quad;
a0_plus_2_a1_plus_4_a2.mul_by_constant_in_place(
v3_cs.ns(|| "(a0 + 2a1 + 4a2)*(b0 + 2b1 + 4b2)"),
&b0_plus_2_b1_plus_4_b2,
)?;
a0_plus_2_a1_plus_4_a2
};
// v4 = a(∞)b(∞) = a2 * b2
let v4 = self.c2.mul_by_constant(cs.ns(|| "v4"), &other.c2)?;
let two = P::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let mut half_v0 = v0.mul_by_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let mut one_sixth_v2 = v2.mul_by_constant(cs.ns(|| "v2_by_6"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_constant_in_place(cs.ns(|| "v3_by_6"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "2v4"))?;
// c0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
let c0 = {
let mut c0_cs = cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let mut inner = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
inner.mul_by_constant_in_place(&mut c0_cs, &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add5"), non_residue_times_inner)?
};
// −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4
let c1 = {
let mut c1_cs = cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double_in_place(c1_cs.ns(|| "double1"))?;
let non_residue_v4 =
v4.mul_by_constant(c1_cs.ns(|| "mul_by_const1"), &P::NONRESIDUE)?;
half_v0
.negate_in_place(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add1"), &v1)?
.sub(c1_cs.ns(|| "sub2"), one_third_v2)?
.sub(c1_cs.ns(|| "sub3"), &one_sixth_v3)?
.add(c1_cs.ns(|| "add4"), &two_v4)?
.add(c1_cs.ns(|| "add5"), &non_residue_v4)?
};
// -v0 + (1/2)v1 + (1/2)v2 −v4
let c2 = {
let mut c2_cs = cs.ns(|| "c2");
let half_v2 = v2.mul_by_constant_in_place(c2_cs.ns(|| "half_v2"), &two_inverse)?;
half_v1
.add(c2_cs.ns(|| "add1"), half_v2)?
.sub(c2_cs.ns(|| "sub2"), &v4)?
.sub(c2_cs.ns(|| "sub3"), &v0)?
};
Ok(Self::new(c0, c1, c2))
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
impl<P: Fp3Parameters> CubicExtVarParams<FpVar<P::Fp>> for Fp3ParamsWrapper<P> {
fn mul_base_field_vars_by_frob_coeff(
c1: &mut FpVar<P::Fp>,
c2: &mut FpVar<P::Fp>,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c1.mul_by_constant_in_place(
cs.ns(|| "c1_power"),
&P::FROBENIUS_COEFF_FP3_C1[power % 3],
)?;
self.c2.mul_by_constant_in_place(
cs.ns(|| "c2_power"),
&P::FROBENIUS_COEFF_FP3_C2[power % 3],
)?;
Ok(self)
}
fn cost_of_mul() -> usize {
5 * FpGadget::<ConstraintF>::cost_of_mul()
}
fn cost_of_mul_equals() -> usize {
6 * FpGadget::<ConstraintF>::cost_of_mul()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField> PartialEq
for Fp3Gadget<P, ConstraintF>
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1 && self.c2 == other.c2
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField> Eq
for Fp3Gadget<P, ConstraintF>
{
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
EqGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ConditionalEqGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
self.c2
.conditional_enforce_equal(&mut cs.ns(|| "c2"), &other.c2, condition)?;
Ok(())
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
NEqGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
self.c2.enforce_not_equal(&mut cs.ns(|| "c2"), &other.c2)?;
Ok(())
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ToBitsGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_bits(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_non_unique_bits(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ToBytesGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_bytes(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_non_unique_bytes(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField> Clone
for Fp3Gadget<P, ConstraintF>
{
fn clone(&self) -> Self {
Self::new(self.c0.clone(), self.c1.clone(), self.c2.clone())
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
CondSelectGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
let c2 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c2"),
cond,
&first.c2,
&second.c2,
)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
TwoBitLookupGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
type TableConstant = Fp3<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = FpGadget::<ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = FpGadget::<ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
let c2 = FpGadget::<ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c2"), b, &c2s)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ThreeBitCondNegLookupGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
type TableConstant = Fp3<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = FpGadget::<ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = FpGadget::<ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
let c2 = FpGadget::<ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c2"),
b,
b0b1,
&c2s,
)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
AllocGadget<Fp3<P>, ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
t: T,
) -> Result<Self, SynthesisError>
where
T: Borrow<Fp3<P>>,
{
Self::zero(cs.ns(|| "zero"))?.add_constant(cs.ns(|| "add constant"), t.borrow())
}
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp3<P>>,
{
let (c0, c1, c2) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1), Ok(fe.c2))
}
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = FpGadget::<ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = FpGadget::<ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
let c2 = FpGadget::<ConstraintF>::alloc(&mut cs.ns(|| "c2"), || c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp3<P>>,
{
let (c0, c1, c2) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1), Ok(fe.c2))
}
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = FpGadget::<ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = FpGadget::<ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
let c2 = FpGadget::<ConstraintF>::alloc_input(&mut cs.ns(|| "c2"), || c2)?;
Ok(Self::new(c0, c1, c2))
) {
*c1 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
*c2 *= Self::FROBENIUS_COEFF_C2[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
}
}

+ 7
- 753
r1cs-std/src/fields/fp4.rs

@ -1,757 +1,11 @@
use algebra::{
fields::{Fp2, Fp2Parameters, Fp4, Fp4Parameters},
BigInteger, PrimeField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::fields::{fp2::Fp2Var, quadratic_extension::*};
use algebra::fields::{Fp4Parameters, Fp4ParamsWrapper, QuadExtParameters};
use crate::{prelude::*, Vec};
pub type Fp4Var<P> = QuadExtVar<Fp2Var<<P as Fp4Parameters>::Fp2Params>, Fp4ParamsWrapper<P>>;
type Fp2Gadget<P, ConstraintF> =
super::fp2::Fp2Gadget<<P as Fp4Parameters>::Fp2Params, ConstraintF>;
type Fp2GadgetVariable<P, ConstraintF> = <Fp2Gadget<P, ConstraintF> as FieldGadget<
Fp2<<P as Fp4Parameters>::Fp2Params>,
ConstraintF,
>>::Variable;
#[derive(Derivative)]
#[derivative(Debug(bound = "ConstraintF: PrimeField"))]
#[must_use]
pub struct Fp4Gadget<P, ConstraintF: PrimeField>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
pub c0: Fp2Gadget<P, ConstraintF>,
pub c1: Fp2Gadget<P, ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, ConstraintF: PrimeField> ToConstraintFieldGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_constraint_field<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<FpGadget<ConstraintF>>, SynthesisError> {
let mut res = Vec::new();
let mut c0_gadget = self.c0.to_constraint_field(&mut cs.ns(|| "c0"))?;
let mut c1_gadget = self.c1.to_constraint_field(&mut cs.ns(|| "c1"))?;
res.append(&mut c0_gadget);
res.append(&mut c1_gadget);
Ok(res)
}
}
impl<P, ConstraintF: PrimeField> Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
pub fn new(c0: Fp2Gadget<P, ConstraintF>, c1: Fp2Gadget<P, ConstraintF>) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply a Fp2Gadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp2_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &Fp2Gadget<P, ConstraintF>,
) -> Result<Fp2Gadget<P, ConstraintF>, SynthesisError> {
let new_c0 = Fp2Gadget::<P, ConstraintF>::mul_fp_gadget_by_nonresidue(cs, &fe.c1)?;
let new_c1 = fe.c0.clone();
Ok(Fp2Gadget::<P, ConstraintF>::new(new_c0, new_c1))
}
/// Multiply a Fp4Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
fe: &<<P as Fp4Parameters>::Fp2Params as Fp2Parameters>::Fp,
) -> Result<&mut Self, SynthesisError> {
self.c0.mul_by_fp_constant_in_place(cs.ns(|| "c0"), fe)?;
self.c1.mul_by_fp_constant_in_place(cs.ns(|| "c1"), fe)?;
Ok(self)
}
/// Multiply a Fp4Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
fe: &<<P as Fp4Parameters>::Fp2Params as Fp2Parameters>::Fp,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.mul_by_fp_constant_in_place(cs, fe)?;
Ok(result)
}
pub fn unitary_inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
) -> Result<Self, SynthesisError> {
Ok(Self::new(self.c0.clone(), self.c1.negate(cs)?))
}
#[inline]
pub fn cyclotomic_exp<CS: ConstraintSystem<ConstraintF>, B: BigInteger>(
&self,
mut cs: CS,
exponent: &B,
) -> Result<Self, SynthesisError> {
let mut res = Self::one(cs.ns(|| "one"))?;
let self_inverse = self.unitary_inverse(cs.ns(|| "unitary inverse"))?;
let mut found_nonzero = false;
let naf = exponent.find_wnaf();
for (i, &value) in naf.iter().rev().enumerate() {
if found_nonzero {
res.square_in_place(cs.ns(|| format!("square {}", i)))?;
}
if value != 0 {
found_nonzero = true;
if value > 0 {
res.mul_in_place(cs.ns(|| format!("res *= self {}", i)), &self)?;
} else {
res.mul_in_place(
cs.ns(|| format!("res *= self_inverse {}", i)),
&self_inverse,
)?;
}
}
}
Ok(res)
}
}
impl<P, ConstraintF: PrimeField> FieldGadget<Fp4<P>, ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type Variable = (
Fp2GadgetVariable<P, ConstraintF>,
Fp2GadgetVariable<P, ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp4<P>> {
match (self.c0.get_value(), self.c1.get_value()) {
(Some(c0), Some(c1)) => Some(Fp4::new(c0, c1)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(self.c0.get_variable(), self.c1.get_variable())
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp4<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn double<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.double_in_place(cs)?;
Ok(result)
}
#[inline]
fn double_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.double_in_place(&mut cs.ns(|| "double c0"))?;
self.c1.double_in_place(&mut cs.ns(|| "double c1"))?;
Ok(self)
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.negate_in_place(cs)?;
Ok(result)
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
Ok(self)
}
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication for Fp4:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
let v0 = self.c0.mul(mul_cs.ns(|| "v0"), &other.c0)?;
let v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
let c0 = {
let non_residue_times_v1 =
Self::mul_fp2_gadget_by_nonresidue(mul_cs.ns(|| "first mul_by_nr"), &v1)?;
v0.add(mul_cs.ns(|| "v0 + beta * v1"), &non_residue_times_v1)?
};
let c1 = {
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let a0_plus_a1_times_b0_plus_b1 =
a0_plus_a1.mul(&mut mul_cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?;
a0_plus_a1_times_b0_plus_b1
.sub(mul_cs.ns(|| "res - v0"), &v0)?
.sub(mul_cs.ns(|| "res - v0 - v1"), &v1)?
};
Ok(Self::new(c0, c1))
}
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// From Libsnark/fp4_gadget.tcc
// Complex multiplication for Fp4:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let non_residue_c1 =
Self::mul_fp2_gadget_by_nonresidue(cs.ns(|| "non_residue * a1"), &self.c1)?;
let a0_plus_non_residue_c1 = self
.c0
.add(cs.ns(|| "a0 + non_residue * a1"), &non_residue_c1)?;
let one_plus_non_residue_v0 =
Self::mul_fp2_gadget_by_nonresidue(cs.ns(|| "non_residue * v0"), &v0)?
.add(cs.ns(|| "plus v0"), &v0)?;
let c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_c1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
let c1 = v0;
Ok(Self::new(c0, c1))
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp4:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
// Compute v1
let mut v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
// Perform second check
let non_residue_times_v1 =
Self::mul_fp2_gadget_by_nonresidue(mul_cs.ns(|| "nr * v1"), &v1)?;
let rhs = result
.c0
.sub(mul_cs.ns(|| "sub from result.c0"), &non_residue_times_v1)?;
self.c0
.mul_equals(mul_cs.ns(|| "second check"), &other.c0, &rhs)?;
// Last check
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let one_minus_non_residue_v1 =
v1.sub_in_place(mul_cs.ns(|| "sub from v1"), &non_residue_times_v1)?;
let result_c1_plus_result_c0_plus_one_minus_non_residue_v1 = result
.c1
.add(mul_cs.ns(|| "c1 + c0"), &result.c0)?
.add(mul_cs.ns(|| "rest of stuff"), one_minus_non_residue_v1)?;
a0_plus_a1.mul_equals(
mul_cs.ns(|| "third check"),
&b0_plus_b1,
&result_c1_plus_result_c0_plus_one_minus_non_residue_v1,
)?;
Ok(())
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c0
.frobenius_map_in_place(cs.ns(|| "frob_map1"), power)?;
self.c1
.frobenius_map_in_place(cs.ns(|| "frob_map2"), power)?;
self.c1
.mul_by_fp_constant_in_place(cs.ns(|| "mul"), &P::FROBENIUS_COEFF_FP4_C1[power % 4])?;
Ok(self)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
other: &Fp4<P>,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.add_constant_in_place(cs, other)?;
Ok(result)
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp4<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
fe: &Fp4<P>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication (see mul above).
// Doesn't need any constraints; returns linear combinations of
// `self`'s variables.
//
// (The operations below are guaranteed to return linear combinations)
let (a0, a1) = (&self.c0, &self.c1);
let (b0, b1) = (fe.c0, fe.c1);
let mut v0 = a0.mul_by_constant(&mut cs.ns(|| "v0"), &b0)?;
let mut v1 = Self::mul_fp2_gadget_by_nonresidue(&mut cs.ns(|| "v1"), a1)?;
let beta_v1 = v1.mul_by_constant_in_place(&mut cs.ns(|| "beta * v1"), &b1)?;
v0.add_in_place(&mut cs.ns(|| "c0"), &beta_v1)?;
let c0 = v0;
let mut a0b1 = a0.mul_by_constant(&mut cs.ns(|| "a0b1"), &b1)?;
let a1b0 = a1.mul_by_constant(&mut cs.ns(|| "a1b0"), &b0)?;
a0b1.add_in_place(&mut cs.ns(|| "c1"), &a1b0)?;
let c1 = a0b1;
Ok(Self::new(c0, c1))
}
fn cost_of_mul() -> usize {
3 * Fp2Gadget::<P, ConstraintF>::cost_of_mul()
}
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
}
impl<P, ConstraintF: PrimeField> PartialEq for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1
}
}
impl<P, ConstraintF: PrimeField> Eq for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> EqGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> ConditionalEqGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> NEqGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ToBitsGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> ToBytesGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> Clone for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn clone(&self) -> Self {
Self {
c0: self.c0.clone(),
c1: self.c1.clone(),
_params: PhantomData,
}
}
}
impl<P, ConstraintF: PrimeField> CondSelectGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> TwoBitLookupGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp4<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ThreeBitCondNegLookupGadget<ConstraintF>
for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp4<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> AllocGadget<Fp4<P>, ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
t: T,
) -> Result<Self, SynthesisError>
where
T: Borrow<Fp4<P>>,
{
Self::zero(cs.ns(|| "zero"))?.add_constant(cs.ns(|| "add constant"), t.borrow())
}
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp4<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
}
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp4<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
}
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
impl<P: Fp4Parameters> QuadExtVarParams<Fp2Var<P::Fp2Params>> for Fp4ParamsWrapper<P> {
fn mul_base_field_var_by_frob_coeff(fe: &mut Fp2Var<P::Fp2Params>, power: usize) {
fe.c0 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
fe.c1 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
}
}

+ 8
- 745
r1cs-std/src/fields/fp6_2over3.rs

@ -1,749 +1,12 @@
use algebra::{
fields::{
fp6_2over3::{Fp6, Fp6Parameters},
Fp3, Fp3Parameters,
},
BigInteger, PrimeField, SquareRootField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::fields::{fp3::Fp3Var, quadratic_extension::*};
use algebra::fields::{fp6_2over3::*, QuadExtParameters};
use crate::{prelude::*, Vec};
pub type Fp6Var<P> = QuadExtVar<Fp3Var<<P as Fp6Parameters>::Fp3Params>, Fp6ParamsWrapper<P>>;
type Fp3Gadget<P, ConstraintF> =
super::fp3::Fp3Gadget<<P as Fp6Parameters>::Fp3Params, ConstraintF>;
type Fp3GadgetVariable<P, ConstraintF> = <Fp3Gadget<P, ConstraintF> as FieldGadget<
Fp3<<P as Fp6Parameters>::Fp3Params>,
ConstraintF,
>>::Variable;
#[derive(Derivative)]
#[derivative(Debug(bound = "ConstraintF: PrimeField + SquareRootField"))]
#[must_use]
pub struct Fp6Gadget<P, ConstraintF: PrimeField + SquareRootField>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
pub c0: Fp3Gadget<P, ConstraintF>,
pub c1: Fp3Gadget<P, ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, ConstraintF: PrimeField + SquareRootField> ToConstraintFieldGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn to_constraint_field<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<FpGadget<ConstraintF>>, SynthesisError> {
let mut res = Vec::new();
let mut c0_gadget = self.c0.to_constraint_field(&mut cs.ns(|| "c0"))?;
let mut c1_gadget = self.c1.to_constraint_field(&mut cs.ns(|| "c1"))?;
res.append(&mut c0_gadget);
res.append(&mut c1_gadget);
Ok(res)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
pub fn new(c0: Fp3Gadget<P, ConstraintF>, c1: Fp3Gadget<P, ConstraintF>) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply a Fp3Gadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp3_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
fe: &Fp3Gadget<P, ConstraintF>,
) -> Result<Fp3Gadget<P, ConstraintF>, SynthesisError> {
let mut res = Fp3Gadget::<P, ConstraintF>::new(fe.c2.clone(), fe.c0.clone(), fe.c1.clone());
res.c0.mul_by_constant_in_place(
cs.ns(|| "res * non_residue"),
&<P::Fp3Params as Fp3Parameters>::NONRESIDUE,
)?;
Ok(res)
}
pub fn unitary_inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
) -> Result<Self, SynthesisError> {
Ok(Self::new(self.c0.clone(), self.c1.negate(cs)?))
}
#[inline]
pub fn cyclotomic_exp<CS: ConstraintSystem<ConstraintF>, B: BigInteger>(
&self,
mut cs: CS,
exponent: &B,
) -> Result<Self, SynthesisError> {
let mut res = Self::one(cs.ns(|| "one"))?;
let self_inverse = self.unitary_inverse(cs.ns(|| "unitary inverse"))?;
let mut found_nonzero = false;
let naf = exponent.find_wnaf();
for (i, &value) in naf.iter().rev().enumerate() {
if found_nonzero {
res.square_in_place(cs.ns(|| format!("square {}", i)))?;
}
if value != 0 {
found_nonzero = true;
if value > 0 {
res.mul_in_place(cs.ns(|| format!("res *= self {}", i)), &self)?;
} else {
res.mul_in_place(
cs.ns(|| format!("res *= self_inverse {}", i)),
&self_inverse,
)?;
}
}
}
Ok(res)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> FieldGadget<Fp6<P>, ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
type Variable = (
Fp3GadgetVariable<P, ConstraintF>,
Fp3GadgetVariable<P, ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp6<P>> {
match (self.c0.get_value(), self.c1.get_value()) {
(Some(c0), Some(c1)) => Some(Fp6::new(c0, c1)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(self.c0.get_variable(), self.c1.get_variable())
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp3Gadget::<P, ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = Fp3Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp3Gadget::<P, ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = Fp3Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp6<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn double<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.double_in_place(cs)?;
Ok(result)
}
#[inline]
fn double_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.double_in_place(&mut cs.ns(|| "double c0"))?;
self.c1.double_in_place(&mut cs.ns(|| "double c1"))?;
Ok(self)
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.negate_in_place(cs)?;
Ok(result)
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
Ok(self)
}
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication for Fp6:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
let v0 = self.c0.mul(mul_cs.ns(|| "v0"), &other.c0)?;
let v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
let c0 = {
let non_residue_times_v1 =
Self::mul_fp3_gadget_by_nonresidue(mul_cs.ns(|| "first mul_by_nr"), &v1)?;
v0.add(mul_cs.ns(|| "v0 + beta * v1"), &non_residue_times_v1)?
};
let c1 = {
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let a0_plus_a1_times_b0_plus_b1 =
a0_plus_a1.mul(&mut mul_cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?;
a0_plus_a1_times_b0_plus_b1
.sub(mul_cs.ns(|| "res - v0"), &v0)?
.sub(mul_cs.ns(|| "res - v0 - v1"), &v1)?
};
Ok(Self::new(c0, c1))
}
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// From Libsnark/fp4_gadget.tcc
// Complex multiplication for Fp6:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let non_residue_c1 =
Self::mul_fp3_gadget_by_nonresidue(cs.ns(|| "non_residue * a1"), &self.c1)?;
let a0_plus_non_residue_c1 = self
.c0
.add(cs.ns(|| "a0 + non_residue * a1"), &non_residue_c1)?;
let one_plus_non_residue_v0 =
Self::mul_fp3_gadget_by_nonresidue(cs.ns(|| "non_residue * v0"), &v0)?
.add(cs.ns(|| "plus v0"), &v0)?;
let c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_c1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
let c1 = v0;
Ok(Self::new(c0, c1))
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp6:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
// Compute v1
let mut v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
// Perform second check
let non_residue_times_v1 =
Self::mul_fp3_gadget_by_nonresidue(mul_cs.ns(|| "nr * v1"), &v1)?;
let rhs = result
.c0
.sub(mul_cs.ns(|| "sub from result.c0"), &non_residue_times_v1)?;
self.c0
.mul_equals(mul_cs.ns(|| "second check"), &other.c0, &rhs)?;
// Last check
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let one_minus_non_residue_v1 =
v1.sub_in_place(mul_cs.ns(|| "sub from v1"), &non_residue_times_v1)?;
let result_c1_plus_result_c0_plus_one_minus_non_residue_v1 = result
.c1
.add(mul_cs.ns(|| "c1 + c0"), &result.c0)?
.add(mul_cs.ns(|| "rest of stuff"), one_minus_non_residue_v1)?;
a0_plus_a1.mul_equals(
mul_cs.ns(|| "third check"),
&b0_plus_b1,
&result_c1_plus_result_c0_plus_one_minus_non_residue_v1,
)?;
Ok(())
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c0
.frobenius_map_in_place(cs.ns(|| "frob_map1"), power)?;
self.c1
.frobenius_map_in_place(cs.ns(|| "frob_map2"), power)?;
self.c1
.mul_by_fp_constant_in_place(cs.ns(|| "mul"), &P::FROBENIUS_COEFF_FP6_C1[power % 6])?;
Ok(self)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
other: &Fp6<P>,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.add_constant_in_place(cs, other)?;
Ok(result)
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp6<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
fe: &Fp6<P>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication (see mul above).
// Doesn't need any constraints; returns linear combinations of
// `self`'s variables.
//
// (The operations below are guaranteed to return linear combinations)
let (a0, a1) = (&self.c0, &self.c1);
let (b0, b1) = (fe.c0, fe.c1);
let mut v0 = a0.mul_by_constant(&mut cs.ns(|| "v0"), &b0)?;
let mut v1 = Self::mul_fp3_gadget_by_nonresidue(&mut cs.ns(|| "v1"), a1)?;
let beta_v1 = v1.mul_by_constant_in_place(&mut cs.ns(|| "beta * v1"), &b1)?;
v0.add_in_place(&mut cs.ns(|| "c0"), &beta_v1)?;
let c0 = v0;
let mut a0b1 = a0.mul_by_constant(&mut cs.ns(|| "a0b1"), &b1)?;
let a1b0 = a1.mul_by_constant(&mut cs.ns(|| "a1b0"), &b0)?;
a0b1.add_in_place(&mut cs.ns(|| "c1"), &a1b0)?;
let c1 = a0b1;
Ok(Self::new(c0, c1))
}
fn cost_of_mul() -> usize {
2 * Fp3Gadget::<P, ConstraintF>::cost_of_mul()
}
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> PartialEq for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> Eq for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField + SquareRootField> EqGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField + SquareRootField> ConditionalEqGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> NEqGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> ToBitsGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> ToBytesGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> Clone for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn clone(&self) -> Self {
Self {
c0: self.c0.clone(),
c1: self.c1.clone(),
_params: PhantomData,
}
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> CondSelectGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = Fp3Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = Fp3Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> TwoBitLookupGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp6<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp3Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = Fp3Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> ThreeBitCondNegLookupGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp6<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp3Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = Fp3Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> AllocGadget<Fp6<P>, ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
t: T,
) -> Result<Self, SynthesisError>
where
T: Borrow<Fp6<P>>,
{
Self::zero(cs.ns(|| "zero"))?.add_constant(cs.ns(|| "add constant"), t.borrow())
}
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp6<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
}
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp3Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp3Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp6<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
}
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp3Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp3Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
impl<P: Fp6Parameters> QuadExtVarParams<Fp3Var<P::Fp3Params>> for Fp6ParamsWrapper<P> {
fn mul_base_field_var_by_frob_coeff(fe: &mut Fp3Var<P::Fp3Params>, power: usize) {
fe.c0 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
fe.c1 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
fe.c2 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
}
}

+ 37
- 1010
r1cs-std/src/fields/fp6_3over2.rs
File diff suppressed because it is too large
View File


+ 231
- 437
r1cs-std/src/fields/mod.rs

@ -1,9 +1,15 @@
use algebra::{fields::BitIterator, Field, PrimeField, Vec};
use core::fmt::Debug;
use r1cs_core::{ConstraintSystem, SynthesisError};
use algebra::{prelude::*, BitIterator};
use core::{
fmt::Debug,
ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign},
};
use r1cs_core::SynthesisError;
use crate::{prelude::*, Assignment};
pub mod cubic_extension;
pub mod quadratic_extension;
pub mod fp;
pub mod fp12;
pub mod fp2;
@ -12,278 +18,146 @@ pub mod fp4;
pub mod fp6_2over3;
pub mod fp6_3over2;
use crate::fields::fp::FpGadget;
pub trait ToConstraintFieldGadget<ConstraintF: PrimeField> {
fn to_constraint_field<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
) -> Result<Vec<FpGadget<ConstraintF>>, SynthesisError>;
/// A hack used to work around the lack of implied bounds.
pub trait FieldOpsBounds<'a, F, T: 'a>:
Sized
+ Add<&'a T, Output = T>
+ Sub<&'a T, Output = T>
+ Mul<&'a T, Output = T>
+ Add<T, Output = T>
+ Sub<T, Output = T>
+ Mul<T, Output = T>
+ Add<F, Output = T>
+ Sub<F, Output = T>
+ Mul<F, Output = T>
{
}
pub trait FieldGadget<F: Field, ConstraintF: Field>:
Sized
/// A variable representing a field. Corresponds to the native type `F`.
pub trait FieldVar<F: Field, ConstraintF: Field>:
'static
+ Clone
+ From<Boolean<ConstraintF>>
+ R1CSVar<ConstraintF, Value = F>
+ EqGadget<ConstraintF>
+ NEqGadget<ConstraintF>
+ ConditionalEqGadget<ConstraintF>
+ ToBitsGadget<ConstraintF>
+ AllocGadget<F, ConstraintF>
+ AllocVar<F, ConstraintF>
+ ToBytesGadget<ConstraintF>
+ CondSelectGadget<ConstraintF>
+ TwoBitLookupGadget<ConstraintF, TableConstant = F>
+ ThreeBitCondNegLookupGadget<ConstraintF, TableConstant = F>
+ for<'a> FieldOpsBounds<'a, F, Self>
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
+ for<'a> MulAssign<&'a Self>
+ AddAssign<Self>
+ SubAssign<Self>
+ MulAssign<Self>
+ AddAssign<F>
+ SubAssign<F>
+ MulAssign<F>
+ Debug
{
type Variable: Clone + Debug;
fn get_value(&self) -> Option<F>;
fn get_variable(&self) -> Self::Variable;
fn zero<CS: ConstraintSystem<ConstraintF>>(_: CS) -> Result<Self, SynthesisError>;
fn one<CS: ConstraintSystem<ConstraintF>>(_: CS) -> Result<Self, SynthesisError>;
fn zero() -> Self;
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
_: &Boolean,
_: F,
) -> Result<Self, SynthesisError>;
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
_: &Self,
) -> Result<Self, SynthesisError>;
fn add_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
other: &Self,
) -> Result<&mut Self, SynthesisError> {
*self = self.add(cs, other)?;
Ok(self)
fn is_zero(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
self.is_eq(&Self::zero())
}
fn double<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
self.add(cs, &self)
}
fn double_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
) -> Result<&mut Self, SynthesisError> {
*self = self.double(cs)?;
Ok(self)
}
fn one() -> Self;
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
_: &Self,
) -> Result<Self, SynthesisError>;
fn sub_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
other: &Self,
) -> Result<&mut Self, SynthesisError> {
*self = self.sub(cs, other)?;
Ok(self)
fn is_one(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
self.is_eq(&Self::one())
}
fn negate<CS: ConstraintSystem<ConstraintF>>(&self, _: CS) -> Result<Self, SynthesisError>;
fn constant(v: F) -> Self;
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
) -> Result<&mut Self, SynthesisError> {
*self = self.negate(cs)?;
Ok(self)
fn double(&self) -> Result<Self, SynthesisError> {
Ok(self.clone() + self)
}
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
_: &Self,
) -> Result<Self, SynthesisError>;
fn mul_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
other: &Self,
) -> Result<&mut Self, SynthesisError> {
*self = self.mul(cs, other)?;
fn double_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
*self += self.double()?;
Ok(self)
}
fn square<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
self.mul(cs, &self)
}
fn negate(&self) -> Result<Self, SynthesisError>;
fn square_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
) -> Result<&mut Self, SynthesisError> {
*self = self.square(cs)?;
#[inline]
fn negate_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
*self = self.negate()?;
Ok(self)
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
let actual_result = self.mul(cs.ns(|| "calc_actual_result"), other)?;
result.enforce_equal(&mut cs.ns(|| "test_equals"), &actual_result)
}
fn square_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
result: &Self,
) -> Result<(), SynthesisError> {
let actual_result = self.square(cs.ns(|| "calc_actual_result"))?;
result.enforce_equal(&mut cs.ns(|| "test_equals"), &actual_result)
fn square(&self) -> Result<Self, SynthesisError> {
Ok(self.clone() * self)
}
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
_: &F,
) -> Result<Self, SynthesisError>;
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
other: &F,
) -> Result<&mut Self, SynthesisError> {
*self = self.add_constant(cs, other)?;
fn square_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
*self = self.square()?;
Ok(self)
}
fn sub_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
fe: &F,
) -> Result<Self, SynthesisError> {
self.add_constant(cs, &(-(*fe)))
/// Enforce that `self * other == result`.
fn mul_equals(&self, other: &Self, result: &Self) -> Result<(), SynthesisError> {
let actual_result = self.clone() * other;
result.enforce_equal(&actual_result)
}
fn sub_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
other: &F,
) -> Result<&mut Self, SynthesisError> {
self.add_constant_in_place(cs, &(-(*other)))
/// Enforce that `self * self == result`.
fn square_equals(&self, result: &Self) -> Result<(), SynthesisError> {
let actual_result = self.square()?;
result.enforce_equal(&actual_result)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
_: &F,
) -> Result<Self, SynthesisError>;
fn mul_by_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
other: &F,
) -> Result<&mut Self, SynthesisError> {
*self = self.mul_by_constant(cs, other)?;
Ok(self)
}
fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let one = Self::one(&mut cs.ns(|| "one"))?;
let inverse = Self::alloc(&mut cs.ns(|| "alloc inverse"), || {
self.get_value().and_then(|val| val.inverse()).get()
fn inverse(&self) -> Result<Self, SynthesisError>;
/// Returns (self / denominator), but requires fewer constraints than
/// self * denominator.inverse()
/// It is up to the caller to ensure that denominator is non-zero,
/// since in that case the result is unconstrained.
fn mul_by_inverse(&self, denominator: &Self) -> Result<Self, SynthesisError> {
let result = Self::new_witness(self.cs().unwrap(), || {
let denominator_inv_native = denominator.value()?.inverse().get()?;
let result = self.value()? * &denominator_inv_native;
Ok(result)
})?;
self.mul_equals(cs.ns(|| "check inv"), &inverse, &one)?;
Ok(inverse)
}
// Returns (self / denominator), but requires fewer constraints than
// self * denominator.inverse()
// It is up to the caller to ensure that denominator is non-zero,
// since in that case the result is unconstrained.
fn mul_by_inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
denominator: &Self,
) -> Result<Self, SynthesisError> {
let denominator_inv_native = denominator
.get_value()
.and_then(|val| val.inverse())
.get()?;
let result_native = self.get_value().get()? * &denominator_inv_native;
let result = Self::alloc(&mut cs.ns(|| "alloc mul_by_inverse result"), || {
Ok(result_native)
})?;
result.mul_equals(cs.ns(|| "check mul_by_inverse"), &denominator, &self)?;
result.mul_equals(&denominator, &self)?;
Ok(result)
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
_: CS,
power: usize,
) -> Result<Self, SynthesisError>;
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
*self = self.frobenius_map(cs, power)?;
fn frobenius_map(&self, power: usize) -> Result<Self, SynthesisError>;
fn frobenius_map_in_place(&mut self, power: usize) -> Result<&mut Self, SynthesisError> {
*self = self.frobenius_map(power)?;
Ok(self)
}
/// Accepts as input a list of bits which, when interpreted in big-endian
/// Accepts as input a list of bits which, when interpreted in little-endian
/// form, are a scalar.
#[inline]
fn pow<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bits: &[Boolean],
) -> Result<Self, SynthesisError> {
let mut res = Self::one(cs.ns(|| "Alloc result"))?;
for (i, bit) in bits.iter().enumerate() {
res = res.square(cs.ns(|| format!("Double {}", i)))?;
let tmp = res.mul(cs.ns(|| format!("Add {}-th base power", i)), self)?;
res = Self::conditionally_select(
cs.ns(|| format!("Conditional Select {}", i)),
bit,
&tmp,
&res,
)?;
//
// TODO: check that the input really should be in little-endian or not...
fn pow(&self, bits: &[Boolean<ConstraintF>]) -> Result<Self, SynthesisError> {
let mut res = Self::one();
for bit in bits.iter() {
res.square_in_place()?;
let tmp = res.clone() * self;
res = bit.select(&tmp, &res)?;
}
Ok(res)
}
fn pow_by_constant<S: AsRef<[u64]>, CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
exp: S,
) -> Result<Self, SynthesisError> {
fn pow_by_constant<S: AsRef<[u64]>>(&self, exp: S) -> Result<Self, SynthesisError> {
let mut res = self.clone();
let mut found_one = false;
for (i, bit) in BitIterator::new(exp).enumerate() {
for bit in BitIterator::new(exp) {
if found_one {
res = res.square(cs.ns(|| format!("square for bit {:?}", i)))?;
res = res.square()?;
}
if bit {
if found_one {
res = res.mul(cs.ns(|| format!("mul for bit {:?}", i)), self)?;
res *= self;
}
found_one = true;
}
@ -291,16 +165,6 @@ pub trait FieldGadget:
Ok(res)
}
fn cost_of_mul() -> usize;
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost()
}
fn cost_of_inv() -> usize {
Self::cost_of_mul_equals()
}
}
#[cfg(test)]
@ -308,267 +172,197 @@ pub(crate) mod tests {
use rand::{self, SeedableRng};
use rand_xorshift::XorShiftRng;
use crate::{prelude::*, test_constraint_system::TestConstraintSystem, Vec};
use crate::{fields::*, Vec};
use algebra::{test_rng, BitIterator, Field, UniformRand};
use r1cs_core::ConstraintSystem;
use r1cs_core::{ConstraintSystem, SynthesisError};
#[allow(dead_code)]
pub(crate) fn field_test<FE: Field, ConstraintF: Field, F: FieldGadget<FE, ConstraintF>>() {
let mut cs = TestConstraintSystem::<ConstraintF>::new();
pub(crate) fn field_test<F, ConstraintF, AF>() -> Result<(), SynthesisError>
where
F: Field,
ConstraintF: Field,
AF: FieldVar<F, ConstraintF>,
AF: TwoBitLookupGadget<ConstraintF, TableConstant = F>,
for<'a> &'a AF: FieldOpsBounds<'a, F, AF>,
{
let cs = ConstraintSystem::<ConstraintF>::new_ref();
let mut rng = test_rng();
let a_native = FE::rand(&mut rng);
let b_native = FE::rand(&mut rng);
let a = F::alloc(&mut cs.ns(|| "generate_a"), || Ok(a_native)).unwrap();
let b = F::alloc(&mut cs.ns(|| "generate_b"), || Ok(b_native)).unwrap();
let b_const = F::alloc_constant(&mut cs.ns(|| "generate_b_as_constant"), b_native).unwrap();
let zero = F::zero(cs.ns(|| "zero")).unwrap();
let zero_native = zero.get_value().unwrap();
zero.enforce_equal(&mut cs.ns(|| "zero_equals?"), &zero)
.unwrap();
assert_eq!(zero, zero);
let one = F::one(cs.ns(|| "one")).unwrap();
let one_native = one.get_value().unwrap();
assert_eq!(one, one);
one.enforce_equal(&mut cs.ns(|| "one_equals?"), &one)
.unwrap();
assert_ne!(one, zero);
let one_dup = zero.add(cs.ns(|| "zero_plus_one"), &one).unwrap();
one_dup
.enforce_equal(&mut cs.ns(|| "one_plus_zero_equals"), &one)
.unwrap();
assert_eq!(one_dup, one);
let two = one.add(cs.ns(|| "one_plus_one"), &one).unwrap();
two.enforce_equal(&mut cs.ns(|| "two_equals?"), &two)
.unwrap();
assert_eq!(two, two);
assert_ne!(zero, two);
assert_ne!(one, two);
// a == a
assert_eq!(a, a);
let a_native = F::rand(&mut rng);
let b_native = F::rand(&mut rng);
let a = AF::new_witness(cs.ns("generate_a"), || Ok(a_native))?;
let b = AF::new_witness(cs.ns("generate_b"), || Ok(b_native))?;
let b_const = AF::new_constant(cs.ns("b_as_constant"), b_native)?;
let zero = AF::zero();
let zero_native = zero.value()?;
zero.enforce_equal(&zero)?;
let one = AF::one();
let one_native = one.value()?;
one.enforce_equal(&one)?;
one.enforce_not_equal(&zero)?;
let one_dup = &zero + &one;
one_dup.enforce_equal(&one)?;
let two = &one + &one;
two.enforce_equal(&two)?;
two.enforce_equal(&one.double()?)?;
two.enforce_not_equal(&one)?;
two.enforce_not_equal(&zero)?;
// a + 0 = a
let a_plus_zero = a.add(cs.ns(|| "a_plus_zero"), &zero).unwrap();
assert_eq!(a_plus_zero, a);
assert_eq!(a_plus_zero.get_value().unwrap(), a_native);
a_plus_zero
.enforce_equal(&mut cs.ns(|| "a_plus_zero_equals?"), &a)
.unwrap();
let a_plus_zero = &a + &zero;
assert_eq!(a_plus_zero.value()?, a_native);
a_plus_zero.enforce_equal(&a)?;
a_plus_zero.enforce_not_equal(&a.double()?)?;
// a - 0 = a
let a_minus_zero = a.sub(cs.ns(|| "a_minus_zero"), &zero).unwrap();
assert_eq!(a_minus_zero, a);
assert_eq!(a_minus_zero.get_value().unwrap(), a_native);
a_minus_zero
.enforce_equal(&mut cs.ns(|| "a_minus_zero_equals?"), &a)
.unwrap();
let a_minus_zero = &a - &zero;
assert_eq!(a_minus_zero.value()?, a_native);
a_minus_zero.enforce_equal(&a)?;
// a - a = 0
let a_minus_a = a.sub(cs.ns(|| "a_minus_a"), &a).unwrap();
assert_eq!(a_minus_a, zero);
assert_eq!(a_minus_a.get_value().unwrap(), zero_native);
a_minus_a
.enforce_equal(&mut cs.ns(|| "a_minus_a_equals?"), &zero)
.unwrap();
let a_minus_a = &a - &a;
assert_eq!(a_minus_a.value()?, zero_native);
a_minus_a.enforce_equal(&zero)?;
// a + b = b + a
let a_b = a.add(cs.ns(|| "a_plus_b"), &b).unwrap();
let b_a = b.add(cs.ns(|| "b_plus_a"), &a).unwrap();
assert_eq!(a_b, b_a);
assert_eq!(a_b.get_value().unwrap(), a_native + &b_native);
a_b.enforce_equal(&mut cs.ns(|| "a+b == b+a"), &b_a)
.unwrap();
let a_b = &a + &b;
let b_a = &b + &a;
assert_eq!(a_b.value()?, a_native + &b_native);
a_b.enforce_equal(&b_a)?;
// (a + b) + a = a + (b + a)
let ab_a = a_b.add(cs.ns(|| "a_b_plus_a"), &a).unwrap();
let a_ba = a.add(cs.ns(|| "a_plus_b_a"), &b_a).unwrap();
assert_eq!(ab_a, a_ba);
assert_eq!(ab_a.get_value().unwrap(), a_native + &b_native + &a_native);
ab_a.enforce_equal(&mut cs.ns(|| "a+b + a == a+ b+a"), &a_ba)
.unwrap();
let b_times_a_plus_b = a_b.mul(cs.ns(|| "b * (a + b)"), &b).unwrap();
let b_times_b_plus_a = b_a.mul(cs.ns(|| "b * (b + a)"), &b).unwrap();
assert_eq!(b_times_b_plus_a, b_times_a_plus_b);
let ab_a = &a_b + &a;
let a_ba = &a + &b_a;
assert_eq!(ab_a.value()?, a_native + &b_native + &a_native);
ab_a.enforce_equal(&a_ba)?;
let b_times_a_plus_b = &a_b * &b;
let b_times_b_plus_a = &b_a * &b;
assert_eq!(
b_times_a_plus_b.get_value().unwrap(),
b_times_a_plus_b.value()?,
b_native * &(b_native + &a_native)
);
assert_eq!(
b_times_a_plus_b.get_value().unwrap(),
b_times_a_plus_b.value()?,
(b_native + &a_native) * &b_native
);
assert_eq!(
b_times_a_plus_b.get_value().unwrap(),
b_times_a_plus_b.value()?,
(a_native + &b_native) * &b_native
);
b_times_b_plus_a
.enforce_equal(&mut cs.ns(|| "b*(a+b) == b * (b+a)"), &b_times_a_plus_b)
.unwrap();
// a * 0 = 0
assert_eq!(a.mul(cs.ns(|| "a_times_zero"), &zero).unwrap(), zero);
b_times_b_plus_a.enforce_equal(&b_times_a_plus_b)?;
// a * 1 = a
assert_eq!(a.mul(cs.ns(|| "a_times_one"), &one).unwrap(), a);
assert_eq!(
a.mul(cs.ns(|| "a_times_one2"), &one)
.unwrap()
.get_value()
.unwrap(),
a_native * &one_native
);
assert_eq!((&a * &one).value()?, a_native * &one_native);
// a * b = b * a
let ab = a.mul(cs.ns(|| "a_times_b"), &b).unwrap();
let ba = b.mul(cs.ns(|| "b_times_a"), &a).unwrap();
assert_eq!(ab, ba);
assert_eq!(ab.get_value().unwrap(), a_native * &b_native);
let ab = &a * &b;
let ba = &b * &a;
assert_eq!(ab.value()?, ba.value()?);
assert_eq!(ab.value()?, a_native * &b_native);
let ab_const = a.mul(cs.ns(|| "a_times_b_const"), &b_const).unwrap();
let b_const_a = b_const.mul(cs.ns(|| "b_const_times_a"), &a).unwrap();
assert_eq!(ab_const, b_const_a);
assert_eq!(ab_const, ab);
assert_eq!(ab_const.get_value().unwrap(), a_native * &b_native);
let ab_const = &a * &b_const;
let b_const_a = &b_const * &a;
assert_eq!(ab_const.value()?, b_const_a.value()?);
assert_eq!(ab_const.value()?, ab.value()?);
assert_eq!(ab_const.value()?, a_native * &b_native);
// (a * b) * a = a * (b * a)
let ab_a = ab.mul(cs.ns(|| "ab_times_a"), &a).unwrap();
let a_ba = a.mul(cs.ns(|| "a_times_ba"), &ba).unwrap();
assert_eq!(ab_a, a_ba);
assert_eq!(ab_a.get_value().unwrap(), a_native * &b_native * &a_native);
let aa = a.mul(cs.ns(|| "a * a"), &a).unwrap();
let a_squared = a.square(cs.ns(|| "a^2")).unwrap();
a_squared
.enforce_equal(&mut cs.ns(|| "a^2 == a*a"), &aa)
.unwrap();
assert_eq!(aa, a_squared);
assert_eq!(aa.get_value().unwrap(), a_native.square());
let aa = a
.mul_by_constant(cs.ns(|| "a * a via mul_by_const"), &a.get_value().unwrap())
.unwrap();
a_squared
.enforce_equal(&mut cs.ns(|| "a^2 == a*a via mul_by_const"), &aa)
.unwrap();
assert_eq!(aa, a_squared);
assert_eq!(aa.get_value().unwrap(), a_native.square());
let a_b2 = a
.add_constant(cs.ns(|| "a + b via add_const"), &b.get_value().unwrap())
.unwrap();
a_b.enforce_equal(&mut cs.ns(|| "a + b == a + b via add_const"), &a_b2)
.unwrap();
assert_eq!(a_b, a_b2);
let a_inv = a.inverse(cs.ns(|| "a_inv")).unwrap();
a_inv
.mul_equals(cs.ns(|| "check a_inv * a = 1"), &a, &one)
.unwrap();
assert_eq!(
a_inv.get_value().unwrap(),
a.get_value().unwrap().inverse().unwrap()
);
assert_eq!(a_inv.get_value().unwrap(), a_native.inverse().unwrap());
let a_b_inv = a.mul_by_inverse(cs.ns(|| "a_b_inv"), &b).unwrap();
a_b_inv
.mul_equals(cs.ns(|| "check a_b_inv * b = a"), &b, &a)
.unwrap();
assert_eq!(
a_b_inv.get_value().unwrap(),
a_native * b_native.inverse().unwrap()
);
let ab_a = &ab * &a;
let a_ba = &a * &ba;
assert_eq!(ab_a.value()?, a_ba.value()?);
assert_eq!(ab_a.value()?, a_native * &b_native * &a_native);
let aa = &a * &a;
let a_squared = a.square()?;
a_squared.enforce_equal(&aa)?;
assert_eq!(aa.value()?, a_squared.value()?);
assert_eq!(aa.value()?, a_native.square());
let aa = &a * a.value()?;
a_squared.enforce_equal(&aa)?;
assert_eq!(aa.value()?, a_squared.value()?);
assert_eq!(aa.value()?, a_native.square());
let a_b2 = &a + b_native;
a_b.enforce_equal(&a_b2)?;
assert_eq!(a_b.value()?, a_b2.value()?);
let a_inv = a.inverse()?;
a_inv.mul_equals(&a, &one)?;
assert_eq!(a_inv.value()?, a.value()?.inverse().unwrap());
assert_eq!(a_inv.value()?, a_native.inverse().unwrap());
let a_b_inv = a.mul_by_inverse(&b)?;
a_b_inv.mul_equals(&b, &a)?;
assert_eq!(a_b_inv.value()?, a_native * b_native.inverse().unwrap());
// a * a * a = a^3
let bits = BitIterator::new([0x3])
.map(Boolean::constant)
.collect::<Vec<_>>();
assert_eq!(
a_native * &(a_native * &a_native),
a.pow(cs.ns(|| "test_pow"), &bits)
.unwrap()
.get_value()
.unwrap()
);
assert_eq!(a_native.pow([0x3]), a.pow(&bits)?.value()?);
// a * a * a = a^3
assert_eq!(
a_native * &(a_native * &a_native),
a.pow_by_constant(cs.ns(|| "test_constant_pow"), &[3])
.unwrap()
.get_value()
.unwrap()
);
assert_eq!(a_native.pow([0x3]), a.pow_by_constant(&[3])?.value()?);
// a * a * a = a^3
let mut constants = [FE::zero(); 4];
let mut constants = [F::zero(); 4];
for c in &mut constants {
*c = UniformRand::rand(&mut test_rng());
println!("Current c[i]: {:?}", c);
}
let bits = [Boolean::constant(false), Boolean::constant(true)];
let lookup_result =
F::two_bit_lookup(cs.ns(|| "Lookup"), &bits, constants.as_ref()).unwrap();
assert_eq!(lookup_result.get_value().unwrap(), constants[2]);
let negone: FE = UniformRand::rand(&mut test_rng());
let n = F::alloc(&mut cs.ns(|| "alloc new var"), || Ok(negone)).unwrap();
let _ = n.to_bytes(&mut cs.ns(|| "ToBytes")).unwrap();
let _ = n
.to_non_unique_bytes(&mut cs.ns(|| "ToBytes Strict"))
.unwrap();
let ab_false = a
.conditionally_add_constant(
cs.ns(|| "Add bool with coeff false"),
&Boolean::constant(false),
b_native,
)
.unwrap();
assert_eq!(ab_false.get_value().unwrap(), a_native);
let ab_true = a
.conditionally_add_constant(
cs.ns(|| "Add bool with coeff true"),
&Boolean::constant(true),
b_native,
)
.unwrap();
assert_eq!(ab_true.get_value().unwrap(), a_native + &b_native);
if !cs.is_satisfied() {
let bits = [
Boolean::<ConstraintF>::constant(false),
Boolean::constant(true),
];
let lookup_result = AF::two_bit_lookup(&bits, constants.as_ref())?;
assert_eq!(lookup_result.value()?, constants[2]);
let negone: F = UniformRand::rand(&mut test_rng());
let n = AF::new_witness(cs.ns("alloc new var"), || Ok(negone)).unwrap();
let _ = n.to_bytes()?;
let _ = n.to_non_unique_bytes()?;
let ab_false = &a + (AF::from(Boolean::Constant(false)) * b_native);
assert_eq!(ab_false.value()?, a_native);
let ab_true = &a + (AF::from(Boolean::Constant(true)) * b_native);
assert_eq!(ab_true.value()?, a_native + &b_native);
if !cs.is_satisfied().unwrap() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
assert!(cs.is_satisfied().unwrap());
Ok(())
}
#[allow(dead_code)]
pub(crate) fn frobenius_tests<
FE: Field,
ConstraintF: Field,
F: FieldGadget<FE, ConstraintF>,
>(
pub(crate) fn frobenius_tests<F: Field, ConstraintF, AF>(
maxpower: usize,
) {
let mut cs = TestConstraintSystem::<ConstraintF>::new();
) -> Result<(), SynthesisError>
where
F: Field,
ConstraintF: Field,
AF: FieldVar<F, ConstraintF>,
for<'a> &'a AF: FieldOpsBounds<'a, F, AF>,
{
let cs = ConstraintSystem::<ConstraintF>::new_ref();
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
for i in 0..=maxpower {
let mut a = FE::rand(&mut rng);
let mut a_gadget = F::alloc(cs.ns(|| format!("a_gadget_{:?}", i)), || Ok(a)).unwrap();
a_gadget = a_gadget
.frobenius_map(cs.ns(|| format!("frob_map_{}", i)), i)
.unwrap();
let mut a = F::rand(&mut rng);
let mut a_gadget = AF::new_witness(cs.ns(format!("a_gadget_{:?}", i)), || Ok(a))?;
a_gadget.frobenius_map_in_place(i)?;
a.frobenius_map(i);
assert_eq!(a_gadget.get_value().unwrap(), a);
assert_eq!(a_gadget.value()?, a);
}
assert!(cs.is_satisfied());
assert!(cs.is_satisfied().unwrap());
Ok(())
}
}

+ 504
- 0
r1cs-std/src/fields/quadratic_extension.rs

@ -0,0 +1,504 @@
use algebra::{
fields::{Field, QuadExtField, QuadExtParameters},
One,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystemRef, Namespace, SynthesisError};
use crate::{
fields::{FieldOpsBounds, FieldVar},
prelude::*,
Assignment, Vec,
};
#[derive(Derivative)]
#[derivative(Debug(bound = "BF: core::fmt::Debug"), Clone(bound = "BF: Clone"))]
#[must_use]
pub struct QuadExtVar<BF: FieldVar<P::BaseField, P::BasePrimeField>, P: QuadExtVarParams<BF>>
where
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
{
pub c0: BF,
pub c1: BF,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
pub trait QuadExtVarParams<BF: FieldVar<Self::BaseField, Self::BasePrimeField>>:
QuadExtParameters
where
for<'a> &'a BF: FieldOpsBounds<'a, Self::BaseField, BF>,
{
fn mul_base_field_var_by_frob_coeff(fe: &mut BF, power: usize);
}
impl<BF: FieldVar<P::BaseField, P::BasePrimeField>, P: QuadExtVarParams<BF>> QuadExtVar<BF, P>
where
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
{
pub fn new(c0: BF, c1: BF) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply a BF by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_base_field_by_nonresidue(fe: &BF) -> Result<BF, SynthesisError> {
Ok(fe * P::NONRESIDUE)
}
#[inline]
pub fn mul_by_base_field_constant(&self, fe: P::BaseField) -> Self {
let c0 = self.c0.clone() * fe;
let c1 = self.c1.clone() * fe;
QuadExtVar::new(c0, c1)
}
#[inline]
pub fn mul_assign_by_base_field_constant(&mut self, fe: P::BaseField) {
*self = (&*self).mul_by_base_field_constant(fe);
}
/// This is only to be used when the element is *known* to be in the cyclotomic subgroup.
#[inline]
pub fn unitary_inverse(&self) -> Result<Self, SynthesisError> {
Ok(Self::new(self.c0.clone(), self.c1.negate()?))
}
/// This is only to be used when the element is *known* to be in the cyclotomic subgroup.
#[inline]
pub fn cyclotomic_exp(&self, exponent: impl AsRef<[u64]>) -> Result<Self, SynthesisError>
where
Self: FieldVar<QuadExtField<P>, P::BasePrimeField>,
{
use algebra::biginteger::arithmetic::find_wnaf;
let mut res = Self::one();
let self_inverse = self.unitary_inverse()?;
let mut found_nonzero = false;
let naf = find_wnaf(exponent.as_ref());
for &value in naf.iter().rev() {
if found_nonzero {
res.square_in_place()?;
}
if value != 0 {
found_nonzero = true;
if value > 0 {
res *= self;
} else {
res *= &self_inverse;
}
}
}
Ok(res)
}
}
impl<BF, P> R1CSVar<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
type Value = QuadExtField<P>;
fn cs(&self) -> Option<ConstraintSystemRef<P::BasePrimeField>> {
[&self.c0, &self.c1].cs()
}
#[inline]
fn value(&self) -> Result<Self::Value, SynthesisError> {
match (self.c0.value(), self.c1.value()) {
(Ok(c0), Ok(c1)) => Ok(QuadExtField::new(c0, c1)),
(..) => Err(SynthesisError::AssignmentMissing),
}
}
}
impl<BF, P> From<Boolean<P::BasePrimeField>> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
fn from(other: Boolean<P::BasePrimeField>) -> Self {
let c0 = BF::from(other);
let c1 = BF::zero();
Self::new(c0, c1)
}
}
impl<'a, BF, P> FieldOpsBounds<'a, QuadExtField<P>, QuadExtVar<BF, P>> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
}
impl<'a, BF, P> FieldOpsBounds<'a, QuadExtField<P>, QuadExtVar<BF, P>> for &'a QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
}
impl<BF, P> FieldVar<QuadExtField<P>, P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'a> &'a BF: FieldOpsBounds<'a, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
fn constant(other: QuadExtField<P>) -> Self {
let c0 = BF::constant(other.c0);
let c1 = BF::constant(other.c1);
Self::new(c0, c1)
}
fn zero() -> Self {
let c0 = BF::zero();
let c1 = BF::zero();
Self::new(c0, c1)
}
fn one() -> Self {
let c0 = BF::one();
let c1 = BF::zero();
Self::new(c0, c1)
}
#[inline]
fn double(&self) -> Result<Self, SynthesisError> {
let c0 = self.c0.double()?;
let c1 = self.c1.double()?;
Ok(Self::new(c0, c1))
}
#[inline]
fn negate(&self) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.c0.negate_in_place()?;
result.c1.negate_in_place()?;
Ok(result)
}
#[inline]
fn square(&self) -> Result<Self, SynthesisError> {
// From Libsnark/fp2_gadget.tcc
// Complex multiplication for Fp2:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = c0 - c1
let mut v0 = &self.c0 - &self.c1;
// v3 = c0 - beta * c1
let v3 = &self.c0 - &Self::mul_base_field_by_nonresidue(&self.c1)?;
// v2 = c0 * c1
let v2 = &self.c0 * &self.c1;
// v0 = (v0 * v3) + v2
v0 *= &v3;
v0 += &v2;
let c0 = &v0 + &Self::mul_base_field_by_nonresidue(&v2)?;
let c1 = v2.double()?;
Ok(Self::new(c0, c1))
}
fn mul_equals(&self, other: &Self, result: &Self) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp2:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// Compute v1
let v1 = &self.c1 * &other.c1;
// Perform second check
let non_residue_times_v1 = Self::mul_base_field_by_nonresidue(&v1)?;
let rhs = &result.c0 - &non_residue_times_v1;
self.c0.mul_equals(&other.c0, &rhs)?;
// Last check
let a0_plus_a1 = &self.c0 + &self.c1;
let b0_plus_b1 = &other.c0 + &other.c1;
let one_minus_non_residue_v1 = &v1 - &non_residue_times_v1;
let tmp = &(&result.c1 + &result.c0) + &one_minus_non_residue_v1;
a0_plus_a1.mul_equals(&b0_plus_b1, &tmp)?;
Ok(())
}
fn frobenius_map(&self, power: usize) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.c0.frobenius_map_in_place(power)?;
result.c1.frobenius_map_in_place(power)?;
P::mul_base_field_var_by_frob_coeff(&mut result.c1, power);
Ok(result)
}
fn inverse(&self) -> Result<Self, SynthesisError> {
let one = Self::new_constant(self.cs().get()?.clone(), QuadExtField::one())?;
let inverse = Self::new_witness(self.cs().get()?.clone(), || {
self.value().and_then(|val| val.inverse().get())
})?;
self.mul_equals(&inverse, &one)?;
Ok(inverse)
}
}
impl_bounded_ops!(
QuadExtVar<BF, P>,
QuadExtField<P>,
Add,
add,
AddAssign,
add_assign,
|this: &'a QuadExtVar<BF, P>, other: &'a QuadExtVar<BF, P>| {
let c0 = &this.c0 + &other.c0;
let c1 = &this.c1 + &other.c1;
QuadExtVar::new(c0, c1)
},
|this: &'a QuadExtVar<BF, P>, other: QuadExtField<P>| {
this + QuadExtVar::constant(other)
},
(BF: FieldVar<P::BaseField, P::BasePrimeField>, P: QuadExtVarParams<BF>),
for <'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>
);
impl_bounded_ops!(
QuadExtVar<BF, P>,
QuadExtField<P>,
Sub,
sub,
SubAssign,
sub_assign,
|this: &'a QuadExtVar<BF, P>, other: &'a QuadExtVar<BF, P>| {
let c0 = &this.c0 - &other.c0;
let c1 = &this.c1 - &other.c1;
QuadExtVar::new(c0, c1)
},
|this: &'a QuadExtVar<BF, P>, other: QuadExtField<P>| {
this - QuadExtVar::constant(other)
},
(BF: FieldVar<P::BaseField, P::BasePrimeField>, P: QuadExtVarParams<BF>),
for <'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>
);
impl_bounded_ops!(
QuadExtVar<BF, P>,
QuadExtField<P>,
Mul,
mul,
MulAssign,
mul_assign,
|this: &'a QuadExtVar<BF, P>, other: &'a QuadExtVar<BF, P>| {
// Karatsuba multiplication for Fp2:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut result = this.clone();
let v0 = &this.c0 * &other.c0;
let v1 = &this.c1 * &other.c1;
result.c1 += &this.c0;
result.c1 *= &other.c0 + &other.c1;
result.c1 -= &v0;
result.c1 -= &v1;
result.c0 = v0 + &QuadExtVar::<BF, P>::mul_base_field_by_nonresidue(&v1).unwrap();
result
},
|this: &'a QuadExtVar<BF, P>, other: QuadExtField<P>| {
this * QuadExtVar::constant(other)
},
(BF: FieldVar<P::BaseField, P::BasePrimeField>, P: QuadExtVarParams<BF>),
for <'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>
);
impl<BF, P> EqGadget<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
fn is_eq(&self, other: &Self) -> Result<Boolean<P::BasePrimeField>, SynthesisError> {
let b0 = self.c0.is_eq(&other.c0)?;
let b1 = self.c1.is_eq(&other.c1)?;
b0.and(&b1)
}
#[inline]
fn conditional_enforce_equal(
&self,
other: &Self,
condition: &Boolean<P::BasePrimeField>,
) -> Result<(), SynthesisError> {
self.c0.conditional_enforce_equal(&other.c0, condition)?;
self.c1.conditional_enforce_equal(&other.c1, condition)?;
Ok(())
}
#[inline]
fn conditional_enforce_not_equal(
&self,
other: &Self,
condition: &Boolean<P::BasePrimeField>,
) -> Result<(), SynthesisError> {
let is_equal = self.is_eq(other)?;
is_equal
.and(condition)?
.enforce_equal(&Boolean::Constant(false))
}
}
impl<BF, P> ToBitsGadget<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
fn to_bits(&self) -> Result<Vec<Boolean<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_bits()?;
let mut c1 = self.c1.to_bits()?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bits(&self) -> Result<Vec<Boolean<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits()?;
let mut c1 = self.c1.to_non_unique_bits()?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<BF, P> ToBytesGadget<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
fn to_bytes(&self) -> Result<Vec<UInt8<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_bytes()?;
let mut c1 = self.c1.to_bytes()?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bytes(&self) -> Result<Vec<UInt8<P::BasePrimeField>>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes()?;
let mut c1 = self.c1.to_non_unique_bytes()?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<BF, P> CondSelectGadget<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
#[inline]
fn conditionally_select(
cond: &Boolean<P::BasePrimeField>,
true_value: &Self,
false_value: &Self,
) -> Result<Self, SynthesisError> {
let c0 = BF::conditionally_select(cond, &true_value.c0, &false_value.c0)?;
let c1 = BF::conditionally_select(cond, &true_value.c1, &false_value.c1)?;
Ok(Self::new(c0, c1))
}
}
impl<BF, P> TwoBitLookupGadget<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>
+ TwoBitLookupGadget<P::BasePrimeField, TableConstant = P::BaseField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
type TableConstant = QuadExtField<P>;
fn two_bit_lookup(
b: &[Boolean<P::BasePrimeField>],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = BF::two_bit_lookup(b, &c0s)?;
let c1 = BF::two_bit_lookup(b, &c1s)?;
Ok(Self::new(c0, c1))
}
}
impl<BF, P> ThreeBitCondNegLookupGadget<P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>
+ ThreeBitCondNegLookupGadget<P::BasePrimeField, TableConstant = P::BaseField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
type TableConstant = QuadExtField<P>;
fn three_bit_cond_neg_lookup(
b: &[Boolean<P::BasePrimeField>],
b0b1: &Boolean<P::BasePrimeField>,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = BF::three_bit_cond_neg_lookup(b, b0b1, &c0s)?;
let c1 = BF::three_bit_cond_neg_lookup(b, b0b1, &c1s)?;
Ok(Self::new(c0, c1))
}
}
impl<BF, P> AllocVar<QuadExtField<P>, P::BasePrimeField> for QuadExtVar<BF, P>
where
BF: FieldVar<P::BaseField, P::BasePrimeField>,
for<'b> &'b BF: FieldOpsBounds<'b, P::BaseField, BF>,
P: QuadExtVarParams<BF>,
{
fn new_variable<T: Borrow<QuadExtField<P>>>(
cs: impl Into<Namespace<P::BasePrimeField>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
let ns = cs.into();
let cs = ns.cs();
let (c0, c1) = match f() {
Ok(fe) => (Ok(fe.borrow().c0), Ok(fe.borrow().c1)),
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = BF::new_variable(cs.ns("c0"), || c0, mode)?;
let c1 = BF::new_variable(cs.ns("c1"), || c1, mode)?;
Ok(Self::new(c0, c1))
}
}

Loading…
Cancel
Save