Browse Source

MNT4/6 curves and recursive SNARKs (#150)

* Add mnt6_753 curve
Generalize mnt6 curve model

* Add mnt4 curves

* Use resampled generators

* Calculate correct G2 cofactors

* Add fields to r1cs-std

* Add pairings

* Improve reusing of Fq/Fr among MNT curves

* Add instantiations of curves
Fix Fp6_2over3
Rebase code to current master

* Add test for recursive NIZK proof verification

* Address comments in PR

* Improve test case and port to GM17
Also fix a minor bug in to_field_vec
master
Pascal Berrang 4 years ago
committed by GitHub
parent
commit
8631f883c4
37 changed files with 5522 additions and 8 deletions
  1. +2
    -2
      crypto-primitives/Cargo.toml
  2. +263
    -0
      crypto-primitives/src/nizk/gm17/constraints.rs
  3. +263
    -0
      crypto-primitives/src/nizk/groth16/constraints.rs
  4. +5
    -1
      r1cs-std/Cargo.toml
  5. +4
    -0
      r1cs-std/src/fields/fp/mod.rs
  6. +4
    -0
      r1cs-std/src/fields/fp12.rs
  7. +4
    -0
      r1cs-std/src/fields/fp2.rs
  8. +932
    -0
      r1cs-std/src/fields/fp3.rs
  9. +772
    -0
      r1cs-std/src/fields/fp4.rs
  10. +763
    -0
      r1cs-std/src/fields/fp6_2over3.rs
  11. +3
    -3
      r1cs-std/src/fields/fp6_3over2.rs
  12. +7
    -0
      r1cs-std/src/fields/mod.rs
  13. +421
    -0
      r1cs-std/src/groups/curves/short_weierstrass/mnt4/mod.rs
  14. +423
    -0
      r1cs-std/src/groups/curves/short_weierstrass/mnt6/mod.rs
  15. +3
    -1
      r1cs-std/src/groups/curves/short_weierstrass/mod.rs
  16. +1
    -1
      r1cs-std/src/groups/mod.rs
  17. +198
    -0
      r1cs-std/src/instantiated/mnt4_298/curves.rs
  18. +23
    -0
      r1cs-std/src/instantiated/mnt4_298/fields.rs
  19. +7
    -0
      r1cs-std/src/instantiated/mnt4_298/mod.rs
  20. +8
    -0
      r1cs-std/src/instantiated/mnt4_298/pairing.rs
  21. +198
    -0
      r1cs-std/src/instantiated/mnt4_753/curves.rs
  22. +23
    -0
      r1cs-std/src/instantiated/mnt4_753/fields.rs
  23. +7
    -0
      r1cs-std/src/instantiated/mnt4_753/mod.rs
  24. +8
    -0
      r1cs-std/src/instantiated/mnt4_753/pairing.rs
  25. +198
    -0
      r1cs-std/src/instantiated/mnt6_298/curves.rs
  26. +23
    -0
      r1cs-std/src/instantiated/mnt6_298/fields.rs
  27. +7
    -0
      r1cs-std/src/instantiated/mnt6_298/mod.rs
  28. +8
    -0
      r1cs-std/src/instantiated/mnt6_298/pairing.rs
  29. +198
    -0
      r1cs-std/src/instantiated/mnt6_753/curves.rs
  30. +23
    -0
      r1cs-std/src/instantiated/mnt6_753/fields.rs
  31. +7
    -0
      r1cs-std/src/instantiated/mnt6_753/mod.rs
  32. +8
    -0
      r1cs-std/src/instantiated/mnt6_753/pairing.rs
  33. +12
    -0
      r1cs-std/src/instantiated/mod.rs
  34. +12
    -0
      r1cs-std/src/lib.rs
  35. +338
    -0
      r1cs-std/src/pairing/mnt4/mod.rs
  36. +344
    -0
      r1cs-std/src/pairing/mnt6/mod.rs
  37. +2
    -0
      r1cs-std/src/pairing/mod.rs

+ 2
- 2
crypto-primitives/Cargo.toml

@ -46,6 +46,6 @@ std = ["r1cs", "algebra-core/std", "r1cs-core/std", "r1cs-std/std"]
parallel = ["std", "rayon", "gm17/parallel", "groth16/parallel", "ff-fft/parallel"] parallel = ["std", "rayon", "gm17/parallel", "groth16/parallel", "ff-fft/parallel"]
[dev-dependencies] [dev-dependencies]
algebra = { path = "../algebra", default-features = false, features = [ "jubjub", "bls12_377" ] }
r1cs-std = { path = "../r1cs-std", default-features = false, features = [ "jubjub", "bls12_377" ] }
algebra = { path = "../algebra", default-features = false, features = [ "jubjub", "bls12_377", "mnt4_298", "mnt6_298" ] }
r1cs-std = { path = "../r1cs-std", default-features = false, features = [ "jubjub", "bls12_377", "mnt4_298", "mnt6_298" ] }
rand_xorshift = { version = "0.2" } rand_xorshift = { version = "0.2" }

+ 263
- 0
crypto-primitives/src/nizk/gm17/constraints.rs

@ -532,3 +532,266 @@ mod test {
} }
} }
} }
#[cfg(test)]
mod test_recursive {
use gm17::*;
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
use super::*;
use algebra::{
fields::FpParameters,
mnt4_298::{Fq as MNT4Fq, FqParameters as MNT4FqParameters, Fr as MNT4Fr, MNT4_298},
mnt6_298::{Fq as MNT6Fq, FqParameters as MNT6FqParameters, Fr as MNT6Fr, MNT6_298},
test_rng, BigInteger, PrimeField,
};
use r1cs_std::{
fields::fp::FpGadget, mnt4_298::PairingGadget as MNT4_298PairingGadget,
mnt6_298::PairingGadget as MNT6_298PairingGadget,
test_constraint_system::TestConstraintSystem, uint8::UInt8,
};
use rand::Rng;
type TestProofSystem1 = Gm17<MNT6_298, Bench<MNT4Fq>, MNT6Fr>;
type TestVerifierGadget1 = Gm17VerifierGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestProofGadget1 = ProofGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestVkGadget1 = VerifyingKeyGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestProofSystem2 = Gm17<MNT4_298, Wrapper, MNT4Fr>;
type TestVerifierGadget2 = Gm17VerifierGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
type TestProofGadget2 = ProofGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
type TestVkGadget2 = VerifyingKeyGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
#[derive(Clone)]
struct Bench<F: Field> {
inputs: Vec<Option<F>>,
num_constraints: usize,
}
impl<F: Field> ConstraintSynthesizer<F> for Bench<F> {
fn generate_constraints<CS: ConstraintSystem<F>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
assert!(self.inputs.len() >= 2);
assert!(self.num_constraints >= self.inputs.len());
let mut variables: Vec<_> = Vec::with_capacity(self.inputs.len());
for (i, input) in self.inputs.into_iter().enumerate() {
let input_var = cs.alloc_input(
|| format!("Input {}", i),
|| input.ok_or(SynthesisError::AssignmentMissing),
)?;
variables.push((input, input_var));
}
for i in 0..self.num_constraints {
let new_entry = {
let (input_1_val, input_1_var) = variables[i];
let (input_2_val, input_2_var) = variables[i + 1];
let result_val = input_1_val
.and_then(|input_1| input_2_val.map(|input_2| input_1 * &input_2));
let result_var = cs.alloc(
|| format!("Result {}", i),
|| result_val.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce(
|| format!("Enforce constraint {}", i),
|lc| lc + input_1_var,
|lc| lc + input_2_var,
|lc| lc + result_var,
);
(result_val, result_var)
};
variables.push(new_entry);
}
Ok(())
}
}
struct Wrapper {
inputs: Vec<Option<MNT4Fq>>,
params: Parameters<MNT6_298>,
proof: Proof<MNT6_298>,
}
impl ConstraintSynthesizer<MNT6Fq> for Wrapper {
fn generate_constraints<CS: ConstraintSystem<MNT6Fq>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
let params = self.params;
let proof = self.proof;
let inputs: Vec<_> = self
.inputs
.into_iter()
.map(|input| input.unwrap())
.collect();
let input_gadgets;
{
let mut cs = cs.ns(|| "Allocate Input");
// Chain all input values in one large byte array.
let input_bytes = inputs
.clone()
.into_iter()
.flat_map(|input| {
input
.into_repr()
.as_ref()
.iter()
.flat_map(|l| l.to_le_bytes().to_vec())
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Allocate this byte array as input packed into field elements.
let input_bytes = UInt8::alloc_input_vec(cs.ns(|| "Input"), &input_bytes[..])?;
// 40 byte
let element_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 8;
input_gadgets = input_bytes
.chunks(element_size)
.map(|chunk| {
chunk
.iter()
.flat_map(|byte| byte.into_bits_le())
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
}
let vk_gadget = TestVkGadget1::alloc(cs.ns(|| "Vk"), || Ok(&params.vk))?;
let proof_gadget =
TestProofGadget1::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
<TestVerifierGadget1 as NIZKVerifierGadget<TestProofSystem1, MNT6Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)?;
Ok(())
}
}
#[test]
fn gm17_recursive_verifier_test() {
let num_inputs = 100;
let num_constraints = num_inputs;
let rng = &mut test_rng();
let mut inputs: Vec<Option<MNT4Fq>> = Vec::with_capacity(num_inputs);
for _ in 0..num_inputs {
inputs.push(Some(rng.gen()));
}
// Generate inner params and proof.
let inner_params = {
let c = Bench::<MNT4Fq> {
inputs: vec![None; num_inputs],
num_constraints,
};
generate_random_parameters(c, rng).unwrap()
};
let inner_proof = {
// Create an instance of our circuit (with the
// witness)
let c = Bench {
inputs: inputs.clone(),
num_constraints,
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &inner_params, rng).unwrap()
};
// Generate outer params and proof.
let params = {
let c = Wrapper {
inputs: inputs.clone(),
params: inner_params.clone(),
proof: inner_proof.clone(),
};
generate_random_parameters(c, rng).unwrap()
};
{
let proof = {
// Create an instance of our circuit (with the
// witness)
let c = Wrapper {
inputs: inputs.clone(),
params: inner_params.clone(),
proof: inner_proof.clone(),
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &params, rng).unwrap()
};
let mut cs = TestConstraintSystem::<MNT4Fq>::new();
let inputs: Vec<_> = inputs.into_iter().map(|input| input.unwrap()).collect();
let mut input_gadgets = Vec::new();
{
let bigint_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
let mut input_bits = Vec::new();
let mut cs = cs.ns(|| "Allocate Input");
for (i, input) in inputs.into_iter().enumerate() {
let input_gadget =
FpGadget::alloc_input(cs.ns(|| format!("Input {}", i)), || Ok(input))
.unwrap();
let mut fp_bits = input_gadget
.to_bits(cs.ns(|| format!("To bits {}", i)))
.unwrap();
// FpGadget::to_bits outputs a big-endian binary representation of
// fe_gadget's value, so we have to reverse it to get the little-endian
// form.
fp_bits.reverse();
// Use 320 bits per element.
for _ in fp_bits.len()..bigint_size {
fp_bits.push(Boolean::constant(false));
}
input_bits.extend_from_slice(&fp_bits);
}
// Pack input bits into field elements of the underlying circuit.
let max_size = 8 * (<MNT6FqParameters as FpParameters>::CAPACITY / 8) as usize;
let max_size = max_size as usize;
let bigint_size = <MNT6FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
for chunk in input_bits.chunks(max_size) {
let mut chunk = chunk.to_vec();
let len = chunk.len();
for _ in len..bigint_size {
chunk.push(Boolean::constant(false));
}
input_gadgets.push(chunk);
}
// assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
}
let vk_gadget = TestVkGadget2::alloc_input(cs.ns(|| "Vk"), || Ok(&params.vk)).unwrap();
let proof_gadget =
TestProofGadget2::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
println!("Time to verify!\n\n\n\n");
<TestVerifierGadget2 as NIZKVerifierGadget<TestProofSystem2, MNT4Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)
.unwrap();
if !cs.is_satisfied() {
println!("=========================================================");
println!("Unsatisfied constraints:");
println!("{:?}", cs.which_is_unsatisfied().unwrap());
println!("=========================================================");
}
// cs.print_named_objects();
assert!(cs.is_satisfied());
}
}
}

+ 263
- 0
crypto-primitives/src/nizk/groth16/constraints.rs

@ -479,3 +479,266 @@ mod test {
} }
} }
} }
#[cfg(test)]
mod test_recursive {
use groth16::*;
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
use super::*;
use algebra::{
fields::FpParameters,
mnt4_298::{Fq as MNT4Fq, FqParameters as MNT4FqParameters, Fr as MNT4Fr, MNT4_298},
mnt6_298::{Fq as MNT6Fq, FqParameters as MNT6FqParameters, Fr as MNT6Fr, MNT6_298},
test_rng, BigInteger, PrimeField,
};
use r1cs_std::{
fields::fp::FpGadget, mnt4_298::PairingGadget as MNT4_298PairingGadget,
mnt6_298::PairingGadget as MNT6_298PairingGadget,
test_constraint_system::TestConstraintSystem, uint8::UInt8,
};
use rand::Rng;
type TestProofSystem1 = Groth16<MNT6_298, Bench<MNT4Fq>, MNT6Fr>;
type TestVerifierGadget1 = Groth16VerifierGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestProofGadget1 = ProofGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestVkGadget1 = VerifyingKeyGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestProofSystem2 = Groth16<MNT4_298, Wrapper, MNT4Fr>;
type TestVerifierGadget2 = Groth16VerifierGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
type TestProofGadget2 = ProofGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
type TestVkGadget2 = VerifyingKeyGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
#[derive(Clone)]
struct Bench<F: Field> {
inputs: Vec<Option<F>>,
num_constraints: usize,
}
impl<F: Field> ConstraintSynthesizer<F> for Bench<F> {
fn generate_constraints<CS: ConstraintSystem<F>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
assert!(self.inputs.len() >= 2);
assert!(self.num_constraints >= self.inputs.len());
let mut variables: Vec<_> = Vec::with_capacity(self.inputs.len());
for (i, input) in self.inputs.into_iter().enumerate() {
let input_var = cs.alloc_input(
|| format!("Input {}", i),
|| input.ok_or(SynthesisError::AssignmentMissing),
)?;
variables.push((input, input_var));
}
for i in 0..self.num_constraints {
let new_entry = {
let (input_1_val, input_1_var) = variables[i];
let (input_2_val, input_2_var) = variables[i + 1];
let result_val = input_1_val
.and_then(|input_1| input_2_val.map(|input_2| input_1 * &input_2));
let result_var = cs.alloc(
|| format!("Result {}", i),
|| result_val.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce(
|| format!("Enforce constraint {}", i),
|lc| lc + input_1_var,
|lc| lc + input_2_var,
|lc| lc + result_var,
);
(result_val, result_var)
};
variables.push(new_entry);
}
Ok(())
}
}
struct Wrapper {
inputs: Vec<Option<MNT4Fq>>,
params: Parameters<MNT6_298>,
proof: Proof<MNT6_298>,
}
impl ConstraintSynthesizer<MNT6Fq> for Wrapper {
fn generate_constraints<CS: ConstraintSystem<MNT6Fq>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
let params = self.params;
let proof = self.proof;
let inputs: Vec<_> = self
.inputs
.into_iter()
.map(|input| input.unwrap())
.collect();
let input_gadgets;
{
let mut cs = cs.ns(|| "Allocate Input");
// Chain all input values in one large byte array.
let input_bytes = inputs
.clone()
.into_iter()
.flat_map(|input| {
input
.into_repr()
.as_ref()
.iter()
.flat_map(|l| l.to_le_bytes().to_vec())
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Allocate this byte array as input packed into field elements.
let input_bytes = UInt8::alloc_input_vec(cs.ns(|| "Input"), &input_bytes[..])?;
// 40 byte
let element_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 8;
input_gadgets = input_bytes
.chunks(element_size)
.map(|chunk| {
chunk
.iter()
.flat_map(|byte| byte.into_bits_le())
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
}
let vk_gadget = TestVkGadget1::alloc(cs.ns(|| "Vk"), || Ok(&params.vk))?;
let proof_gadget =
TestProofGadget1::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
<TestVerifierGadget1 as NIZKVerifierGadget<TestProofSystem1, MNT6Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)?;
Ok(())
}
}
#[test]
fn groth16_recursive_verifier_test() {
let num_inputs = 100;
let num_constraints = num_inputs;
let rng = &mut test_rng();
let mut inputs: Vec<Option<MNT4Fq>> = Vec::with_capacity(num_inputs);
for _ in 0..num_inputs {
inputs.push(Some(rng.gen()));
}
// Generate inner params and proof.
let inner_params = {
let c = Bench::<MNT4Fq> {
inputs: vec![None; num_inputs],
num_constraints,
};
generate_random_parameters(c, rng).unwrap()
};
let inner_proof = {
// Create an instance of our circuit (with the
// witness)
let c = Bench {
inputs: inputs.clone(),
num_constraints,
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &inner_params, rng).unwrap()
};
// Generate outer params and proof.
let params = {
let c = Wrapper {
inputs: inputs.clone(),
params: inner_params.clone(),
proof: inner_proof.clone(),
};
generate_random_parameters(c, rng).unwrap()
};
{
let proof = {
// Create an instance of our circuit (with the
// witness)
let c = Wrapper {
inputs: inputs.clone(),
params: inner_params.clone(),
proof: inner_proof.clone(),
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &params, rng).unwrap()
};
let mut cs = TestConstraintSystem::<MNT4Fq>::new();
let inputs: Vec<_> = inputs.into_iter().map(|input| input.unwrap()).collect();
let mut input_gadgets = Vec::new();
{
let bigint_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
let mut input_bits = Vec::new();
let mut cs = cs.ns(|| "Allocate Input");
for (i, input) in inputs.into_iter().enumerate() {
let input_gadget =
FpGadget::alloc_input(cs.ns(|| format!("Input {}", i)), || Ok(input))
.unwrap();
let mut fp_bits = input_gadget
.to_bits(cs.ns(|| format!("To bits {}", i)))
.unwrap();
// FpGadget::to_bits outputs a big-endian binary representation of
// fe_gadget's value, so we have to reverse it to get the little-endian
// form.
fp_bits.reverse();
// Use 320 bits per element.
for _ in fp_bits.len()..bigint_size {
fp_bits.push(Boolean::constant(false));
}
input_bits.extend_from_slice(&fp_bits);
}
// Pack input bits into field elements of the underlying circuit.
let max_size = 8 * (<MNT6FqParameters as FpParameters>::CAPACITY / 8) as usize;
let max_size = max_size as usize;
let bigint_size = <MNT6FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
for chunk in input_bits.chunks(max_size) {
let mut chunk = chunk.to_vec();
let len = chunk.len();
for _ in len..bigint_size {
chunk.push(Boolean::constant(false));
}
input_gadgets.push(chunk);
}
// assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
}
let vk_gadget = TestVkGadget2::alloc_input(cs.ns(|| "Vk"), || Ok(&params.vk)).unwrap();
let proof_gadget =
TestProofGadget2::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
println!("Time to verify!\n\n\n\n");
<TestVerifierGadget2 as NIZKVerifierGadget<TestProofSystem2, MNT4Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)
.unwrap();
if !cs.is_satisfied() {
println!("=========================================================");
println!("Unsatisfied constraints:");
println!("{:?}", cs.which_is_unsatisfied().unwrap());
println!("=========================================================");
}
// cs.print_named_objects();
assert!(cs.is_satisfied());
}
}
}

+ 5
- 1
r1cs-std/Cargo.toml

@ -35,12 +35,16 @@ algebra = { path = "../algebra", default-features = false, features = [ "bls12_3
[features] [features]
default = ["std"] default = ["std"]
full = [ "bls12_377", "jubjub", "edwards_bls12", "edwards_sw6", ]
full = [ "bls12_377", "jubjub", "edwards_bls12", "edwards_sw6", "mnt4_298", "mnt4_753", "mnt6_298", "mnt6_753" ]
bls12_377 = [ "algebra/bls12_377" ] bls12_377 = [ "algebra/bls12_377" ]
jubjub = [ "algebra/jubjub" ] jubjub = [ "algebra/jubjub" ]
edwards_bls12 = [ "algebra/edwards_bls12" ] edwards_bls12 = [ "algebra/edwards_bls12" ]
edwards_sw6 = [ "algebra/edwards_sw6" ] edwards_sw6 = [ "algebra/edwards_sw6" ]
mnt4_298 = [ "algebra/mnt4_298" ]
mnt4_753 = [ "algebra/mnt4_753" ]
mnt6_298 = [ "algebra/mnt6_298" ]
mnt6_753 = [ "algebra/mnt6_753" ]
std = [ "algebra/std" ] std = [ "algebra/std" ]
parallel = [ "std", "algebra/parallel" ] parallel = [ "std", "algebra/parallel" ]

+ 4
- 0
r1cs-std/src/fields/fp/mod.rs

@ -270,6 +270,10 @@ impl FieldGadget for FpGadget {
1 1
} }
fn cost_of_mul_equals() -> usize {
1
}
fn cost_of_inv() -> usize { fn cost_of_inv() -> usize {
1 1
} }

+ 4
- 0
r1cs-std/src/fields/fp12.rs

@ -642,6 +642,10 @@ where
unimplemented!() unimplemented!()
} }
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
fn cost_of_inv() -> usize { fn cost_of_inv() -> usize {
Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost() Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost()
} }

+ 4
- 0
r1cs-std/src/fields/fp2.rs

@ -453,6 +453,10 @@ impl, ConstraintF: PrimeField> FieldGadget
3 3
} }
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
fn cost_of_inv() -> usize { fn cost_of_inv() -> usize {
2 2
} }

+ 932
- 0
r1cs-std/src/fields/fp3.rs

@ -0,0 +1,932 @@
use algebra::{
fields::{
fp3::{Fp3, Fp3Parameters},
Field,
},
PrimeField, SquareRootField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, ConstraintVar, SynthesisError};
use crate::{fields::fp::FpGadget, prelude::*, Assignment, Vec};
#[derive(Derivative)]
#[derivative(Debug(
bound = "P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField"
))]
#[must_use]
pub struct Fp3Gadget<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
{
pub c0: FpGadget<ConstraintF>,
pub c1: FpGadget<ConstraintF>,
pub c2: FpGadget<ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
Fp3Gadget<P, ConstraintF>
{
#[inline]
pub fn new(
c0: FpGadget<ConstraintF>,
c1: FpGadget<ConstraintF>,
c2: FpGadget<ConstraintF>,
) -> Self {
Self {
c0,
c1,
c2,
_params: PhantomData,
}
}
/// Multiply a FpGadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &FpGadget<ConstraintF>,
) -> Result<FpGadget<ConstraintF>, SynthesisError> {
fe.mul_by_constant(cs, &P::NONRESIDUE)
}
/// Multiply a Fp3Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
fe: &P::Fp,
) -> Result<&mut Self, SynthesisError> {
self.c0.mul_by_constant_in_place(cs.ns(|| "c0"), fe)?;
self.c1.mul_by_constant_in_place(cs.ns(|| "c1"), fe)?;
self.c2.mul_by_constant_in_place(cs.ns(|| "c2"), fe)?;
Ok(self)
}
/// Multiply a Fp3Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
fe: &P::Fp,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.mul_by_fp_constant_in_place(cs, fe)?;
Ok(result)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
FieldGadget<Fp3<P>, ConstraintF> for Fp3Gadget<P, ConstraintF>
{
type Variable = (
ConstraintVar<ConstraintF>,
ConstraintVar<ConstraintF>,
ConstraintVar<ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp3<P>> {
match (
self.c0.get_value(),
self.c1.get_value(),
self.c2.get_value(),
) {
(Some(c0), Some(c1), Some(c2)) => Some(Fp3::new(c0, c1, c2)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(
self.c0.get_variable(),
self.c1.get_variable(),
self.c2.get_variable(),
)
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c1"))?;
let c2 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c1"))?;
let c2 = FpGadget::<ConstraintF>::zero(cs.ns(|| "c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp3<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
let c2 = self
.c2
.conditionally_add_constant(cs.ns(|| "c2"), bit, coeff.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
let c2 = self.c2.add(&mut cs.ns(|| "add c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
let c2 = self.c2.sub(&mut cs.ns(|| "sub c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.negate(&mut cs.ns(|| "negate c0"))?;
let c1 = self.c1.negate(&mut cs.ns(|| "negate c1"))?;
let c2 = self.c2.negate(&mut cs.ns(|| "negate c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
self.c2.negate_in_place(&mut cs.ns(|| "negate c2"))?;
Ok(self)
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cook-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)b(0) = a0 * b0
let v0 = self.c0.mul(&mut cs.ns(|| "Calc v0"), &other.c0)?;
// v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
let v1 = {
let mut v1_cs = cs.ns(|| "compute v1");
let a0_plus_a1_plus_a2 = self
.c0
.add(v1_cs.ns(|| "a0 + a1"), &self.c1)?
.add(v1_cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
let b0_plus_b1_plus_b2 = other
.c0
.add(v1_cs.ns(|| "b0 + b1"), &other.c1)?
.add(v1_cs.ns(|| "b0 + b1 + b2"), &other.c2)?;
a0_plus_a1_plus_a2.mul(
v1_cs.ns(|| "(a0 + a1 + a2)(b0 + b1 + b2)"),
&b0_plus_b1_plus_b2,
)?
};
// v2 = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2)
let v2 = {
let mut v2_cs = cs.ns(|| "compute v2");
let a0_minus_a1_plus_a2 = self
.c0
.sub(v2_cs.ns(|| "a0 - a1"), &self.c1)?
.add(v2_cs.ns(|| "a0 - a1 + a2"), &self.c2)?;
let b0_minus_b1_plus_b2 = other
.c0
.sub(v2_cs.ns(|| "b0 - b1"), &other.c1)?
.add(v2_cs.ns(|| "b0 - b1 + b2"), &other.c2)?;
a0_minus_a1_plus_a2.mul(
v2_cs.ns(|| "(a0 - a1 + a2)(b0 - b1 + b2)"),
&b0_minus_b1_plus_b2,
)?
};
// v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
let v3 = {
let v3_cs = &mut cs.ns(|| "compute v3");
let a1_double = self.c1.double(v3_cs.ns(|| "2 * a1"))?;
let a2_quad = self
.c2
.double(v3_cs.ns(|| "2 * a2"))?
.double(v3_cs.ns(|| "4 * a2"))?;
let a0_plus_2_a1_plus_4_a2 = self
.c0
.add(v3_cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(v3_cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
let b1_double = other.c1.double(v3_cs.ns(|| "2 * b1"))?;
let b2_quad = other
.c2
.double(v3_cs.ns(|| "2 * b2"))?
.double(v3_cs.ns(|| "4 * b2"))?;
let b0_plus_2_b1_plus_4_b2 = other
.c0
.add(v3_cs.ns(|| "b0 + 2b1"), &b1_double)?
.add(v3_cs.ns(|| "b0 + 2b1 + 4b2"), &b2_quad)?;
a0_plus_2_a1_plus_4_a2.mul(
v3_cs.ns(|| "(a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)"),
&b0_plus_2_b1_plus_4_b2,
)?
};
// v4 = a(∞)b(∞) = a2 * b2
let v4 = self.c2.mul(cs.ns(|| "v2: a2 * b2"), &other.c2)?;
let two = P::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let half_v0 = v0.mul_by_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let one_sixth_v2 = v2.mul_by_constant(cs.ns(|| "v2_by_six"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_constant(cs.ns(|| "v3_by_six"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "2 * v4"))?;
// c0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
let c0 = {
let c0_cs = &mut cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let temp = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
temp.mul_by_constant(&mut c0_cs.ns(|| "mul5"), &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add6"), &non_residue_times_inner)?
};
// −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4
let c1 = {
let c1_cs = &mut cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double(&mut c1_cs.ns(|| "v2_by_3"))?;
let non_residue_v4 =
v4.mul_by_constant(&mut c1_cs.ns(|| "mul_by_beta"), &P::NONRESIDUE)?;
let result = half_v0
.negate(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add2"), &v1)?
.sub(c1_cs.ns(|| "sub3"), &one_third_v2)?
.sub(c1_cs.ns(|| "sub4"), &one_sixth_v3)?
.add(c1_cs.ns(|| "sub5"), &two_v4)?
.add(c1_cs.ns(|| "sub6"), &non_residue_v4)?;
result
};
// -v0 + (1/2)v1 + (1/2)v2 −v4
let c2 = {
let c2_cs = &mut cs.ns(|| "c2");
let half_v2 = v2.mul_by_constant(&mut c2_cs.ns(|| "mul1"), &two_inverse)?;
let result = half_v1
.add(c2_cs.ns(|| "add1"), &half_v2)?
.sub(c2_cs.ns(|| "sub1"), &v4)?
.sub(c2_cs.ns(|| "sub2"), &v0)?;
result
};
Ok(Self::new(c0, c1, c2))
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cook-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)^2 = a0^2
let v0 = self.c0.square(&mut cs.ns(|| "Calc v0"))?;
// v1 = a(1)^2 = (a0 + a1 + a2)^2
let v1 = {
let a0_plus_a1_plus_a2 = self
.c0
.add(cs.ns(|| "a0 + a1"), &self.c1)?
.add(cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
a0_plus_a1_plus_a2.square(&mut cs.ns(|| "(a0 + a1 + a2)^2"))?
};
// v2 = a(−1)^2 = (a0 − a1 + a2)^2
let v2 = {
let a0_minus_a1_plus_a2 = self
.c0
.sub(cs.ns(|| "a0 - a1"), &self.c1)?
.add(cs.ns(|| "a0 - a2 + a2"), &self.c2)?;
a0_minus_a1_plus_a2.square(&mut cs.ns(|| "(a0 - a1 + a2)^2"))?
};
// v3 = a(2)^2 = (a0 + 2a1 + 4a2)^2
let v3 = {
let a1_double = self.c1.double(cs.ns(|| "2a1"))?;
let a2_quad = self.c2.double(cs.ns(|| "2a2"))?.double(cs.ns(|| "4a2"))?;
let a0_plus_2_a1_plus_4_a2 = self
.c0
.add(cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
a0_plus_2_a1_plus_4_a2.square(&mut cs.ns(|| "(a0 + 2a1 + 4a2)^2"))?
};
// v4 = a(∞)^2 = a2^2
let v4 = self.c2.square(&mut cs.ns(|| "a2^2"))?;
let two = P::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let half_v0 = v0.mul_by_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let one_sixth_v2 = v2.mul_by_constant(cs.ns(|| "one_sixth_v2"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_constant(cs.ns(|| "one_sixth_v3"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "double_v4"))?;
// c0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
let c0 = {
let mut c0_cs = cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let inner = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
inner.mul_by_constant(c0_cs.ns(|| "mul_by_res"), &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add5"), &non_residue_times_inner)?
};
// −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4
let c1 = {
let mut c1_cs = cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double(c1_cs.ns(|| "v2_by_3"))?;
let non_residue_v4 = v4.mul_by_constant(c1_cs.ns(|| "mul_by_res"), &P::NONRESIDUE)?;
half_v0
.negate(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add1"), &v1)?
.sub(c1_cs.ns(|| "sub2"), &one_third_v2)?
.sub(c1_cs.ns(|| "sub3"), &one_sixth_v3)?
.add(c1_cs.ns(|| "add4"), &two_v4)?
.add(c1_cs.ns(|| "add5"), &non_residue_v4)?
};
// -v0 + (1/2)v1 + (1/2)v2 −v4
let c2 = {
let mut c2_cs = cs.ns(|| "c2");
let half_v2 = v2.mul_by_constant(c2_cs.ns(|| "half_v2"), &two_inverse)?;
half_v1
.add(c2_cs.ns(|| "add1"), &half_v2)?
.sub(c2_cs.ns(|| "sub1"), &v4)?
.sub(c2_cs.ns(|| "sub2"), &v0)?
};
Ok(Self::new(c0, c1, c2))
}
// 18 constraints, we can probably do better but not sure it's worth it.
#[inline]
fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let inverse = Self::alloc(&mut cs.ns(|| "alloc inverse"), || {
self.get_value().and_then(|val| val.inverse()).get()
})?;
let one = Self::one(cs.ns(|| "one"))?;
inverse.mul_equals(cs.ns(|| "check inverse"), &self, &one)?;
Ok(inverse)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp3<P>,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add_constant(cs.ns(|| "c0"), &other.c0)?;
let c1 = self.c1.add_constant(cs.ns(|| "c1"), &other.c1)?;
let c2 = self.c2.add_constant(cs.ns(|| "c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp3<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
self.c2.add_constant_in_place(cs.ns(|| "c2"), &other.c2)?;
Ok(self)
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp3<P>,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cook-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)b(0) = a0 * b0
let v0 = self.c0.mul_by_constant(cs.ns(|| "v0"), &other.c0)?;
// v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
let v1 = {
let mut v1_cs = cs.ns(|| "v1");
let mut a0_plus_a1_plus_a2 = self
.c0
.add(v1_cs.ns(|| "a0 + a1"), &self.c1)?
.add(v1_cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
let b0_plus_b1_plus_b2 = other.c0 + &other.c1 + &other.c2;
a0_plus_a1_plus_a2.mul_by_constant_in_place(
v1_cs.ns(|| "(a0 + a1 + a2)*(b0 + b1 + b2)"),
&b0_plus_b1_plus_b2,
)?;
a0_plus_a1_plus_a2
};
// v2 = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2)
let mut v2 = {
let mut v2_cs = cs.ns(|| "v2");
let mut a0_minus_a1_plus_a2 = self
.c0
.sub(v2_cs.ns(|| "sub1"), &self.c1)?
.add(v2_cs.ns(|| "add2"), &self.c2)?;
let b0_minus_b1_plus_b2 = other.c0 - &other.c1 + &other.c2;
a0_minus_a1_plus_a2.mul_by_constant_in_place(
v2_cs.ns(|| "(a0 - a1 + a2)*(b0 - b1 + b2)"),
&b0_minus_b1_plus_b2,
)?;
a0_minus_a1_plus_a2
};
// v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
let mut v3 = {
let mut v3_cs = cs.ns(|| "v3");
let a1_double = self.c1.double(v3_cs.ns(|| "2a1"))?;
let a2_quad = self
.c2
.double(v3_cs.ns(|| "2a2"))?
.double(v3_cs.ns(|| "4a2"))?;
let mut a0_plus_2_a1_plus_4_a2 = self
.c0
.add(v3_cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(v3_cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
let b1_double = other.c1.double();
let b2_quad = other.c2.double().double();
let b0_plus_2_b1_plus_4_b2 = other.c0 + &b1_double + &b2_quad;
a0_plus_2_a1_plus_4_a2.mul_by_constant_in_place(
v3_cs.ns(|| "(a0 + 2a1 + 4a2)*(b0 + 2b1 + 4b2)"),
&b0_plus_2_b1_plus_4_b2,
)?;
a0_plus_2_a1_plus_4_a2
};
// v4 = a(∞)b(∞) = a2 * b2
let v4 = self.c2.mul_by_constant(cs.ns(|| "v4"), &other.c2)?;
let two = P::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let mut half_v0 = v0.mul_by_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let mut one_sixth_v2 = v2.mul_by_constant(cs.ns(|| "v2_by_6"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_constant_in_place(cs.ns(|| "v3_by_6"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "2v4"))?;
// c0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
let c0 = {
let mut c0_cs = cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let mut inner = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
inner.mul_by_constant_in_place(&mut c0_cs, &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add5"), non_residue_times_inner)?
};
// −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4
let c1 = {
let mut c1_cs = cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double_in_place(c1_cs.ns(|| "double1"))?;
let non_residue_v4 =
v4.mul_by_constant(c1_cs.ns(|| "mul_by_const1"), &P::NONRESIDUE)?;
half_v0
.negate_in_place(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add1"), &v1)?
.sub(c1_cs.ns(|| "sub2"), one_third_v2)?
.sub(c1_cs.ns(|| "sub3"), &one_sixth_v3)?
.add(c1_cs.ns(|| "add4"), &two_v4)?
.add(c1_cs.ns(|| "add5"), &non_residue_v4)?
};
// -v0 + (1/2)v1 + (1/2)v2 −v4
let c2 = {
let mut c2_cs = cs.ns(|| "c2");
let half_v2 = v2.mul_by_constant_in_place(c2_cs.ns(|| "half_v2"), &two_inverse)?;
half_v1
.add(c2_cs.ns(|| "add1"), half_v2)?
.sub(c2_cs.ns(|| "sub2"), &v4)?
.sub(c2_cs.ns(|| "sub3"), &v0)?
};
Ok(Self::new(c0, c1, c2))
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c1.mul_by_constant_in_place(
cs.ns(|| "c1_power"),
&P::FROBENIUS_COEFF_FP3_C1[power % 3],
)?;
self.c2.mul_by_constant_in_place(
cs.ns(|| "c2_power"),
&P::FROBENIUS_COEFF_FP3_C2[power % 3],
)?;
Ok(self)
}
fn cost_of_mul() -> usize {
5 * FpGadget::<ConstraintF>::cost_of_mul()
}
fn cost_of_inv() -> usize {
Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField> PartialEq
for Fp3Gadget<P, ConstraintF>
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1 && self.c2 == other.c2
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField> Eq
for Fp3Gadget<P, ConstraintF>
{
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
EqGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ConditionalEqGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
self.c2
.conditional_enforce_equal(&mut cs.ns(|| "c2"), &other.c2, condition)?;
Ok(())
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
NEqGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
self.c2.enforce_not_equal(&mut cs.ns(|| "c2"), &other.c2)?;
Ok(())
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ToBitsGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_bits(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_non_unique_bits(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ToBytesGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_bytes(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_non_unique_bytes(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField> Clone
for Fp3Gadget<P, ConstraintF>
{
fn clone(&self) -> Self {
Self::new(self.c0.clone(), self.c1.clone(), self.c2.clone())
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
CondSelectGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
let c2 = FpGadget::<ConstraintF>::conditionally_select(
&mut cs.ns(|| "c2"),
cond,
&first.c2,
&second.c2,
)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
TwoBitLookupGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
type TableConstant = Fp3<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = FpGadget::<ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = FpGadget::<ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
let c2 = FpGadget::<ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c2"), b, &c2s)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
ThreeBitCondNegLookupGadget<ConstraintF> for Fp3Gadget<P, ConstraintF>
{
type TableConstant = Fp3<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = FpGadget::<ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = FpGadget::<ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
let c2 = FpGadget::<ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c2"),
b,
b0b1,
&c2s,
)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <FpGadget<ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P: Fp3Parameters<Fp = ConstraintF>, ConstraintF: PrimeField + SquareRootField>
AllocGadget<Fp3<P>, ConstraintF> for Fp3Gadget<P, ConstraintF>
{
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp3<P>>,
{
let (c0, c1, c2) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1), Ok(fe.c2))
},
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = FpGadget::<ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = FpGadget::<ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
let c2 = FpGadget::<ConstraintF>::alloc(&mut cs.ns(|| "c2"), || c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp3<P>>,
{
let (c0, c1, c2) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1), Ok(fe.c2))
},
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = FpGadget::<ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = FpGadget::<ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
let c2 = FpGadget::<ConstraintF>::alloc_input(&mut cs.ns(|| "c2"), || c2)?;
Ok(Self::new(c0, c1, c2))
}
}

+ 772
- 0
r1cs-std/src/fields/fp4.rs

@ -0,0 +1,772 @@
use algebra::{
fields::{Fp2, Fp2Parameters, Fp4, Fp4Parameters},
BigInteger, Field, One, PrimeField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::{prelude::*, Assignment, Vec};
type Fp2Gadget<P, ConstraintF> =
super::fp2::Fp2Gadget<<P as Fp4Parameters>::Fp2Params, ConstraintF>;
type Fp2GadgetVariable<P, ConstraintF> = <Fp2Gadget<P, ConstraintF> as FieldGadget<
Fp2<<P as Fp4Parameters>::Fp2Params>,
ConstraintF,
>>::Variable;
#[derive(Derivative)]
#[derivative(Debug(bound = "ConstraintF: PrimeField"))]
#[must_use]
pub struct Fp4Gadget<P, ConstraintF: PrimeField>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
pub c0: Fp2Gadget<P, ConstraintF>,
pub c1: Fp2Gadget<P, ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, ConstraintF: PrimeField> Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
pub fn new(c0: Fp2Gadget<P, ConstraintF>, c1: Fp2Gadget<P, ConstraintF>) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply a Fp2Gadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp2_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &Fp2Gadget<P, ConstraintF>,
) -> Result<Fp2Gadget<P, ConstraintF>, SynthesisError> {
let new_c0 = Fp2Gadget::<P, ConstraintF>::mul_fp_gadget_by_nonresidue(cs, &fe.c1)?;
let new_c1 = fe.c0.clone();
Ok(Fp2Gadget::<P, ConstraintF>::new(new_c0, new_c1))
}
/// Multiply a Fp4Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
fe: &<<P as Fp4Parameters>::Fp2Params as Fp2Parameters>::Fp,
) -> Result<&mut Self, SynthesisError> {
self.c0.mul_by_fp_constant_in_place(cs.ns(|| "c0"), fe)?;
self.c1.mul_by_fp_constant_in_place(cs.ns(|| "c1"), fe)?;
Ok(self)
}
/// Multiply a Fp4Gadget by an element of fp.
#[inline]
pub fn mul_by_fp_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
fe: &<<P as Fp4Parameters>::Fp2Params as Fp2Parameters>::Fp,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.mul_by_fp_constant_in_place(cs, fe)?;
Ok(result)
}
pub fn unitary_inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
) -> Result<Self, SynthesisError> {
Ok(Self::new(self.c0.clone(), self.c1.negate(cs)?))
}
#[inline]
pub fn cyclotomic_exp<CS: ConstraintSystem<ConstraintF>, B: BigInteger>(
&self,
mut cs: CS,
exponent: &B,
) -> Result<Self, SynthesisError> {
let mut res = Self::one(cs.ns(|| "one"))?;
let self_inverse = self.unitary_inverse(cs.ns(|| "unitary inverse"))?;
let mut found_nonzero = false;
let naf = exponent.find_wnaf();
for (i, &value) in naf.iter().rev().enumerate() {
if found_nonzero {
res.square_in_place(cs.ns(|| format!("square {}", i)))?;
}
if value != 0 {
found_nonzero = true;
if value > 0 {
res.mul_in_place(cs.ns(|| format!("res *= self {}", i)), &self)?;
} else {
res.mul_in_place(
cs.ns(|| format!("res *= self_inverse {}", i)),
&self_inverse,
)?;
}
}
}
Ok(res)
}
}
impl<P, ConstraintF: PrimeField> FieldGadget<Fp4<P>, ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type Variable = (
Fp2GadgetVariable<P, ConstraintF>,
Fp2GadgetVariable<P, ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp4<P>> {
match (self.c0.get_value(), self.c1.get_value()) {
(Some(c0), Some(c1)) => Some(Fp4::new(c0, c1)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(self.c0.get_variable(), self.c1.get_variable())
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp4<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn double<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.double_in_place(cs)?;
Ok(result)
}
#[inline]
fn double_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.double_in_place(&mut cs.ns(|| "double c0"))?;
self.c1.double_in_place(&mut cs.ns(|| "double c1"))?;
Ok(self)
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.negate_in_place(cs)?;
Ok(result)
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
Ok(self)
}
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication for Fp4:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
let v0 = self.c0.mul(mul_cs.ns(|| "v0"), &other.c0)?;
let v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
let c0 = {
let non_residue_times_v1 =
Self::mul_fp2_gadget_by_nonresidue(mul_cs.ns(|| "first mul_by_nr"), &v1)?;
v0.add(mul_cs.ns(|| "v0 + beta * v1"), &non_residue_times_v1)?
};
let c1 = {
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let a0_plus_a1_times_b0_plus_b1 =
a0_plus_a1.mul(&mut mul_cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?;
a0_plus_a1_times_b0_plus_b1
.sub(mul_cs.ns(|| "res - v0"), &v0)?
.sub(mul_cs.ns(|| "res - v0 - v1"), &v1)?
};
Ok(Self::new(c0, c1))
}
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// From Libsnark/fp4_gadget.tcc
// Complex multiplication for Fp4:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let non_residue_c1 =
Self::mul_fp2_gadget_by_nonresidue(cs.ns(|| "non_residue * a1"), &self.c1)?;
let a0_plus_non_residue_c1 = self
.c0
.add(cs.ns(|| "a0 + non_residue * a1"), &non_residue_c1)?;
let one_plus_non_residue_v0 =
Self::mul_fp2_gadget_by_nonresidue(cs.ns(|| "non_residue * v0"), &v0)?
.add(cs.ns(|| "plus v0"), &v0)?;
let c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_c1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
let c1 = v0;
Ok(Self::new(c0, c1))
}
#[inline]
fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let inverse = Self::alloc(&mut cs.ns(|| "alloc inverse"), || {
self.get_value().and_then(|val| val.inverse()).get()
})?;
// Karatsuba multiplication for Fp4 with the inverse:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
//
// 1 = v0 + non_residue * v1
// => v0 = 1 - non_residue * v1
//
// 0 = result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// => v0 + v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// => 1 + (1 - non_residue) * v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// Enforced with 2 constraints:
// A.c1 * B.c1 = v1
// => 1 + (1 - non_residue) * v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// Constraint 1
let v1 = self.c1.mul(cs.ns(|| "inv_constraint_1"), &inverse.c1)?;
// Constraint 2
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = inverse.c0.add(cs.ns(|| "b0 + b1"), &inverse.c1)?;
let one = Fp2::<<P as Fp4Parameters>::Fp2Params>::one();
let rhs = Self::mul_fp2_gadget_by_nonresidue(cs.ns(|| "nr * v1"), &v1)?
.sub(cs.ns(|| "sub v1"), &v1)?
.negate(cs.ns(|| "negate it"))?
.add_constant(cs.ns(|| "add one"), &one)?;
a0_plus_a1.mul_equals(cs.ns(|| "inv_constraint_2"), &b0_plus_b1, &rhs)?;
Ok(inverse)
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp4:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
// Compute v1
let mut v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
// Perform second check
let non_residue_times_v1 =
Self::mul_fp2_gadget_by_nonresidue(mul_cs.ns(|| "nr * v1"), &v1)?;
let rhs = result
.c0
.sub(mul_cs.ns(|| "sub from result.c0"), &non_residue_times_v1)?;
self.c0
.mul_equals(mul_cs.ns(|| "second check"), &other.c0, &rhs)?;
// Last check
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let one_minus_non_residue_v1 =
v1.sub_in_place(mul_cs.ns(|| "sub from v1"), &non_residue_times_v1)?;
let result_c1_plus_result_c0_plus_one_minus_non_residue_v1 = result
.c1
.add(mul_cs.ns(|| "c1 + c0"), &result.c0)?
.add(mul_cs.ns(|| "rest of stuff"), one_minus_non_residue_v1)?;
a0_plus_a1.mul_equals(
mul_cs.ns(|| "third check"),
&b0_plus_b1,
&result_c1_plus_result_c0_plus_one_minus_non_residue_v1,
)?;
Ok(())
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c0
.frobenius_map_in_place(cs.ns(|| "frob_map1"), power)?;
self.c1
.frobenius_map_in_place(cs.ns(|| "frob_map2"), power)?;
self.c1
.mul_by_fp_constant_in_place(cs.ns(|| "mul"), &P::FROBENIUS_COEFF_FP4_C1[power % 4])?;
Ok(self)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
other: &Fp4<P>,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.add_constant_in_place(cs, other)?;
Ok(result)
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp4<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
fe: &Fp4<P>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication (see mul above).
// Doesn't need any constraints; returns linear combinations of
// `self`'s variables.
//
// (The operations below are guaranteed to return linear combinations)
let (a0, a1) = (&self.c0, &self.c1);
let (b0, b1) = (fe.c0, fe.c1);
let mut v0 = a0.mul_by_constant(&mut cs.ns(|| "v0"), &b0)?;
let mut v1 = Self::mul_fp2_gadget_by_nonresidue(&mut cs.ns(|| "v1"), a1)?;
let beta_v1 = v1.mul_by_constant_in_place(&mut cs.ns(|| "beta * v1"), &b1)?;
v0.add_in_place(&mut cs.ns(|| "c0"), &beta_v1)?;
let c0 = v0;
let mut a0b1 = a0.mul_by_constant(&mut cs.ns(|| "a0b1"), &b1)?;
let a1b0 = a1.mul_by_constant(&mut cs.ns(|| "a1b0"), &b0)?;
a0b1.add_in_place(&mut cs.ns(|| "c1"), &a1b0)?;
let c1 = a0b1;
Ok(Self::new(c0, c1))
}
fn cost_of_mul() -> usize {
3 * <Fp2Gadget<P, ConstraintF> as FieldGadget<Fp2<P::Fp2Params>, ConstraintF>>::cost_of_mul(
)
}
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
fn cost_of_inv() -> usize {
unimplemented!()
}
}
impl<P, ConstraintF: PrimeField> PartialEq for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1
}
}
impl<P, ConstraintF: PrimeField> Eq for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> EqGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> ConditionalEqGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> NEqGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ToBitsGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> ToBytesGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> Clone for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn clone(&self) -> Self {
Self {
c0: self.c0.clone(),
c1: self.c1.clone(),
_params: PhantomData,
}
}
}
impl<P, ConstraintF: PrimeField> CondSelectGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> TwoBitLookupGadget<ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp4<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ThreeBitCondNegLookupGadget<ConstraintF>
for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp4<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp2Gadget<P, ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> AllocGadget<Fp4<P>, ConstraintF> for Fp4Gadget<P, ConstraintF>
where
P: Fp4Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp4<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
},
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp4<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
},
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
}

+ 763
- 0
r1cs-std/src/fields/fp6_2over3.rs

@ -0,0 +1,763 @@
use algebra::{
fields::{
fp6_2over3::{Fp6, Fp6Parameters},
Fp3, Fp3Parameters,
},
BigInteger, Field, One, PrimeField, SquareRootField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::{prelude::*, Assignment, Vec};
type Fp3Gadget<P, ConstraintF> =
super::fp3::Fp3Gadget<<P as Fp6Parameters>::Fp3Params, ConstraintF>;
type Fp3GadgetVariable<P, ConstraintF> = <Fp3Gadget<P, ConstraintF> as FieldGadget<
Fp3<<P as Fp6Parameters>::Fp3Params>,
ConstraintF,
>>::Variable;
#[derive(Derivative)]
#[derivative(Debug(bound = "ConstraintF: PrimeField + SquareRootField"))]
#[must_use]
pub struct Fp6Gadget<P, ConstraintF: PrimeField + SquareRootField>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
pub c0: Fp3Gadget<P, ConstraintF>,
pub c1: Fp3Gadget<P, ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, ConstraintF: PrimeField + SquareRootField> Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
pub fn new(c0: Fp3Gadget<P, ConstraintF>, c1: Fp3Gadget<P, ConstraintF>) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply a Fp3Gadget by quadratic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp3_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
fe: &Fp3Gadget<P, ConstraintF>,
) -> Result<Fp3Gadget<P, ConstraintF>, SynthesisError> {
let mut res = Fp3Gadget::<P, ConstraintF>::new(fe.c2.clone(), fe.c0.clone(), fe.c1.clone());
res.c0.mul_by_constant_in_place(
cs.ns(|| "res * non_residue"),
&<P::Fp3Params as Fp3Parameters>::NONRESIDUE,
)?;
Ok(res)
}
pub fn unitary_inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
) -> Result<Self, SynthesisError> {
Ok(Self::new(self.c0.clone(), self.c1.negate(cs)?))
}
#[inline]
pub fn cyclotomic_exp<CS: ConstraintSystem<ConstraintF>, B: BigInteger>(
&self,
mut cs: CS,
exponent: &B,
) -> Result<Self, SynthesisError> {
let mut res = Self::one(cs.ns(|| "one"))?;
let self_inverse = self.unitary_inverse(cs.ns(|| "unitary inverse"))?;
let mut found_nonzero = false;
let naf = exponent.find_wnaf();
for (i, &value) in naf.iter().rev().enumerate() {
if found_nonzero {
res.square_in_place(cs.ns(|| format!("square {}", i)))?;
}
if value != 0 {
found_nonzero = true;
if value > 0 {
res.mul_in_place(cs.ns(|| format!("res *= self {}", i)), &self)?;
} else {
res.mul_in_place(
cs.ns(|| format!("res *= self_inverse {}", i)),
&self_inverse,
)?;
}
}
}
Ok(res)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> FieldGadget<Fp6<P>, ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
type Variable = (
Fp3GadgetVariable<P, ConstraintF>,
Fp3GadgetVariable<P, ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp6<P>> {
match (self.c0.get_value(), self.c1.get_value()) {
(Some(c0), Some(c1)) => Some(Fp6::new(c0, c1)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(self.c0.get_variable(), self.c1.get_variable())
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp3Gadget::<P, ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = Fp3Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp3Gadget::<P, ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = Fp3Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp6<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn double<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.double_in_place(cs)?;
Ok(result)
}
#[inline]
fn double_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.double_in_place(&mut cs.ns(|| "double c0"))?;
self.c1.double_in_place(&mut cs.ns(|| "double c1"))?;
Ok(self)
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(&self, cs: CS) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.negate_in_place(cs)?;
Ok(result)
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
Ok(self)
}
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication for Fp6:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
let v0 = self.c0.mul(mul_cs.ns(|| "v0"), &other.c0)?;
let v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
let c0 = {
let non_residue_times_v1 =
Self::mul_fp3_gadget_by_nonresidue(mul_cs.ns(|| "first mul_by_nr"), &v1)?;
v0.add(mul_cs.ns(|| "v0 + beta * v1"), &non_residue_times_v1)?
};
let c1 = {
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let a0_plus_a1_times_b0_plus_b1 =
a0_plus_a1.mul(&mut mul_cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?;
a0_plus_a1_times_b0_plus_b1
.sub(mul_cs.ns(|| "res - v0"), &v0)?
.sub(mul_cs.ns(|| "res - v0 - v1"), &v1)?
};
Ok(Self::new(c0, c1))
}
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// From Libsnark/fp4_gadget.tcc
// Complex multiplication for Fp6:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let non_residue_c1 =
Self::mul_fp3_gadget_by_nonresidue(cs.ns(|| "non_residue * a1"), &self.c1)?;
let a0_plus_non_residue_c1 = self
.c0
.add(cs.ns(|| "a0 + non_residue * a1"), &non_residue_c1)?;
let one_plus_non_residue_v0 =
Self::mul_fp3_gadget_by_nonresidue(cs.ns(|| "non_residue * v0"), &v0)?
.add(cs.ns(|| "plus v0"), &v0)?;
let c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_c1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
let c1 = v0;
Ok(Self::new(c0, c1))
}
#[inline]
fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let inverse = Self::alloc(&mut cs.ns(|| "alloc inverse"), || {
self.get_value().and_then(|val| val.inverse()).get()
})?;
// Karatsuba multiplication for Fp6 with the inverse:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
//
// 1 = v0 + non_residue * v1
// => v0 = 1 - non_residue * v1
//
// 0 = result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// => v0 + v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// => 1 + (1 - non_residue) * v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// Enforced with 2 constraints:
// A.c1 * B.c1 = v1
// => 1 + (1 - non_residue) * v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// Constraint 1
let v1 = self.c1.mul(cs.ns(|| "inv_constraint_1"), &inverse.c1)?;
// Constraint 2
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = inverse.c0.add(cs.ns(|| "b0 + b1"), &inverse.c1)?;
let one = Fp3::<<P as Fp6Parameters>::Fp3Params>::one();
let rhs = Self::mul_fp3_gadget_by_nonresidue(cs.ns(|| "nr * v1"), &v1)?
.sub(cs.ns(|| "sub v1"), &v1)?
.negate(cs.ns(|| "negate it"))?
.add_constant(cs.ns(|| "add one"), &one)?;
a0_plus_a1.mul_equals(cs.ns(|| "inv_constraint_2"), &b0_plus_b1, &rhs)?;
Ok(inverse)
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp6:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
// Compute v1
let mut v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
// Perform second check
let non_residue_times_v1 =
Self::mul_fp3_gadget_by_nonresidue(mul_cs.ns(|| "nr * v1"), &v1)?;
let rhs = result
.c0
.sub(mul_cs.ns(|| "sub from result.c0"), &non_residue_times_v1)?;
self.c0
.mul_equals(mul_cs.ns(|| "second check"), &other.c0, &rhs)?;
// Last check
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let one_minus_non_residue_v1 =
v1.sub_in_place(mul_cs.ns(|| "sub from v1"), &non_residue_times_v1)?;
let result_c1_plus_result_c0_plus_one_minus_non_residue_v1 = result
.c1
.add(mul_cs.ns(|| "c1 + c0"), &result.c0)?
.add(mul_cs.ns(|| "rest of stuff"), one_minus_non_residue_v1)?;
a0_plus_a1.mul_equals(
mul_cs.ns(|| "third check"),
&b0_plus_b1,
&result_c1_plus_result_c0_plus_one_minus_non_residue_v1,
)?;
Ok(())
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c0
.frobenius_map_in_place(cs.ns(|| "frob_map1"), power)?;
self.c1
.frobenius_map_in_place(cs.ns(|| "frob_map2"), power)?;
self.c1
.mul_by_fp_constant_in_place(cs.ns(|| "mul"), &P::FROBENIUS_COEFF_FP6_C1[power % 6])?;
Ok(self)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
other: &Fp6<P>,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
let _ = result.add_constant_in_place(cs, other)?;
Ok(result)
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp6<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
fe: &Fp6<P>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication (see mul above).
// Doesn't need any constraints; returns linear combinations of
// `self`'s variables.
//
// (The operations below are guaranteed to return linear combinations)
let (a0, a1) = (&self.c0, &self.c1);
let (b0, b1) = (fe.c0, fe.c1);
let mut v0 = a0.mul_by_constant(&mut cs.ns(|| "v0"), &b0)?;
let mut v1 = Self::mul_fp3_gadget_by_nonresidue(&mut cs.ns(|| "v1"), a1)?;
let beta_v1 = v1.mul_by_constant_in_place(&mut cs.ns(|| "beta * v1"), &b1)?;
v0.add_in_place(&mut cs.ns(|| "c0"), &beta_v1)?;
let c0 = v0;
let mut a0b1 = a0.mul_by_constant(&mut cs.ns(|| "a0b1"), &b1)?;
let a1b0 = a1.mul_by_constant(&mut cs.ns(|| "a1b0"), &b0)?;
a0b1.add_in_place(&mut cs.ns(|| "c1"), &a1b0)?;
let c1 = a0b1;
Ok(Self::new(c0, c1))
}
fn cost_of_mul() -> usize {
3 * <Fp3Gadget<P, ConstraintF> as FieldGadget<Fp3<P::Fp3Params>, ConstraintF>>::cost_of_mul(
)
}
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul()
}
fn cost_of_inv() -> usize {
unimplemented!()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> PartialEq for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> Eq for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField + SquareRootField> EqGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField + SquareRootField> ConditionalEqGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> NEqGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> ToBitsGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> ToBytesGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> Clone for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
fn clone(&self) -> Self {
Self {
c0: self.c0.clone(),
c1: self.c1.clone(),
_params: PhantomData,
}
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> CondSelectGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = Fp3Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = Fp3Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> TwoBitLookupGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp6<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp3Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = Fp3Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> ThreeBitCondNegLookupGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp6<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp3Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = Fp3Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp3Gadget<P, ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField + SquareRootField> AllocGadget<Fp6<P>, ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp3Params: Fp3Parameters<Fp = ConstraintF>,
{
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp6<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
},
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp3Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp3Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp6<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
},
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp3Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp3Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
}

+ 3
- 3
r1cs-std/src/fields/fp6_3over2.rs

@ -259,7 +259,7 @@ where
mut cs: CS, mut cs: CS,
other: &Self, other: &Self,
) -> Result<Self, SynthesisError> { ) -> Result<Self, SynthesisError> {
// Uses Toom-Cool-3x multiplication from
// Uses Toom-Cook-3x multiplication from
// //
// Reference: // Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields" // "Multiplication and Squaring on Pairing-Friendly Fields"
@ -404,7 +404,7 @@ where
&self, &self,
mut cs: CS, mut cs: CS,
) -> Result<Self, SynthesisError> { ) -> Result<Self, SynthesisError> {
// Uses Toom-Cool-3x multiplication from
// Uses Toom-Cook-3x multiplication from
// //
// Reference: // Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields" // "Multiplication and Squaring on Pairing-Friendly Fields"
@ -500,7 +500,7 @@ where
Ok(Self::new(c0, c1, c2)) Ok(Self::new(c0, c1, c2))
} }
// 18 constaints, we can probably do better but not sure it's worth it.
// 18 constraints, we can probably do better but not sure it's worth it.
#[inline] #[inline]
fn inverse<CS: ConstraintSystem<ConstraintF>>( fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self, &self,

+ 7
- 0
r1cs-std/src/fields/mod.rs

@ -7,6 +7,9 @@ use crate::prelude::*;
pub mod fp; pub mod fp;
pub mod fp12; pub mod fp12;
pub mod fp2; pub mod fp2;
pub mod fp3;
pub mod fp4;
pub mod fp6_2over3;
pub mod fp6_3over2; pub mod fp6_3over2;
pub trait FieldGadget<F: Field, ConstraintF: Field>: pub trait FieldGadget<F: Field, ConstraintF: Field>:
@ -248,6 +251,10 @@ pub trait FieldGadget:
fn cost_of_mul() -> usize; fn cost_of_mul() -> usize;
fn cost_of_mul_equals() -> usize {
Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost()
}
fn cost_of_inv() -> usize; fn cost_of_inv() -> usize;
} }

+ 421
- 0
r1cs-std/src/groups/curves/short_weierstrass/mnt4/mod.rs

@ -0,0 +1,421 @@
use algebra::{
curves::mnt4::{
g2::{AteAdditionCoefficients, AteDoubleCoefficients},
G1Prepared, G2Prepared, MNT4Parameters,
},
Field,
};
use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::{
fields::{fp::FpGadget, fp2::Fp2Gadget, FieldGadget},
groups::curves::short_weierstrass::AffineGadget,
pairing::mnt4::PairingGadget,
prelude::*,
Vec,
};
pub type G1Gadget<P> = AffineGadget<
<P as MNT4Parameters>::G1Parameters,
<P as MNT4Parameters>::Fp,
FpGadget<<P as MNT4Parameters>::Fp>,
>;
pub type G2Gadget<P> =
AffineGadget<<P as MNT4Parameters>::G2Parameters, <P as MNT4Parameters>::Fp, Fp2G<P>>;
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT4Parameters"), Debug(bound = "P: MNT4Parameters"))]
pub struct G1PreparedGadget<P: MNT4Parameters> {
pub x: FpGadget<P::Fp>,
pub y: FpGadget<P::Fp>,
pub x_twist: Fp2Gadget<P::Fp2Params, P::Fp>,
pub y_twist: Fp2Gadget<P::Fp2Params, P::Fp>,
}
impl<P: MNT4Parameters> G1PreparedGadget<P> {
pub fn get_value(&self) -> Option<G1Prepared<P>> {
match (
self.x.get_value(),
self.y.get_value(),
self.x_twist.get_value(),
self.y_twist.get_value(),
) {
(Some(x), Some(y), Some(x_twist), Some(y_twist)) => Some(G1Prepared {
x,
y,
x_twist,
y_twist,
}),
_ => None,
}
}
pub fn from_affine<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
q: &G1Gadget<P>,
) -> Result<Self, SynthesisError> {
let x_twist = Fp2Gadget::new(
q.x.mul_by_constant(cs.ns(|| "g1.x * twist.c0"), &P::TWIST.c0)?,
q.x.mul_by_constant(cs.ns(|| "g1.x * twist.c1"), &P::TWIST.c1)?,
);
let y_twist = Fp2Gadget::new(
q.y.mul_by_constant(cs.ns(|| "g1.y * twist.c0"), &P::TWIST.c0)?,
q.y.mul_by_constant(cs.ns(|| "g1.y * twist.c1"), &P::TWIST.c1)?,
);
Ok(G1PreparedGadget {
x: q.x.clone(),
y: q.y.clone(),
x_twist,
y_twist,
})
}
}
impl<P: MNT4Parameters> ToBytesGadget<P::Fp> for G1PreparedGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_twist = self.x_twist.to_bytes(&mut cs.ns(|| "x_twist to bytes"))?;
let mut y_twist = self.y_twist.to_bytes(&mut cs.ns(|| "y_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_twist);
x.append(&mut y_twist);
Ok(x)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_non_unique_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_non_unique_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_twist = self
.x_twist
.to_non_unique_bytes(&mut cs.ns(|| "x_twist to bytes"))?;
let mut y_twist = self
.y_twist
.to_non_unique_bytes(&mut cs.ns(|| "y_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_twist);
x.append(&mut y_twist);
Ok(x)
}
}
type Fp2G<P> = Fp2Gadget<<P as MNT4Parameters>::Fp2Params, <P as MNT4Parameters>::Fp>;
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT4Parameters"), Debug(bound = "P: MNT4Parameters"))]
pub struct G2PreparedGadget<P: MNT4Parameters> {
pub x: Fp2Gadget<P::Fp2Params, P::Fp>,
pub y: Fp2Gadget<P::Fp2Params, P::Fp>,
pub x_over_twist: Fp2Gadget<P::Fp2Params, P::Fp>,
pub y_over_twist: Fp2Gadget<P::Fp2Params, P::Fp>,
pub double_coefficients: Vec<AteDoubleCoefficientsGadget<P>>,
pub addition_coefficients: Vec<AteAdditionCoefficientsGadget<P>>,
}
impl<P: MNT4Parameters> ToBytesGadget<P::Fp> for G2PreparedGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_over_twist = self
.x_over_twist
.to_bytes(&mut cs.ns(|| "x_over_twist to bytes"))?;
let mut y_over_twist = self
.y_over_twist
.to_bytes(&mut cs.ns(|| "y_over_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_over_twist);
x.append(&mut y_over_twist);
for (i, coeff) in self.double_coefficients.iter().enumerate() {
x.extend_from_slice(&coeff.to_bytes(cs.ns(|| format!("double_coefficients {}", i)))?);
}
for (i, coeff) in self.addition_coefficients.iter().enumerate() {
x.extend_from_slice(&coeff.to_bytes(cs.ns(|| format!("addition_coefficients {}", i)))?);
}
Ok(x)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_non_unique_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_non_unique_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_over_twist = self
.x_over_twist
.to_non_unique_bytes(&mut cs.ns(|| "x_over_twist to bytes"))?;
let mut y_over_twist = self
.y_over_twist
.to_non_unique_bytes(&mut cs.ns(|| "y_over_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_over_twist);
x.append(&mut y_over_twist);
for (i, coeff) in self.double_coefficients.iter().enumerate() {
x.extend_from_slice(
&coeff.to_non_unique_bytes(cs.ns(|| format!("double_coefficients {}", i)))?,
);
}
for (i, coeff) in self.addition_coefficients.iter().enumerate() {
x.extend_from_slice(
&coeff.to_non_unique_bytes(cs.ns(|| format!("addition_coefficients {}", i)))?,
);
}
Ok(x)
}
}
impl<P: MNT4Parameters> G2PreparedGadget<P> {
pub fn get_value(&self) -> Option<G2Prepared<P>> {
match (
self.x.get_value(),
self.y.get_value(),
self.x_over_twist.get_value(),
self.y_over_twist.get_value(),
self.double_coefficients
.iter()
.map(|coeff| coeff.get_value())
.collect::<Option<Vec<AteDoubleCoefficients<P>>>>(),
self.addition_coefficients
.iter()
.map(|coeff| coeff.get_value())
.collect::<Option<Vec<AteAdditionCoefficients<P>>>>(),
) {
(
Some(x),
Some(y),
Some(x_over_twist),
Some(y_over_twist),
Some(double_coefficients),
Some(addition_coefficients),
) => Some(G2Prepared {
x,
y,
x_over_twist,
y_over_twist,
double_coefficients,
addition_coefficients,
}),
_ => None,
}
}
pub fn from_affine<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
q: &G2Gadget<P>,
) -> Result<Self, SynthesisError> {
let twist_inv = P::TWIST.inverse().unwrap();
let mut g2p = G2PreparedGadget {
x: q.x.clone(),
y: q.y.clone(),
x_over_twist: q.x.mul_by_constant(cs.ns(|| "x over twist"), &twist_inv)?,
y_over_twist: q.y.mul_by_constant(cs.ns(|| "y over twist"), &twist_inv)?,
double_coefficients: vec![],
addition_coefficients: vec![],
};
let fp2_one = Fp2G::<P>::one(cs.ns(|| "one"))?;
let mut r = G2ProjectiveExtendedGadget {
x: q.x.clone(),
y: q.y.clone(),
z: fp2_one.clone(),
t: fp2_one,
};
for (idx, value) in P::ATE_LOOP_COUNT.iter().rev().enumerate() {
let mut tmp = *value;
let skip_extraneous_bits = 64 - value.leading_zeros();
let mut v = Vec::with_capacity(16);
for i in 0..64 {
if idx == 0 && (i == 0 || i >= skip_extraneous_bits) {
continue;
}
v.push(tmp & 1 == 1);
tmp >>= 1;
}
let mut cs = cs.ns(|| format!("ate loop iteration {}", idx));
for (j, bit) in v.iter().rev().enumerate() {
let (r2, coeff) = PairingGadget::<P>::doubling_step_for_flipped_miller_loop(
cs.ns(|| format!("doubling step {}", j)),
&r,
)?;
g2p.double_coefficients.push(coeff);
r = r2;
if *bit {
let (r2, coeff) =
PairingGadget::<P>::mixed_addition_step_for_flipped_miller_loop(
cs.ns(|| format!("mixed addition step {}", j)),
&q.x,
&q.y,
&r,
)?;
g2p.addition_coefficients.push(coeff);
r = r2;
}
tmp >>= 1;
}
}
if P::ATE_IS_LOOP_COUNT_NEG {
let rz_inv = r.z.inverse(cs.ns(|| "inverse r.z"))?;
let rz2_inv = rz_inv.square(cs.ns(|| "rz_inv^2"))?;
let rz3_inv = rz_inv.mul(cs.ns(|| "rz_inv * rz_inv^2"), &rz2_inv)?;
let minus_r_affine_x = r.x.mul(cs.ns(|| "r.x * rz2_inv"), &rz2_inv)?;
let minus_r_affine_y =
r.y.negate(cs.ns(|| "-r.y"))?
.mul(cs.ns(|| "-r.y * rz3_inv"), &rz3_inv)?;
let add_result = PairingGadget::<P>::mixed_addition_step_for_flipped_miller_loop(
cs.ns(|| "mixed_addition step"),
&minus_r_affine_x,
&minus_r_affine_y,
&r,
)?;
g2p.addition_coefficients.push(add_result.1);
}
Ok(g2p)
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT4Parameters"), Debug(bound = "P: MNT4Parameters"))]
pub struct AteDoubleCoefficientsGadget<P: MNT4Parameters> {
pub c_h: Fp2Gadget<P::Fp2Params, P::Fp>,
pub c_4c: Fp2Gadget<P::Fp2Params, P::Fp>,
pub c_j: Fp2Gadget<P::Fp2Params, P::Fp>,
pub c_l: Fp2Gadget<P::Fp2Params, P::Fp>,
}
impl<P: MNT4Parameters> ToBytesGadget<P::Fp> for AteDoubleCoefficientsGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_h = self.c_h.to_bytes(&mut cs.ns(|| "c_h to bytes"))?;
let mut c_4c = self.c_4c.to_bytes(&mut cs.ns(|| "c_4c to bytes"))?;
let mut c_j = self.c_j.to_bytes(&mut cs.ns(|| "c_j to bytes"))?;
let mut c_l = self.c_l.to_bytes(&mut cs.ns(|| "c_l to bytes"))?;
c_h.append(&mut c_4c);
c_h.append(&mut c_j);
c_h.append(&mut c_l);
Ok(c_h)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_h = self
.c_h
.to_non_unique_bytes(&mut cs.ns(|| "c_h to bytes"))?;
let mut c_4c = self
.c_4c
.to_non_unique_bytes(&mut cs.ns(|| "c_4c to bytes"))?;
let mut c_j = self
.c_j
.to_non_unique_bytes(&mut cs.ns(|| "c_j to bytes"))?;
let mut c_l = self
.c_l
.to_non_unique_bytes(&mut cs.ns(|| "c_l to bytes"))?;
c_h.append(&mut c_4c);
c_h.append(&mut c_j);
c_h.append(&mut c_l);
Ok(c_h)
}
}
impl<P: MNT4Parameters> AteDoubleCoefficientsGadget<P> {
pub fn get_value(&self) -> Option<AteDoubleCoefficients<P>> {
match (
self.c_h.get_value(),
self.c_4c.get_value(),
self.c_j.get_value(),
self.c_l.get_value(),
) {
(Some(c_h), Some(c_4c), Some(c_j), Some(c_l)) => Some(AteDoubleCoefficients {
c_h,
c_4c,
c_j,
c_l,
}),
_ => None,
}
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT4Parameters"), Debug(bound = "P: MNT4Parameters"))]
pub struct AteAdditionCoefficientsGadget<P: MNT4Parameters> {
pub c_l1: Fp2Gadget<P::Fp2Params, P::Fp>,
pub c_rz: Fp2Gadget<P::Fp2Params, P::Fp>,
}
impl<P: MNT4Parameters> ToBytesGadget<P::Fp> for AteAdditionCoefficientsGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_l1 = self.c_l1.to_bytes(&mut cs.ns(|| "c_l1 to bytes"))?;
let mut c_rz = self.c_rz.to_bytes(&mut cs.ns(|| "c_rz to bytes"))?;
c_l1.append(&mut c_rz);
Ok(c_l1)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_l1 = self
.c_l1
.to_non_unique_bytes(&mut cs.ns(|| "c_l1 to bytes"))?;
let mut c_rz = self
.c_rz
.to_non_unique_bytes(&mut cs.ns(|| "c_rz to bytes"))?;
c_l1.append(&mut c_rz);
Ok(c_l1)
}
}
impl<P: MNT4Parameters> AteAdditionCoefficientsGadget<P> {
pub fn get_value(&self) -> Option<AteAdditionCoefficients<P>> {
match (self.c_l1.get_value(), self.c_rz.get_value()) {
(Some(c_l1), Some(c_rz)) => Some(AteAdditionCoefficients { c_l1, c_rz }),
_ => None,
}
}
}
pub struct G2ProjectiveExtendedGadget<P: MNT4Parameters> {
pub x: Fp2Gadget<P::Fp2Params, P::Fp>,
pub y: Fp2Gadget<P::Fp2Params, P::Fp>,
pub z: Fp2Gadget<P::Fp2Params, P::Fp>,
pub t: Fp2Gadget<P::Fp2Params, P::Fp>,
}

+ 423
- 0
r1cs-std/src/groups/curves/short_weierstrass/mnt6/mod.rs

@ -0,0 +1,423 @@
use algebra::{
curves::mnt6::{
g2::{AteAdditionCoefficients, AteDoubleCoefficients},
G1Prepared, G2Prepared, MNT6Parameters,
},
Field,
};
use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::{
fields::{fp::FpGadget, fp3::Fp3Gadget, FieldGadget},
groups::curves::short_weierstrass::AffineGadget,
pairing::mnt6::PairingGadget,
prelude::*,
Vec,
};
pub type G1Gadget<P> = AffineGadget<
<P as MNT6Parameters>::G1Parameters,
<P as MNT6Parameters>::Fp,
FpGadget<<P as MNT6Parameters>::Fp>,
>;
pub type G2Gadget<P> =
AffineGadget<<P as MNT6Parameters>::G2Parameters, <P as MNT6Parameters>::Fp, Fp3G<P>>;
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT6Parameters"), Debug(bound = "P: MNT6Parameters"))]
pub struct G1PreparedGadget<P: MNT6Parameters> {
pub x: FpGadget<P::Fp>,
pub y: FpGadget<P::Fp>,
pub x_twist: Fp3Gadget<P::Fp3Params, P::Fp>,
pub y_twist: Fp3Gadget<P::Fp3Params, P::Fp>,
}
impl<P: MNT6Parameters> G1PreparedGadget<P> {
pub fn get_value(&self) -> Option<G1Prepared<P>> {
match (
self.x.get_value(),
self.y.get_value(),
self.x_twist.get_value(),
self.y_twist.get_value(),
) {
(Some(x), Some(y), Some(x_twist), Some(y_twist)) => Some(G1Prepared {
x,
y,
x_twist,
y_twist,
}),
_ => None,
}
}
pub fn from_affine<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
q: &G1Gadget<P>,
) -> Result<Self, SynthesisError> {
let x_twist = Fp3Gadget::new(
q.x.mul_by_constant(cs.ns(|| "g1.x * twist.c0"), &P::TWIST.c0)?,
q.x.mul_by_constant(cs.ns(|| "g1.x * twist.c1"), &P::TWIST.c1)?,
q.x.mul_by_constant(cs.ns(|| "g1.x * twist.c2"), &P::TWIST.c2)?,
);
let y_twist = Fp3Gadget::new(
q.y.mul_by_constant(cs.ns(|| "g1.y * twist.c0"), &P::TWIST.c0)?,
q.y.mul_by_constant(cs.ns(|| "g1.y * twist.c1"), &P::TWIST.c1)?,
q.y.mul_by_constant(cs.ns(|| "g1.y * twist.c2"), &P::TWIST.c2)?,
);
Ok(G1PreparedGadget {
x: q.x.clone(),
y: q.y.clone(),
x_twist,
y_twist,
})
}
}
impl<P: MNT6Parameters> ToBytesGadget<P::Fp> for G1PreparedGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_twist = self.x_twist.to_bytes(&mut cs.ns(|| "x_twist to bytes"))?;
let mut y_twist = self.y_twist.to_bytes(&mut cs.ns(|| "y_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_twist);
x.append(&mut y_twist);
Ok(x)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_non_unique_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_non_unique_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_twist = self
.x_twist
.to_non_unique_bytes(&mut cs.ns(|| "x_twist to bytes"))?;
let mut y_twist = self
.y_twist
.to_non_unique_bytes(&mut cs.ns(|| "y_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_twist);
x.append(&mut y_twist);
Ok(x)
}
}
type Fp3G<P> = Fp3Gadget<<P as MNT6Parameters>::Fp3Params, <P as MNT6Parameters>::Fp>;
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT6Parameters"), Debug(bound = "P: MNT6Parameters"))]
pub struct G2PreparedGadget<P: MNT6Parameters> {
pub x: Fp3Gadget<P::Fp3Params, P::Fp>,
pub y: Fp3Gadget<P::Fp3Params, P::Fp>,
pub x_over_twist: Fp3Gadget<P::Fp3Params, P::Fp>,
pub y_over_twist: Fp3Gadget<P::Fp3Params, P::Fp>,
pub double_coefficients: Vec<AteDoubleCoefficientsGadget<P>>,
pub addition_coefficients: Vec<AteAdditionCoefficientsGadget<P>>,
}
impl<P: MNT6Parameters> ToBytesGadget<P::Fp> for G2PreparedGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_over_twist = self
.x_over_twist
.to_bytes(&mut cs.ns(|| "x_over_twist to bytes"))?;
let mut y_over_twist = self
.y_over_twist
.to_bytes(&mut cs.ns(|| "y_over_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_over_twist);
x.append(&mut y_over_twist);
for (i, coeff) in self.double_coefficients.iter().enumerate() {
x.extend_from_slice(&coeff.to_bytes(cs.ns(|| format!("double_coefficients {}", i)))?);
}
for (i, coeff) in self.addition_coefficients.iter().enumerate() {
x.extend_from_slice(&coeff.to_bytes(cs.ns(|| format!("addition_coefficients {}", i)))?);
}
Ok(x)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut x = self.x.to_non_unique_bytes(&mut cs.ns(|| "x to bytes"))?;
let mut y = self.y.to_non_unique_bytes(&mut cs.ns(|| "y to bytes"))?;
let mut x_over_twist = self
.x_over_twist
.to_non_unique_bytes(&mut cs.ns(|| "x_over_twist to bytes"))?;
let mut y_over_twist = self
.y_over_twist
.to_non_unique_bytes(&mut cs.ns(|| "y_over_twist to bytes"))?;
x.append(&mut y);
x.append(&mut x_over_twist);
x.append(&mut y_over_twist);
for (i, coeff) in self.double_coefficients.iter().enumerate() {
x.extend_from_slice(
&coeff.to_non_unique_bytes(cs.ns(|| format!("double_coefficients {}", i)))?,
);
}
for (i, coeff) in self.addition_coefficients.iter().enumerate() {
x.extend_from_slice(
&coeff.to_non_unique_bytes(cs.ns(|| format!("addition_coefficients {}", i)))?,
);
}
Ok(x)
}
}
impl<P: MNT6Parameters> G2PreparedGadget<P> {
pub fn get_value(&self) -> Option<G2Prepared<P>> {
match (
self.x.get_value(),
self.y.get_value(),
self.x_over_twist.get_value(),
self.y_over_twist.get_value(),
self.double_coefficients
.iter()
.map(|coeff| coeff.get_value())
.collect::<Option<Vec<AteDoubleCoefficients<P>>>>(),
self.addition_coefficients
.iter()
.map(|coeff| coeff.get_value())
.collect::<Option<Vec<AteAdditionCoefficients<P>>>>(),
) {
(
Some(x),
Some(y),
Some(x_over_twist),
Some(y_over_twist),
Some(double_coefficients),
Some(addition_coefficients),
) => Some(G2Prepared {
x,
y,
x_over_twist,
y_over_twist,
double_coefficients,
addition_coefficients,
}),
_ => None,
}
}
pub fn from_affine<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
q: &G2Gadget<P>,
) -> Result<Self, SynthesisError> {
let twist_inv = P::TWIST.inverse().unwrap();
let mut g2p = G2PreparedGadget {
x: q.x.clone(),
y: q.y.clone(),
x_over_twist: q.x.mul_by_constant(cs.ns(|| "x over twist"), &twist_inv)?,
y_over_twist: q.y.mul_by_constant(cs.ns(|| "y over twist"), &twist_inv)?,
double_coefficients: vec![],
addition_coefficients: vec![],
};
let fp2_one = Fp3G::<P>::one(cs.ns(|| "one"))?;
let mut r = G2ProjectiveExtendedGadget {
x: q.x.clone(),
y: q.y.clone(),
z: fp2_one.clone(),
t: fp2_one,
};
for (idx, value) in P::ATE_LOOP_COUNT.iter().rev().enumerate() {
let mut tmp = *value;
let skip_extraneous_bits = 64 - value.leading_zeros();
let mut v = Vec::with_capacity(16);
for i in 0..64 {
if idx == 0 && (i == 0 || i >= skip_extraneous_bits) {
continue;
}
v.push(tmp & 1 == 1);
tmp >>= 1;
}
let mut cs = cs.ns(|| format!("ate loop iteration {}", idx));
for (j, bit) in v.iter().rev().enumerate() {
let (r2, coeff) = PairingGadget::<P>::doubling_step_for_flipped_miller_loop(
cs.ns(|| format!("doubling step {}", j)),
&r,
)?;
g2p.double_coefficients.push(coeff);
r = r2;
if *bit {
let (r2, coeff) =
PairingGadget::<P>::mixed_addition_step_for_flipped_miller_loop(
cs.ns(|| format!("mixed addition step {}", j)),
&q.x,
&q.y,
&r,
)?;
g2p.addition_coefficients.push(coeff);
r = r2;
}
tmp >>= 1;
}
}
if P::ATE_IS_LOOP_COUNT_NEG {
let rz_inv = r.z.inverse(cs.ns(|| "inverse r.z"))?;
let rz2_inv = rz_inv.square(cs.ns(|| "rz_inv^2"))?;
let rz3_inv = rz_inv.mul(cs.ns(|| "rz_inv * rz_inv^2"), &rz2_inv)?;
let minus_r_affine_x = r.x.mul(cs.ns(|| "r.x * rz2_inv"), &rz2_inv)?;
let minus_r_affine_y =
r.y.negate(cs.ns(|| "-r.y"))?
.mul(cs.ns(|| "-r.y * rz3_inv"), &rz3_inv)?;
let add_result = PairingGadget::<P>::mixed_addition_step_for_flipped_miller_loop(
cs.ns(|| "mixed_addition step"),
&minus_r_affine_x,
&minus_r_affine_y,
&r,
)?;
g2p.addition_coefficients.push(add_result.1);
}
Ok(g2p)
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT6Parameters"), Debug(bound = "P: MNT6Parameters"))]
pub struct AteDoubleCoefficientsGadget<P: MNT6Parameters> {
pub c_h: Fp3Gadget<P::Fp3Params, P::Fp>,
pub c_4c: Fp3Gadget<P::Fp3Params, P::Fp>,
pub c_j: Fp3Gadget<P::Fp3Params, P::Fp>,
pub c_l: Fp3Gadget<P::Fp3Params, P::Fp>,
}
impl<P: MNT6Parameters> ToBytesGadget<P::Fp> for AteDoubleCoefficientsGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_h = self.c_h.to_bytes(&mut cs.ns(|| "c_h to bytes"))?;
let mut c_4c = self.c_4c.to_bytes(&mut cs.ns(|| "c_4c to bytes"))?;
let mut c_j = self.c_j.to_bytes(&mut cs.ns(|| "c_j to bytes"))?;
let mut c_l = self.c_l.to_bytes(&mut cs.ns(|| "c_l to bytes"))?;
c_h.append(&mut c_4c);
c_h.append(&mut c_j);
c_h.append(&mut c_l);
Ok(c_h)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_h = self
.c_h
.to_non_unique_bytes(&mut cs.ns(|| "c_h to bytes"))?;
let mut c_4c = self
.c_4c
.to_non_unique_bytes(&mut cs.ns(|| "c_4c to bytes"))?;
let mut c_j = self
.c_j
.to_non_unique_bytes(&mut cs.ns(|| "c_j to bytes"))?;
let mut c_l = self
.c_l
.to_non_unique_bytes(&mut cs.ns(|| "c_l to bytes"))?;
c_h.append(&mut c_4c);
c_h.append(&mut c_j);
c_h.append(&mut c_l);
Ok(c_h)
}
}
impl<P: MNT6Parameters> AteDoubleCoefficientsGadget<P> {
pub fn get_value(&self) -> Option<AteDoubleCoefficients<P>> {
match (
self.c_h.get_value(),
self.c_4c.get_value(),
self.c_j.get_value(),
self.c_l.get_value(),
) {
(Some(c_h), Some(c_4c), Some(c_j), Some(c_l)) => Some(AteDoubleCoefficients {
c_h,
c_4c,
c_j,
c_l,
}),
_ => None,
}
}
}
#[derive(Derivative)]
#[derivative(Clone(bound = "P: MNT6Parameters"), Debug(bound = "P: MNT6Parameters"))]
pub struct AteAdditionCoefficientsGadget<P: MNT6Parameters> {
pub c_l1: Fp3Gadget<P::Fp3Params, P::Fp>,
pub c_rz: Fp3Gadget<P::Fp3Params, P::Fp>,
}
impl<P: MNT6Parameters> ToBytesGadget<P::Fp> for AteAdditionCoefficientsGadget<P> {
#[inline]
fn to_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_l1 = self.c_l1.to_bytes(&mut cs.ns(|| "c_l1 to bytes"))?;
let mut c_rz = self.c_rz.to_bytes(&mut cs.ns(|| "c_rz to bytes"))?;
c_l1.append(&mut c_rz);
Ok(c_l1)
}
fn to_non_unique_bytes<CS: ConstraintSystem<P::Fp>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c_l1 = self
.c_l1
.to_non_unique_bytes(&mut cs.ns(|| "c_l1 to bytes"))?;
let mut c_rz = self
.c_rz
.to_non_unique_bytes(&mut cs.ns(|| "c_rz to bytes"))?;
c_l1.append(&mut c_rz);
Ok(c_l1)
}
}
impl<P: MNT6Parameters> AteAdditionCoefficientsGadget<P> {
pub fn get_value(&self) -> Option<AteAdditionCoefficients<P>> {
match (self.c_l1.get_value(), self.c_rz.get_value()) {
(Some(c_l1), Some(c_rz)) => Some(AteAdditionCoefficients { c_l1, c_rz }),
_ => None,
}
}
}
pub struct G2ProjectiveExtendedGadget<P: MNT6Parameters> {
pub x: Fp3Gadget<P::Fp3Params, P::Fp>,
pub y: Fp3Gadget<P::Fp3Params, P::Fp>,
pub z: Fp3Gadget<P::Fp3Params, P::Fp>,
pub t: Fp3Gadget<P::Fp3Params, P::Fp>,
}

+ 3
- 1
r1cs-std/src/groups/curves/short_weierstrass/mod.rs

@ -11,6 +11,8 @@ use r1cs_core::{ConstraintSystem, SynthesisError};
use crate::{prelude::*, Assignment, Vec}; use crate::{prelude::*, Assignment, Vec};
pub mod bls12; pub mod bls12;
pub mod mnt4;
pub mod mnt6;
#[derive(Derivative)] #[derive(Derivative)]
#[derivative(Debug, Clone)] #[derivative(Debug, Clone)]
@ -321,7 +323,7 @@ where
} }
fn cost_of_add() -> usize { fn cost_of_add() -> usize {
3 * F::cost_of_mul() + F::cost_of_inv()
3 * F::cost_of_mul_equals() + F::cost_of_inv()
} }
fn cost_of_double() -> usize { fn cost_of_double() -> usize {

+ 1
- 1
r1cs-std/src/groups/mod.rs

@ -6,7 +6,7 @@ use core::{borrow::Borrow, fmt::Debug};
pub mod curves; pub mod curves;
pub use self::curves::short_weierstrass::bls12;
pub use self::curves::short_weierstrass::{bls12, mnt4, mnt6};
pub trait GroupGadget<G: Group, ConstraintF: Field>: pub trait GroupGadget<G: Group, ConstraintF: Field>:
Sized Sized

+ 198
- 0
r1cs-std/src/instantiated/mnt4_298/curves.rs

@ -0,0 +1,198 @@
use crate::groups::mnt4;
use algebra::mnt4_298::Parameters;
pub type G1Gadget = mnt4::G1Gadget<Parameters>;
pub type G2Gadget = mnt4::G2Gadget<Parameters>;
pub type G1PreparedGadget = mnt4::G1PreparedGadget<Parameters>;
pub type G2PreparedGadget = mnt4::G2PreparedGadget<Parameters>;
#[cfg(test)]
mod test {
use rand::Rng;
use super::{G1Gadget, G2Gadget};
use crate::{prelude::*, test_constraint_system::TestConstraintSystem, Vec};
use algebra::{mnt4_298::*, test_rng, AffineCurve, BitIterator, PrimeField, ProjectiveCurve};
use r1cs_core::ConstraintSystem;
#[test]
fn mnt4_298_g1_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G1Projective = rng.gen();
let b: G1Projective = rng.gen();
let gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G1Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G1Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G1Gadget::cost_of_add());
}
#[test]
fn mnt4_298_g2_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G2Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G2Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G2Gadget::cost_of_add());
}
#[test]
fn mnt4_298_g1_gadget_test() {
use algebra::UniformRand;
use rand::SeedableRng;
use rand_xorshift::XorShiftRng;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut cs = TestConstraintSystem::<Fq>::new();
let a = G1Projective::rand(&mut rng);
let b = G1Projective::rand(&mut rng);
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.value.unwrap(), a_affine.x);
assert_eq!(gadget_a.y.value.unwrap(), a_affine.y);
assert_eq!(gadget_b.x.value.unwrap(), b_affine.x);
assert_eq!(gadget_b.y.value.unwrap(), b_affine.y);
// Check addition
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
let ab_val = gadget_ab
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(ab_val, ab_affine, "Result of addition is unequal");
// Check doubling
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
let aa_val = gadget_a
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(
aa_val, aa_affine,
"Gadget and native values are unequal after double."
);
// Check mul_bits
let scalar = Fr::rand(&mut rng);
let native_result = aa.into_affine().mul(scalar) + &b;
let native_result = native_result.into_affine();
let mut scalar: Vec<bool> = BitIterator::new(scalar.into_repr()).collect();
// Get the scalar bits into little-endian form.
scalar.reverse();
let input = Vec::<Boolean>::alloc(cs.ns(|| "Input"), || Ok(scalar)).unwrap();
let result = gadget_a
.mul_bits(cs.ns(|| "mul_bits"), &gadget_b, input.iter())
.unwrap();
let result_val = result.get_value().unwrap().into_affine();
assert_eq!(
result_val, native_result,
"gadget & native values are diff. after scalar mul"
);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
#[test]
fn mnt4_298_g2_gadget_test() {
let mut cs = TestConstraintSystem::<Fq>::new();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), a_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), a_affine.y);
assert_eq!(gadget_b.x.get_value().unwrap(), b_affine.x);
assert_eq!(gadget_b.y.get_value().unwrap(), b_affine.y);
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
assert_eq!(gadget_ab.x.get_value().unwrap(), ab_affine.x);
assert_eq!(gadget_ab.y.get_value().unwrap(), ab_affine.y);
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), aa_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), aa_affine.y);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
}

+ 23
- 0
r1cs-std/src/instantiated/mnt4_298/fields.rs

@ -0,0 +1,23 @@
use algebra::mnt4_298::{Fq, Fq2Parameters, Fq4Parameters};
use crate::fields::{fp::FpGadget, fp2::Fp2Gadget, fp4::Fp4Gadget};
pub type FqGadget = FpGadget<Fq>;
pub type Fq2Gadget = Fp2Gadget<Fq2Parameters, Fq>;
pub type Fq4Gadget = Fp4Gadget<Fq4Parameters, Fq>;
#[test]
fn mnt4_298_field_gadgets_test() {
use super::*;
use crate::fields::tests::*;
use algebra::mnt4_298::{Fq, Fq2, Fq4};
field_test::<_, Fq, FqGadget>();
frobenius_tests::<Fq, Fq, FqGadget>(13);
field_test::<_, Fq, Fq2Gadget>();
frobenius_tests::<Fq2, Fq, Fq2Gadget>(13);
field_test::<_, Fq, Fq4Gadget>();
frobenius_tests::<Fq4, Fq, Fq4Gadget>(13);
}

+ 7
- 0
r1cs-std/src/instantiated/mnt4_298/mod.rs

@ -0,0 +1,7 @@
mod curves;
mod fields;
mod pairing;
pub use curves::*;
pub use fields::*;
pub use pairing::*;

+ 8
- 0
r1cs-std/src/instantiated/mnt4_298/pairing.rs

@ -0,0 +1,8 @@
use algebra::mnt4_298::Parameters;
pub type PairingGadget = crate::pairing::mnt4::PairingGadget<Parameters>;
#[test]
fn test() {
crate::pairing::tests::bilinearity_test::<algebra::MNT4_298, _, PairingGadget>()
}

+ 198
- 0
r1cs-std/src/instantiated/mnt4_753/curves.rs

@ -0,0 +1,198 @@
use crate::groups::mnt4;
use algebra::mnt4_753::Parameters;
pub type G1Gadget = mnt4::G1Gadget<Parameters>;
pub type G2Gadget = mnt4::G2Gadget<Parameters>;
pub type G1PreparedGadget = mnt4::G1PreparedGadget<Parameters>;
pub type G2PreparedGadget = mnt4::G2PreparedGadget<Parameters>;
#[cfg(test)]
mod test {
use rand::Rng;
use super::{G1Gadget, G2Gadget};
use crate::{prelude::*, test_constraint_system::TestConstraintSystem, Vec};
use algebra::{mnt4_753::*, test_rng, AffineCurve, BitIterator, PrimeField, ProjectiveCurve};
use r1cs_core::ConstraintSystem;
#[test]
fn mnt4_753_g1_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G1Projective = rng.gen();
let b: G1Projective = rng.gen();
let gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G1Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G1Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G1Gadget::cost_of_add());
}
#[test]
fn mnt4_753_g2_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G2Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G2Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G2Gadget::cost_of_add());
}
#[test]
fn mnt4_753_g1_gadget_test() {
use algebra::UniformRand;
use rand::SeedableRng;
use rand_xorshift::XorShiftRng;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut cs = TestConstraintSystem::<Fq>::new();
let a = G1Projective::rand(&mut rng);
let b = G1Projective::rand(&mut rng);
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.value.unwrap(), a_affine.x);
assert_eq!(gadget_a.y.value.unwrap(), a_affine.y);
assert_eq!(gadget_b.x.value.unwrap(), b_affine.x);
assert_eq!(gadget_b.y.value.unwrap(), b_affine.y);
// Check addition
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
let ab_val = gadget_ab
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(ab_val, ab_affine, "Result of addition is unequal");
// Check doubling
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
let aa_val = gadget_a
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(
aa_val, aa_affine,
"Gadget and native values are unequal after double."
);
// Check mul_bits
let scalar = Fr::rand(&mut rng);
let native_result = aa.into_affine().mul(scalar) + &b;
let native_result = native_result.into_affine();
let mut scalar: Vec<bool> = BitIterator::new(scalar.into_repr()).collect();
// Get the scalar bits into little-endian form.
scalar.reverse();
let input = Vec::<Boolean>::alloc(cs.ns(|| "Input"), || Ok(scalar)).unwrap();
let result = gadget_a
.mul_bits(cs.ns(|| "mul_bits"), &gadget_b, input.iter())
.unwrap();
let result_val = result.get_value().unwrap().into_affine();
assert_eq!(
result_val, native_result,
"gadget & native values are diff. after scalar mul"
);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
#[test]
fn mnt4_753_g2_gadget_test() {
let mut cs = TestConstraintSystem::<Fq>::new();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), a_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), a_affine.y);
assert_eq!(gadget_b.x.get_value().unwrap(), b_affine.x);
assert_eq!(gadget_b.y.get_value().unwrap(), b_affine.y);
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
assert_eq!(gadget_ab.x.get_value().unwrap(), ab_affine.x);
assert_eq!(gadget_ab.y.get_value().unwrap(), ab_affine.y);
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), aa_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), aa_affine.y);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
}

+ 23
- 0
r1cs-std/src/instantiated/mnt4_753/fields.rs

@ -0,0 +1,23 @@
use algebra::mnt4_753::{Fq, Fq2Parameters, Fq4Parameters};
use crate::fields::{fp::FpGadget, fp2::Fp2Gadget, fp4::Fp4Gadget};
pub type FqGadget = FpGadget<Fq>;
pub type Fq2Gadget = Fp2Gadget<Fq2Parameters, Fq>;
pub type Fq4Gadget = Fp4Gadget<Fq4Parameters, Fq>;
#[test]
fn mnt4_753_field_gadgets_test() {
use super::*;
use crate::fields::tests::*;
use algebra::mnt4_753::{Fq, Fq2, Fq4};
field_test::<_, Fq, FqGadget>();
frobenius_tests::<Fq, Fq, FqGadget>(13);
field_test::<_, Fq, Fq2Gadget>();
frobenius_tests::<Fq2, Fq, Fq2Gadget>(13);
field_test::<_, Fq, Fq4Gadget>();
frobenius_tests::<Fq4, Fq, Fq4Gadget>(13);
}

+ 7
- 0
r1cs-std/src/instantiated/mnt4_753/mod.rs

@ -0,0 +1,7 @@
mod curves;
mod fields;
mod pairing;
pub use curves::*;
pub use fields::*;
pub use pairing::*;

+ 8
- 0
r1cs-std/src/instantiated/mnt4_753/pairing.rs

@ -0,0 +1,8 @@
use algebra::mnt4_753::Parameters;
pub type PairingGadget = crate::pairing::mnt4::PairingGadget<Parameters>;
#[test]
fn test() {
crate::pairing::tests::bilinearity_test::<algebra::MNT4_753, _, PairingGadget>()
}

+ 198
- 0
r1cs-std/src/instantiated/mnt6_298/curves.rs

@ -0,0 +1,198 @@
use crate::groups::mnt6;
use algebra::mnt6_298::Parameters;
pub type G1Gadget = mnt6::G1Gadget<Parameters>;
pub type G2Gadget = mnt6::G2Gadget<Parameters>;
pub type G1PreparedGadget = mnt6::G1PreparedGadget<Parameters>;
pub type G2PreparedGadget = mnt6::G2PreparedGadget<Parameters>;
#[cfg(test)]
mod test {
use rand::Rng;
use super::{G1Gadget, G2Gadget};
use crate::{prelude::*, test_constraint_system::TestConstraintSystem, Vec};
use algebra::{mnt6_298::*, test_rng, AffineCurve, BitIterator, PrimeField, ProjectiveCurve};
use r1cs_core::ConstraintSystem;
#[test]
fn mnt6_298_g1_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G1Projective = rng.gen();
let b: G1Projective = rng.gen();
let gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G1Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G1Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G1Gadget::cost_of_add());
}
#[test]
fn mnt6_298_g2_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G2Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G2Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G2Gadget::cost_of_add());
}
#[test]
fn mnt6_298_g1_gadget_test() {
use algebra::UniformRand;
use rand::SeedableRng;
use rand_xorshift::XorShiftRng;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut cs = TestConstraintSystem::<Fq>::new();
let a = G1Projective::rand(&mut rng);
let b = G1Projective::rand(&mut rng);
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.value.unwrap(), a_affine.x);
assert_eq!(gadget_a.y.value.unwrap(), a_affine.y);
assert_eq!(gadget_b.x.value.unwrap(), b_affine.x);
assert_eq!(gadget_b.y.value.unwrap(), b_affine.y);
// Check addition
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
let ab_val = gadget_ab
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(ab_val, ab_affine, "Result of addition is unequal");
// Check doubling
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
let aa_val = gadget_a
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(
aa_val, aa_affine,
"Gadget and native values are unequal after double."
);
// Check mul_bits
let scalar = Fr::rand(&mut rng);
let native_result = aa.into_affine().mul(scalar) + &b;
let native_result = native_result.into_affine();
let mut scalar: Vec<bool> = BitIterator::new(scalar.into_repr()).collect();
// Get the scalar bits into little-endian form.
scalar.reverse();
let input = Vec::<Boolean>::alloc(cs.ns(|| "Input"), || Ok(scalar)).unwrap();
let result = gadget_a
.mul_bits(cs.ns(|| "mul_bits"), &gadget_b, input.iter())
.unwrap();
let result_val = result.get_value().unwrap().into_affine();
assert_eq!(
result_val, native_result,
"gadget & native values are diff. after scalar mul"
);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
#[test]
fn mnt6_298_g2_gadget_test() {
let mut cs = TestConstraintSystem::<Fq>::new();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), a_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), a_affine.y);
assert_eq!(gadget_b.x.get_value().unwrap(), b_affine.x);
assert_eq!(gadget_b.y.get_value().unwrap(), b_affine.y);
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
assert_eq!(gadget_ab.x.get_value().unwrap(), ab_affine.x);
assert_eq!(gadget_ab.y.get_value().unwrap(), ab_affine.y);
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), aa_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), aa_affine.y);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
}

+ 23
- 0
r1cs-std/src/instantiated/mnt6_298/fields.rs

@ -0,0 +1,23 @@
use algebra::mnt6_298::{Fq, Fq3Parameters, Fq6Parameters};
use crate::fields::{fp::FpGadget, fp3::Fp3Gadget, fp6_2over3::Fp6Gadget};
pub type FqGadget = FpGadget<Fq>;
pub type Fq3Gadget = Fp3Gadget<Fq3Parameters, Fq>;
pub type Fq6Gadget = Fp6Gadget<Fq6Parameters, Fq>;
#[test]
fn mnt6_298_field_gadgets_test() {
use super::*;
use crate::fields::tests::*;
use algebra::mnt6_298::{Fq, Fq3, Fq6};
field_test::<_, Fq, FqGadget>();
frobenius_tests::<Fq, Fq, FqGadget>(13);
field_test::<_, Fq, Fq3Gadget>();
frobenius_tests::<Fq3, Fq, Fq3Gadget>(13);
field_test::<_, Fq, Fq6Gadget>();
frobenius_tests::<Fq6, Fq, Fq6Gadget>(13);
}

+ 7
- 0
r1cs-std/src/instantiated/mnt6_298/mod.rs

@ -0,0 +1,7 @@
mod curves;
mod fields;
mod pairing;
pub use curves::*;
pub use fields::*;
pub use pairing::*;

+ 8
- 0
r1cs-std/src/instantiated/mnt6_298/pairing.rs

@ -0,0 +1,8 @@
use algebra::mnt6_298::Parameters;
pub type PairingGadget = crate::pairing::mnt6::PairingGadget<Parameters>;
#[test]
fn test() {
crate::pairing::tests::bilinearity_test::<algebra::MNT6_298, _, PairingGadget>()
}

+ 198
- 0
r1cs-std/src/instantiated/mnt6_753/curves.rs

@ -0,0 +1,198 @@
use crate::groups::mnt6;
use algebra::mnt6_753::Parameters;
pub type G1Gadget = mnt6::G1Gadget<Parameters>;
pub type G2Gadget = mnt6::G2Gadget<Parameters>;
pub type G1PreparedGadget = mnt6::G1PreparedGadget<Parameters>;
pub type G2PreparedGadget = mnt6::G2PreparedGadget<Parameters>;
#[cfg(test)]
mod test {
use rand::Rng;
use super::{G1Gadget, G2Gadget};
use crate::{prelude::*, test_constraint_system::TestConstraintSystem, Vec};
use algebra::{mnt6_753::*, test_rng, AffineCurve, BitIterator, PrimeField, ProjectiveCurve};
use r1cs_core::ConstraintSystem;
#[test]
fn mnt6_753_g1_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G1Projective = rng.gen();
let b: G1Projective = rng.gen();
let gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G1Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G1Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G1Gadget::cost_of_add());
}
#[test]
fn mnt6_753_g2_constraint_costs() {
use crate::boolean::AllocatedBit;
let mut cs = TestConstraintSystem::<Fq>::new();
let bit = AllocatedBit::alloc(&mut cs.ns(|| "bool"), || Ok(true))
.unwrap()
.into();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
let alloc_cost = cs.num_constraints();
let _ = G2Gadget::conditionally_select(
&mut cs.ns(|| "cond_select"),
&bit,
&gadget_a,
&gadget_b,
)
.unwrap();
let cond_select_cost = cs.num_constraints() - alloc_cost;
let _ = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let add_cost = cs.num_constraints() - cond_select_cost - alloc_cost;
assert!(cs.is_satisfied());
assert_eq!(cond_select_cost, <G2Gadget as CondSelectGadget<Fq>>::cost());
assert_eq!(add_cost, G2Gadget::cost_of_add());
}
#[test]
fn mnt6_753_g1_gadget_test() {
use algebra::UniformRand;
use rand::SeedableRng;
use rand_xorshift::XorShiftRng;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut cs = TestConstraintSystem::<Fq>::new();
let a = G1Projective::rand(&mut rng);
let b = G1Projective::rand(&mut rng);
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G1Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G1Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.value.unwrap(), a_affine.x);
assert_eq!(gadget_a.y.value.unwrap(), a_affine.y);
assert_eq!(gadget_b.x.value.unwrap(), b_affine.x);
assert_eq!(gadget_b.y.value.unwrap(), b_affine.y);
// Check addition
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
let ab_val = gadget_ab
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(ab_val, ab_affine, "Result of addition is unequal");
// Check doubling
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
let aa_val = gadget_a
.get_value()
.expect("Doubling should be successful")
.into_affine();
assert_eq!(
aa_val, aa_affine,
"Gadget and native values are unequal after double."
);
// Check mul_bits
let scalar = Fr::rand(&mut rng);
let native_result = aa.into_affine().mul(scalar) + &b;
let native_result = native_result.into_affine();
let mut scalar: Vec<bool> = BitIterator::new(scalar.into_repr()).collect();
// Get the scalar bits into little-endian form.
scalar.reverse();
let input = Vec::<Boolean>::alloc(cs.ns(|| "Input"), || Ok(scalar)).unwrap();
let result = gadget_a
.mul_bits(cs.ns(|| "mul_bits"), &gadget_b, input.iter())
.unwrap();
let result_val = result.get_value().unwrap().into_affine();
assert_eq!(
result_val, native_result,
"gadget & native values are diff. after scalar mul"
);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
#[test]
fn mnt6_753_g2_gadget_test() {
let mut cs = TestConstraintSystem::<Fq>::new();
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
let a_affine = a.into_affine();
let b_affine = b.into_affine();
let mut gadget_a = G2Gadget::alloc(&mut cs.ns(|| "a"), || Ok(a)).unwrap();
let gadget_b = G2Gadget::alloc(&mut cs.ns(|| "b"), || Ok(b)).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), a_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), a_affine.y);
assert_eq!(gadget_b.x.get_value().unwrap(), b_affine.x);
assert_eq!(gadget_b.y.get_value().unwrap(), b_affine.y);
let ab = a + &b;
let ab_affine = ab.into_affine();
let gadget_ab = gadget_a.add(&mut cs.ns(|| "ab"), &gadget_b).unwrap();
let gadget_ba = gadget_b.add(&mut cs.ns(|| "ba"), &gadget_a).unwrap();
gadget_ba
.enforce_equal(&mut cs.ns(|| "b + a == a + b?"), &gadget_ab)
.unwrap();
assert_eq!(gadget_ab.x.get_value().unwrap(), ab_affine.x);
assert_eq!(gadget_ab.y.get_value().unwrap(), ab_affine.y);
let aa = a.double();
let aa_affine = aa.into_affine();
gadget_a.double_in_place(&mut cs.ns(|| "2a")).unwrap();
assert_eq!(gadget_a.x.get_value().unwrap(), aa_affine.x);
assert_eq!(gadget_a.y.get_value().unwrap(), aa_affine.y);
if !cs.is_satisfied() {
println!("{:?}", cs.which_is_unsatisfied().unwrap());
}
assert!(cs.is_satisfied());
}
}

+ 23
- 0
r1cs-std/src/instantiated/mnt6_753/fields.rs

@ -0,0 +1,23 @@
use algebra::mnt6_753::{Fq, Fq3Parameters, Fq6Parameters};
use crate::fields::{fp::FpGadget, fp3::Fp3Gadget, fp6_2over3::Fp6Gadget};
pub type FqGadget = FpGadget<Fq>;
pub type Fq3Gadget = Fp3Gadget<Fq3Parameters, Fq>;
pub type Fq6Gadget = Fp6Gadget<Fq6Parameters, Fq>;
#[test]
fn mnt6_753_field_gadgets_test() {
use super::*;
use crate::fields::tests::*;
use algebra::mnt6_753::{Fq, Fq3, Fq6};
field_test::<_, Fq, FqGadget>();
frobenius_tests::<Fq, Fq, FqGadget>(13);
field_test::<_, Fq, Fq3Gadget>();
frobenius_tests::<Fq3, Fq, Fq3Gadget>(13);
field_test::<_, Fq, Fq6Gadget>();
frobenius_tests::<Fq6, Fq, Fq6Gadget>(13);
}

+ 7
- 0
r1cs-std/src/instantiated/mnt6_753/mod.rs

@ -0,0 +1,7 @@
mod curves;
mod fields;
mod pairing;
pub use curves::*;
pub use fields::*;
pub use pairing::*;

+ 8
- 0
r1cs-std/src/instantiated/mnt6_753/pairing.rs

@ -0,0 +1,8 @@
use algebra::mnt6_753::Parameters;
pub type PairingGadget = crate::pairing::mnt6::PairingGadget<Parameters>;
#[test]
fn test() {
crate::pairing::tests::bilinearity_test::<algebra::MNT6_753, _, PairingGadget>()
}

+ 12
- 0
r1cs-std/src/instantiated/mod.rs

@ -9,3 +9,15 @@ pub mod edwards_sw6;
#[cfg(feature = "jubjub")] #[cfg(feature = "jubjub")]
pub mod jubjub; pub mod jubjub;
#[cfg(feature = "mnt4_298")]
pub mod mnt4_298;
#[cfg(feature = "mnt4_753")]
pub mod mnt4_753;
#[cfg(feature = "mnt6_298")]
pub mod mnt6_298;
#[cfg(feature = "mnt6_753")]
pub mod mnt6_753;

+ 12
- 0
r1cs-std/src/lib.rs

@ -57,6 +57,18 @@ pub use instantiated::edwards_sw6;
#[cfg(feature = "jubjub")] #[cfg(feature = "jubjub")]
pub use instantiated::jubjub; pub use instantiated::jubjub;
#[cfg(feature = "mnt4_298")]
pub use instantiated::mnt4_298;
#[cfg(feature = "mnt4_753")]
pub use instantiated::mnt4_753;
#[cfg(feature = "mnt6_298")]
pub use instantiated::mnt6_298;
#[cfg(feature = "mnt6_753")]
pub use instantiated::mnt6_753;
pub mod pairing; pub mod pairing;
pub mod alloc; pub mod alloc;

+ 338
- 0
r1cs-std/src/pairing/mnt4/mod.rs

@ -0,0 +1,338 @@
use r1cs_core::{ConstraintSystem, SynthesisError};
use super::PairingGadget as PG;
use crate::{
fields::{fp::FpGadget, fp2::Fp2Gadget, fp4::Fp4Gadget, FieldGadget},
groups::mnt4::{
AteAdditionCoefficientsGadget, AteDoubleCoefficientsGadget, G1Gadget, G1PreparedGadget,
G2Gadget, G2PreparedGadget, G2ProjectiveExtendedGadget,
},
};
use algebra::{
curves::mnt4::{MNT4Parameters, MNT4},
fields::BitIterator,
};
use core::marker::PhantomData;
pub struct PairingGadget<P: MNT4Parameters>(PhantomData<P>);
type Fp2G<P> = Fp2Gadget<<P as MNT4Parameters>::Fp2Params, <P as MNT4Parameters>::Fp>;
type Fp4G<P> = Fp4Gadget<<P as MNT4Parameters>::Fp4Params, <P as MNT4Parameters>::Fp>;
pub type GTGadget<P> = Fp4G<P>;
impl<P: MNT4Parameters> PairingGadget<P> {
pub(crate) fn doubling_step_for_flipped_miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
r: &G2ProjectiveExtendedGadget<P>,
) -> Result<
(
G2ProjectiveExtendedGadget<P>,
AteDoubleCoefficientsGadget<P>,
),
SynthesisError,
> {
let a = r.t.square(cs.ns(|| "r.t^2"))?;
let b = r.x.square(cs.ns(|| "r.x^2"))?;
let c = r.y.square(cs.ns(|| "r.y^2"))?;
let d = c.square(cs.ns(|| "c^2"))?;
let mut e = r.x.add(cs.ns(|| "r.x + c"), &c)?;
e.square_in_place(cs.ns(|| "(r.x + c)^2"))?;
e.sub_in_place(cs.ns(|| "(r.x + c)^2 - b"), &b)?;
e.sub_in_place(cs.ns(|| "(r.x + c)^2 - b - d"), &d)?;
let mut f = b.double(cs.ns(|| "b + b"))?;
f.add_in_place(cs.ns(|| "b + b + b"), &b)?;
let twist_a = a.mul_by_constant(cs.ns(|| "TWIST_COEFF_A * a"), &P::TWIST_COEFF_A)?;
f.add_in_place(cs.ns(|| "(b + b + b) + (TWIST_COEFF_A * a)"), &twist_a)?;
let g = f.square(cs.ns(|| "f^2"))?;
let d_eight = d
.double(cs.ns(|| "2 * d"))?
.double(cs.ns(|| "4 * d"))?
.double(cs.ns(|| "8 * d"))?;
let e2 = e.double(cs.ns(|| "2 * e"))?;
let e4 = e2.double(cs.ns(|| "4 * e"))?;
let x = g.sub(cs.ns(|| "- (e + e + e + e) + g"), &e4)?;
let mut y = e2.sub(cs.ns(|| "e + e - x"), &x)?;
y.mul_in_place(cs.ns(|| "f * (e + e - x)"), &f)?;
y.sub_in_place(cs.ns(|| "- d_eight + f * (e + e - x)"), &d_eight)?;
let mut z = r.y.add(cs.ns(|| "r.y + r.z"), &r.z)?;
z.square_in_place(cs.ns(|| "(r.y + r.z)^2"))?;
z.sub_in_place(cs.ns(|| "(r.y + r.z)^2 - c"), &c)?;
let z2 = r.z.square(cs.ns(|| "r.z^2"))?;
z.sub_in_place(cs.ns(|| "(r.y + r.z)^2 - c - r.z^2"), &z2)?;
let t = z.square(cs.ns(|| "z^2"))?;
let r2 = G2ProjectiveExtendedGadget { x, y, z, t };
let c_h =
r2.z.add(cs.ns(|| "r2.z + r.t"), &r.t)?
.square(cs.ns(|| "(r2.z + r.t)^2"))?
.sub(cs.ns(|| "(r2.z + r.t)^2 - r2.t"), &r2.t)?
.sub(cs.ns(|| "(r2.z + r.t)^2 - r2.t - a"), &a)?;
let c_4c = c.double(cs.ns(|| "2 * c"))?.double(cs.ns(|| "4 * c"))?;
let mut c_j = f.add(cs.ns(|| "f + r.t"), &r.t)?;
c_j.square_in_place(cs.ns(|| "(f + r.t)^2"))?;
c_j.sub_in_place(cs.ns(|| "(f + r.t)^2 - g"), &g)?;
c_j.sub_in_place(cs.ns(|| "(f + r.t)^2 - g - a"), &a)?;
let mut c_l = f.add(cs.ns(|| "f + r.x"), &r.x)?;
c_l.square_in_place(cs.ns(|| "(f + r.x)^2"))?;
c_l.sub_in_place(cs.ns(|| "(f + r.x)^2 - g"), &g)?;
c_l.sub_in_place(cs.ns(|| "(f + r.x)^2 - g - b"), &b)?;
let coeff = AteDoubleCoefficientsGadget {
c_h,
c_4c,
c_j,
c_l,
};
Ok((r2, coeff))
}
pub(crate) fn mixed_addition_step_for_flipped_miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
x: &Fp2G<P>,
y: &Fp2G<P>,
r: &G2ProjectiveExtendedGadget<P>,
) -> Result<
(
G2ProjectiveExtendedGadget<P>,
AteAdditionCoefficientsGadget<P>,
),
SynthesisError,
> {
let a = y.square(cs.ns(|| "y^2"))?;
let b = r.t.mul(cs.ns(|| "r.t * x"), &x)?;
let mut d = r.z.add(cs.ns(|| "r.z + y"), &y)?;
d.square_in_place(cs.ns(|| "(r.z + y)^2"))?;
d.sub_in_place(cs.ns(|| "(r.z + y)^2 - a"), &a)?;
d.sub_in_place(cs.ns(|| "(r.z + y)^2 - a - r.t"), &r.t)?;
d.mul_in_place(cs.ns(|| "((r.z + y)^2 - a - r.t) * r.t"), &r.t)?;
let h = b.sub(cs.ns(|| "b - r.x"), &r.x)?;
let i = h.square(cs.ns(|| "h^2"))?;
let e = i.double(cs.ns(|| "2 * i"))?.double(cs.ns(|| "4 * i"))?;
let j = h.mul(cs.ns(|| "h * e"), &e)?;
let v = r.x.mul(cs.ns(|| "r.x * e"), &e)?;
let ry2 = r.y.double(cs.ns(|| "r.y + r.y"))?;
let l1 = d.sub(cs.ns(|| "d - (r.y + r.y)"), &ry2)?;
let v2 = v.double(cs.ns(|| "v + v"))?;
let x = l1
.square(cs.ns(|| "l1^2"))?
.sub(cs.ns(|| "l1^2 - j"), &j)?
.sub(cs.ns(|| "l1^2 - j - (v + v)"), &v2)?;
let v_minus_x = v.sub(cs.ns(|| "v - x"), &x)?;
let j_ry2 = j.mul(cs.ns(|| "j * (r.y + r.y)"), &ry2)?;
let y = l1
.mul(cs.ns(|| "l1 * (v - x)"), &v_minus_x)?
.sub(cs.ns(|| "l1 * (v - x) - (j * (r.y + r.y)"), &j_ry2)?;
let mut z = r.z.add(cs.ns(|| "r.z + h"), &h)?;
z.square_in_place(cs.ns(|| "(r.z + h)^2"))?;
z.sub_in_place(cs.ns(|| "(r.z + h)^2 - r.t"), &r.t)?;
z.sub_in_place(cs.ns(|| "(r.z + h)^2 - r.t - i"), &i)?;
let t = z.square(cs.ns(|| "z^2"))?;
let r2 = G2ProjectiveExtendedGadget {
x,
y,
z: z.clone(),
t,
};
let coeff = AteAdditionCoefficientsGadget { c_l1: l1, c_rz: z };
Ok((r2, coeff))
}
pub fn ate_miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
p: &G1PreparedGadget<P>,
q: &G2PreparedGadget<P>,
) -> Result<Fp4G<P>, SynthesisError> {
let mut l1_coeff = Fp2G::<P>::new(p.x.clone(), FpGadget::<P::Fp>::zero(cs.ns(|| "zero"))?);
l1_coeff.sub_in_place(cs.ns(|| "l1_coeff"), &q.x_over_twist)?;
let mut f = Fp4G::<P>::one(cs.ns(|| "one"))?;
let mut dbl_idx: usize = 0;
let mut add_idx: usize = 0;
let mut found_one = false;
for (j, bit) in BitIterator::new(P::ATE_LOOP_COUNT).enumerate() {
// code below gets executed for all bits (EXCEPT the MSB itself) of
// mnt6_param_p (skipping leading zeros) in MSB to LSB order
if !found_one && bit {
found_one = true;
continue;
} else if !found_one {
continue;
}
let mut cs = cs.ns(|| format!("bit {}", j));
let dc = &q.double_coefficients[dbl_idx];
dbl_idx += 1;
let c_j_x_twist = dc.c_j.mul(cs.ns(|| "dc.c_j * p.x_twist"), &p.x_twist)?;
let c0 = dc.c_l.sub(cs.ns(|| "-dc.c_4c + dc.c_l"), &dc.c_4c)?.sub(
cs.ns(|| "-dc.c_4c - (dc.c_j * p.x_twist) + dc.c_l"),
&c_j_x_twist,
)?;
let c1 = dc.c_h.mul(cs.ns(|| "dc.c_h * p.y_twist"), &p.y_twist)?;
let g_rr_at_p = Fp4G::<P>::new(c0, c1);
f = f
.square(cs.ns(|| "f^2"))?
.mul(cs.ns(|| "f^2 * g_rr_at_p"), &g_rr_at_p)?;
if bit {
let ac = &q.addition_coefficients[add_idx];
add_idx += 1;
let l1_coeff_c_l1 = l1_coeff.mul(cs.ns(|| "l1_coeff * ac.c_l1"), &ac.c_l1)?;
let g_rq_at_p = Fp4G::<P>::new(
ac.c_rz.mul(cs.ns(|| "ac.c_rz * p.y_twist"), &p.y_twist)?,
q.y_over_twist
.mul(cs.ns(|| "q.y_over_twist * ac.c_rz"), &ac.c_rz)?
.add(
cs.ns(|| "q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1)"),
&l1_coeff_c_l1,
)?
.negate(cs.ns(|| "-(q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1))"))?,
);
f.mul_in_place(cs.ns(|| "f *= g_rq_at_p"), &g_rq_at_p)?;
}
}
if P::ATE_IS_LOOP_COUNT_NEG {
let ac = &q.addition_coefficients[add_idx];
let l1_coeff_c_l1 = l1_coeff.mul(cs.ns(|| "l1_coeff * ac.c_l1"), &ac.c_l1)?;
let g_rnegr_at_p = Fp4G::<P>::new(
ac.c_rz.mul(cs.ns(|| "ac.c_rz * p.y_twist"), &p.y_twist)?,
q.y_over_twist
.mul(cs.ns(|| "q.y_over_twist * ac.c_rz"), &ac.c_rz)?
.add(
cs.ns(|| "q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1)"),
&l1_coeff_c_l1,
)?
.negate(cs.ns(|| "-(q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1))"))?,
);
f = f
.mul(cs.ns(|| "f * g_rnegr_at_p"), &g_rnegr_at_p)?
.inverse(cs.ns(|| "inverse f"))?;
}
Ok(f)
}
pub fn final_exponentiation<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
value: &Fp4G<P>,
) -> Result<GTGadget<P>, SynthesisError> {
let value_inv = value.inverse(cs.ns(|| "value inverse"))?;
let value_to_first_chunk = Self::final_exponentiation_first_chunk(
cs.ns(|| "value_to_first_chunk"),
value,
&value_inv,
)?;
let value_inv_to_first_chunk = Self::final_exponentiation_first_chunk(
cs.ns(|| "value_inv_to_first_chunk"),
&value_inv,
value,
)?;
Self::final_exponentiation_last_chunk(
cs.ns(|| "final_exp_last_chunk"),
&value_to_first_chunk,
&value_inv_to_first_chunk,
)
}
fn final_exponentiation_first_chunk<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
elt: &Fp4G<P>,
elt_inv: &Fp4G<P>,
) -> Result<Fp4G<P>, SynthesisError> {
// (q^2-1)
// elt_q2 = elt^(q^2)
let mut elt_q2 = elt.clone();
elt_q2.frobenius_map_in_place(cs.ns(|| "frobenius 2"), 2)?;
// elt_q2_over_elt = elt^(q^2-1)
elt_q2.mul(cs.ns(|| "elt_q2 * elt_inv"), elt_inv)
}
fn final_exponentiation_last_chunk<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
elt: &Fp4G<P>,
elt_inv: &Fp4G<P>,
) -> Result<Fp4G<P>, SynthesisError> {
let elt_clone = elt.clone();
let elt_inv_clone = elt_inv.clone();
let mut elt_q = elt.clone();
elt_q.frobenius_map_in_place(cs.ns(|| "frobenius 1"), 1)?;
let w1_part = elt_q.cyclotomic_exp(cs.ns(|| "w1_part"), &P::FINAL_EXPONENT_LAST_CHUNK_1)?;
let w0_part;
if P::FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG {
w0_part = elt_inv_clone
.cyclotomic_exp(cs.ns(|| "w0_part"), &P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)?;
} else {
w0_part = elt_clone
.cyclotomic_exp(cs.ns(|| "w0_part"), &P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)?;
}
w1_part.mul(cs.ns(|| "w1_part * w0_part"), &w0_part)
}
}
impl<P: MNT4Parameters> PG<MNT4<P>, P::Fp> for PairingGadget<P> {
type G1Gadget = G1Gadget<P>;
type G2Gadget = G2Gadget<P>;
type G1PreparedGadget = G1PreparedGadget<P>;
type G2PreparedGadget = G2PreparedGadget<P>;
type GTGadget = GTGadget<P>;
fn miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
ps: &[Self::G1PreparedGadget],
qs: &[Self::G2PreparedGadget],
) -> Result<Self::GTGadget, SynthesisError> {
let mut result = Fp4G::<P>::one(cs.ns(|| "one"))?;
for (i, (p, q)) in ps.iter().zip(qs.iter()).enumerate() {
let miller =
Self::ate_miller_loop(cs.ns(|| format!("ate miller loop iteration {}", i)), p, q)?;
result.mul_in_place(
cs.ns(|| format!("mul ate miller loop iteration {}", i)),
&miller,
)?;
}
Ok(result)
}
fn final_exponentiation<CS: ConstraintSystem<P::Fp>>(
cs: CS,
r: &Self::GTGadget,
) -> Result<Self::GTGadget, SynthesisError> {
Self::final_exponentiation(cs, r)
}
fn prepare_g1<CS: ConstraintSystem<P::Fp>>(
cs: CS,
p: &Self::G1Gadget,
) -> Result<Self::G1PreparedGadget, SynthesisError> {
Self::G1PreparedGadget::from_affine(cs, p)
}
fn prepare_g2<CS: ConstraintSystem<P::Fp>>(
cs: CS,
q: &Self::G2Gadget,
) -> Result<Self::G2PreparedGadget, SynthesisError> {
Self::G2PreparedGadget::from_affine(cs, q)
}
}

+ 344
- 0
r1cs-std/src/pairing/mnt6/mod.rs

@ -0,0 +1,344 @@
use r1cs_core::{ConstraintSystem, SynthesisError};
use super::PairingGadget as PG;
use crate::{
fields::{fp::FpGadget, fp3::Fp3Gadget, fp6_2over3::Fp6Gadget, FieldGadget},
groups::mnt6::{
AteAdditionCoefficientsGadget, AteDoubleCoefficientsGadget, G1Gadget, G1PreparedGadget,
G2Gadget, G2PreparedGadget, G2ProjectiveExtendedGadget,
},
};
use algebra::{
curves::mnt6::{MNT6Parameters, MNT6},
fields::BitIterator,
};
use core::marker::PhantomData;
pub struct PairingGadget<P: MNT6Parameters>(PhantomData<P>);
type Fp3G<P> = Fp3Gadget<<P as MNT6Parameters>::Fp3Params, <P as MNT6Parameters>::Fp>;
type Fp6G<P> = Fp6Gadget<<P as MNT6Parameters>::Fp6Params, <P as MNT6Parameters>::Fp>;
pub type GTGadget<P> = Fp6G<P>;
impl<P: MNT6Parameters> PairingGadget<P> {
pub(crate) fn doubling_step_for_flipped_miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
r: &G2ProjectiveExtendedGadget<P>,
) -> Result<
(
G2ProjectiveExtendedGadget<P>,
AteDoubleCoefficientsGadget<P>,
),
SynthesisError,
> {
let a = r.t.square(cs.ns(|| "r.t^2"))?;
let b = r.x.square(cs.ns(|| "r.x^2"))?;
let c = r.y.square(cs.ns(|| "r.y^2"))?;
let d = c.square(cs.ns(|| "c^2"))?;
let mut e = r.x.add(cs.ns(|| "r.x + c"), &c)?;
e.square_in_place(cs.ns(|| "(r.x + c)^2"))?;
e.sub_in_place(cs.ns(|| "(r.x + c)^2 - b"), &b)?;
e.sub_in_place(cs.ns(|| "(r.x + c)^2 - b - d"), &d)?;
let mut f = b.double(cs.ns(|| "b + b"))?;
f.add_in_place(cs.ns(|| "b + b + b"), &b)?;
let twist_a = a.mul_by_constant(cs.ns(|| "TWIST_COEFF_A * a"), &P::TWIST_COEFF_A)?;
f.add_in_place(cs.ns(|| "(b + b + b) + (TWIST_COEFF_A * a)"), &twist_a)?;
let g = f.square(cs.ns(|| "f^2"))?;
let d_eight = d
.double(cs.ns(|| "2 * d"))?
.double(cs.ns(|| "4 * d"))?
.double(cs.ns(|| "8 * d"))?;
let e2 = e.double(cs.ns(|| "2 * e"))?;
let e4 = e2.double(cs.ns(|| "4 * e"))?;
let x = g.sub(cs.ns(|| "- (e + e + e + e) + g"), &e4)?;
let mut y = e2.sub(cs.ns(|| "e + e - x"), &x)?;
y.mul_in_place(cs.ns(|| "f * (e + e - x)"), &f)?;
y.sub_in_place(cs.ns(|| "- d_eight + f * (e + e - x)"), &d_eight)?;
let mut z = r.y.add(cs.ns(|| "r.y + r.z"), &r.z)?;
z.square_in_place(cs.ns(|| "(r.y + r.z)^2"))?;
z.sub_in_place(cs.ns(|| "(r.y + r.z)^2 - c"), &c)?;
let z2 = r.z.square(cs.ns(|| "r.z^2"))?;
z.sub_in_place(cs.ns(|| "(r.y + r.z)^2 - c - r.z^2"), &z2)?;
let t = z.square(cs.ns(|| "z^2"))?;
let r2 = G2ProjectiveExtendedGadget { x, y, z, t };
let c_h =
r2.z.add(cs.ns(|| "r2.z + r.t"), &r.t)?
.square(cs.ns(|| "(r2.z + r.t)^2"))?
.sub(cs.ns(|| "(r2.z + r.t)^2 - r2.t"), &r2.t)?
.sub(cs.ns(|| "(r2.z + r.t)^2 - r2.t - a"), &a)?;
let c_4c = c.double(cs.ns(|| "2 * c"))?.double(cs.ns(|| "4 * c"))?;
let mut c_j = f.add(cs.ns(|| "f + r.t"), &r.t)?;
c_j.square_in_place(cs.ns(|| "(f + r.t)^2"))?;
c_j.sub_in_place(cs.ns(|| "(f + r.t)^2 - g"), &g)?;
c_j.sub_in_place(cs.ns(|| "(f + r.t)^2 - g - a"), &a)?;
let mut c_l = f.add(cs.ns(|| "f + r.x"), &r.x)?;
c_l.square_in_place(cs.ns(|| "(f + r.x)^2"))?;
c_l.sub_in_place(cs.ns(|| "(f + r.x)^2 - g"), &g)?;
c_l.sub_in_place(cs.ns(|| "(f + r.x)^2 - g - b"), &b)?;
let coeff = AteDoubleCoefficientsGadget {
c_h,
c_4c,
c_j,
c_l,
};
Ok((r2, coeff))
}
pub(crate) fn mixed_addition_step_for_flipped_miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
x: &Fp3G<P>,
y: &Fp3G<P>,
r: &G2ProjectiveExtendedGadget<P>,
) -> Result<
(
G2ProjectiveExtendedGadget<P>,
AteAdditionCoefficientsGadget<P>,
),
SynthesisError,
> {
let a = y.square(cs.ns(|| "y^2"))?;
let b = r.t.mul(cs.ns(|| "r.t * x"), &x)?;
let mut d = r.z.add(cs.ns(|| "r.z + y"), &y)?;
d.square_in_place(cs.ns(|| "(r.z + y)^2"))?;
d.sub_in_place(cs.ns(|| "(r.z + y)^2 - a"), &a)?;
d.sub_in_place(cs.ns(|| "(r.z + y)^2 - a - r.t"), &r.t)?;
d.mul_in_place(cs.ns(|| "((r.z + y)^2 - a - r.t) * r.t"), &r.t)?;
let h = b.sub(cs.ns(|| "b - r.x"), &r.x)?;
let i = h.square(cs.ns(|| "h^2"))?;
let e = i.double(cs.ns(|| "2 * i"))?.double(cs.ns(|| "4 * i"))?;
let j = h.mul(cs.ns(|| "h * e"), &e)?;
let v = r.x.mul(cs.ns(|| "r.x * e"), &e)?;
let ry2 = r.y.double(cs.ns(|| "r.y + r.y"))?;
let l1 = d.sub(cs.ns(|| "d - (r.y + r.y)"), &ry2)?;
let v2 = v.double(cs.ns(|| "v + v"))?;
let x = l1
.square(cs.ns(|| "l1^2"))?
.sub(cs.ns(|| "l1^2 - j"), &j)?
.sub(cs.ns(|| "l1^2 - j - (v + v)"), &v2)?;
let v_minus_x = v.sub(cs.ns(|| "v - x"), &x)?;
let j_ry2 = j.mul(cs.ns(|| "j * (r.y + r.y)"), &ry2)?;
let y = l1
.mul(cs.ns(|| "l1 * (v - x)"), &v_minus_x)?
.sub(cs.ns(|| "l1 * (v - x) - (j * (r.y + r.y)"), &j_ry2)?;
let mut z = r.z.add(cs.ns(|| "r.z + h"), &h)?;
z.square_in_place(cs.ns(|| "(r.z + h)^2"))?;
z.sub_in_place(cs.ns(|| "(r.z + h)^2 - r.t"), &r.t)?;
z.sub_in_place(cs.ns(|| "(r.z + h)^2 - r.t - i"), &i)?;
let t = z.square(cs.ns(|| "z^2"))?;
let r2 = G2ProjectiveExtendedGadget {
x,
y,
z: z.clone(),
t,
};
let coeff = AteAdditionCoefficientsGadget { c_l1: l1, c_rz: z };
Ok((r2, coeff))
}
pub fn ate_miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
p: &G1PreparedGadget<P>,
q: &G2PreparedGadget<P>,
) -> Result<Fp6G<P>, SynthesisError> {
let zero = FpGadget::<P::Fp>::zero(cs.ns(|| "zero"))?;
let mut l1_coeff = Fp3G::<P>::new(p.x.clone(), zero.clone(), zero);
l1_coeff.sub_in_place(cs.ns(|| "l1_coeff"), &q.x_over_twist)?;
let mut f = Fp6G::<P>::one(cs.ns(|| "one"))?;
let mut dbl_idx: usize = 0;
let mut add_idx: usize = 0;
let mut found_one = false;
for (j, bit) in BitIterator::new(P::ATE_LOOP_COUNT).enumerate() {
// code below gets executed for all bits (EXCEPT the MSB itself) of
// mnt6_param_p (skipping leading zeros) in MSB to LSB order
if !found_one && bit {
found_one = true;
continue;
} else if !found_one {
continue;
}
let mut cs = cs.ns(|| format!("bit {}", j));
let dc = &q.double_coefficients[dbl_idx];
dbl_idx += 1;
let c_j_x_twist = dc.c_j.mul(cs.ns(|| "dc.c_j * p.x_twist"), &p.x_twist)?;
let c0 = dc.c_l.sub(cs.ns(|| "-dc.c_4c + dc.c_l"), &dc.c_4c)?.sub(
cs.ns(|| "-dc.c_4c - (dc.c_j * p.x_twist) + dc.c_l"),
&c_j_x_twist,
)?;
let c1 = dc.c_h.mul(cs.ns(|| "dc.c_h * p.y_twist"), &p.y_twist)?;
let g_rr_at_p = Fp6G::<P>::new(c0, c1);
f = f
.square(cs.ns(|| "f^2"))?
.mul(cs.ns(|| "f^2 * g_rr_at_p"), &g_rr_at_p)?;
if bit {
let ac = &q.addition_coefficients[add_idx];
add_idx += 1;
let l1_coeff_c_l1 = l1_coeff.mul(cs.ns(|| "l1_coeff * ac.c_l1"), &ac.c_l1)?;
let g_rq_at_p = Fp6G::<P>::new(
ac.c_rz.mul(cs.ns(|| "ac.c_rz * p.y_twist"), &p.y_twist)?,
q.y_over_twist
.mul(cs.ns(|| "q.y_over_twist * ac.c_rz"), &ac.c_rz)?
.add(
cs.ns(|| "q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1)"),
&l1_coeff_c_l1,
)?
.negate(cs.ns(|| "-(q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1))"))?,
);
f.mul_in_place(cs.ns(|| "f *= g_rq_at_p"), &g_rq_at_p)?;
}
}
if P::ATE_IS_LOOP_COUNT_NEG {
let ac = &q.addition_coefficients[add_idx];
let l1_coeff_c_l1 = l1_coeff.mul(cs.ns(|| "l1_coeff * ac.c_l1"), &ac.c_l1)?;
let g_rnegr_at_p = Fp6G::<P>::new(
ac.c_rz.mul(cs.ns(|| "ac.c_rz * p.y_twist"), &p.y_twist)?,
q.y_over_twist
.mul(cs.ns(|| "q.y_over_twist * ac.c_rz"), &ac.c_rz)?
.add(
cs.ns(|| "q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1)"),
&l1_coeff_c_l1,
)?
.negate(cs.ns(|| "-(q.y_over_twist * ac.c_rz + (l1_coeff * ac.c_l1))"))?,
);
f = f
.mul(cs.ns(|| "f * g_rnegr_at_p"), &g_rnegr_at_p)?
.inverse(cs.ns(|| "inverse f"))?;
}
Ok(f)
}
pub fn final_exponentiation<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
value: &Fp6G<P>,
) -> Result<GTGadget<P>, SynthesisError> {
let value_inv = value.inverse(cs.ns(|| "value inverse"))?;
let value_to_first_chunk = Self::final_exponentiation_first_chunk(
cs.ns(|| "value_to_first_chunk"),
value,
&value_inv,
)?;
let value_inv_to_first_chunk = Self::final_exponentiation_first_chunk(
cs.ns(|| "value_inv_to_first_chunk"),
&value_inv,
value,
)?;
Self::final_exponentiation_last_chunk(
cs.ns(|| "final_exp_last_chunk"),
&value_to_first_chunk,
&value_inv_to_first_chunk,
)
}
fn final_exponentiation_first_chunk<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
elt: &Fp6G<P>,
elt_inv: &Fp6G<P>,
) -> Result<Fp6G<P>, SynthesisError> {
// (q^3-1)*(q+1)
// elt_q3 = elt^(q^3)
let mut elt_q3 = elt.clone();
elt_q3.frobenius_map_in_place(cs.ns(|| "frobenius 3"), 3)?;
// elt_q3_over_elt = elt^(q^3-1)
let elt_q3_over_elt = elt_q3.mul(cs.ns(|| "elt_q3 * elt_inv"), elt_inv)?;
// alpha = elt^((q^3-1) * q)
let mut alpha = elt_q3_over_elt.clone();
alpha.frobenius_map_in_place(cs.ns(|| "frobenius 1"), 1)?;
// beta = elt^((q^3-1)*(q+1)
alpha.mul(cs.ns(|| "alpha * elt_q3_over_elt"), &elt_q3_over_elt)
}
fn final_exponentiation_last_chunk<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
elt: &Fp6G<P>,
elt_inv: &Fp6G<P>,
) -> Result<Fp6G<P>, SynthesisError> {
let elt_clone = elt.clone();
let elt_inv_clone = elt_inv.clone();
let mut elt_q = elt.clone();
elt_q.frobenius_map_in_place(cs.ns(|| "frobenius 1"), 1)?;
let w1_part = elt_q.cyclotomic_exp(cs.ns(|| "w1_part"), &P::FINAL_EXPONENT_LAST_CHUNK_1)?;
let w0_part;
if P::FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG {
w0_part = elt_inv_clone
.cyclotomic_exp(cs.ns(|| "w0_part"), &P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)?;
} else {
w0_part = elt_clone
.cyclotomic_exp(cs.ns(|| "w0_part"), &P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)?;
}
w1_part.mul(cs.ns(|| "w1_part * w0_part"), &w0_part)
}
}
impl<P: MNT6Parameters> PG<MNT6<P>, P::Fp> for PairingGadget<P> {
type G1Gadget = G1Gadget<P>;
type G2Gadget = G2Gadget<P>;
type G1PreparedGadget = G1PreparedGadget<P>;
type G2PreparedGadget = G2PreparedGadget<P>;
type GTGadget = GTGadget<P>;
fn miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
ps: &[Self::G1PreparedGadget],
qs: &[Self::G2PreparedGadget],
) -> Result<Self::GTGadget, SynthesisError> {
let mut result = Fp6G::<P>::one(cs.ns(|| "one"))?;
for (i, (p, q)) in ps.iter().zip(qs.iter()).enumerate() {
let miller =
Self::ate_miller_loop(cs.ns(|| format!("ate miller loop iteration {}", i)), p, q)?;
result.mul_in_place(
cs.ns(|| format!("mul ate miller loop iteration {}", i)),
&miller,
)?;
}
Ok(result)
}
fn final_exponentiation<CS: ConstraintSystem<P::Fp>>(
cs: CS,
r: &Self::GTGadget,
) -> Result<Self::GTGadget, SynthesisError> {
Self::final_exponentiation(cs, r)
}
fn prepare_g1<CS: ConstraintSystem<P::Fp>>(
cs: CS,
p: &Self::G1Gadget,
) -> Result<Self::G1PreparedGadget, SynthesisError> {
Self::G1PreparedGadget::from_affine(cs, p)
}
fn prepare_g2<CS: ConstraintSystem<P::Fp>>(
cs: CS,
q: &Self::G2Gadget,
) -> Result<Self::G2PreparedGadget, SynthesisError> {
Self::G2PreparedGadget::from_affine(cs, q)
}
}

+ 2
- 0
r1cs-std/src/pairing/mod.rs

@ -4,6 +4,8 @@ use core::fmt::Debug;
use r1cs_core::{ConstraintSystem, SynthesisError}; use r1cs_core::{ConstraintSystem, SynthesisError};
pub mod bls12; pub mod bls12;
pub mod mnt4;
pub mod mnt6;
pub trait PairingGadget<PairingE: PairingEngine, ConstraintF: Field> { pub trait PairingGadget<PairingE: PairingEngine, ConstraintF: Field> {
type G1Gadget: GroupGadget<PairingE::G1Projective, ConstraintF>; type G1Gadget: GroupGadget<PairingE::G1Projective, ConstraintF>;

Loading…
Cancel
Save