Browse Source

Add Univariate Domain, Vanishing Polynomial, Lagrange Interpolation (#53)

* add domain and vp

* add lagrange interpolator

* add query position to coset

* nostd

* add test assertion

* fmt

* fix test

* add Add and Sub arithmetic

* add Add and Sub arithmetic

* add unit test for mul/div arithmetic

* add more doc for clarification

* add test for native interpolate

* add test for vp constraints

* fix lagrange interpolate bug

* comment cleanup + fmt

* add CHANGELOG

* fix a compile error

* Update CHANGELOG.md

* Update CHANGELOG.md

* fix comment

* doc fix

* doc update 2

* doc update 3

* pub lagrange_interpolator

* doc fix

* rename `EvaluationDomain` to `Radix2Domain`

* tweak

* tweak

Co-authored-by: weikeng <w.k@berkeley.edu>
master
Tom Shen 3 years ago
committed by GitHub
parent
commit
989f579ca8
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 624 additions and 1 deletions
  1. +2
    -0
      CHANGELOG.md
  2. +1
    -1
      Cargo.toml
  3. +77
    -0
      src/poly/domain/mod.rs
  4. +79
    -0
      src/poly/domain/vanishing_poly.rs
  5. +1
    -0
      src/poly/evaluations/mod.rs
  6. +142
    -0
      src/poly/evaluations/univariate/lagrange_interpolator.rs
  7. +320
    -0
      src/poly/evaluations/univariate/mod.rs
  8. +2
    -0
      src/poly/mod.rs

+ 2
- 0
CHANGELOG.md

@ -7,6 +7,8 @@ You can update downstream usage with `grep -rl 'AllocatedBit' . | xargs env LANG
### Features ### Features
- [\#53](https://github.com/arkworks-rs/r1cs-std/pull/53) Add univariate evaluation domain and lagrange interpolation.
### Improvements ### Improvements
### Bug Fixes ### Bug Fixes

+ 1
- 1
Cargo.toml

@ -36,4 +36,4 @@ ark-poly = { version = "^0.2.0", default-features = false }
[features] [features]
default = ["std"] default = ["std"]
std = [ "ark-ff/std", "ark-relations/std", "ark-std/std", "num-bigint/std" ] std = [ "ark-ff/std", "ark-relations/std", "ark-std/std", "num-bigint/std" ]
parallel = [ "std", "ark-ff/parallel" ]
parallel = [ "std", "ark-ff/parallel", "ark-std/parallel"]

+ 77
- 0
src/poly/domain/mod.rs

@ -0,0 +1,77 @@
use crate::boolean::Boolean;
use crate::fields::fp::FpVar;
use crate::fields::FieldVar;
use ark_ff::PrimeField;
use ark_relations::r1cs::SynthesisError;
use ark_std::vec::Vec;
pub mod vanishing_poly;
#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
/// Defines an evaluation domain over a prime field. The domain is a coset of size `1<<dim`.
///
/// Native code corresponds to `ark-poly::univariate::domain::radix2`, but `ark-poly` only supports
/// subgroup for now.
///
/// TODO: support cosets in `ark-poly`.
pub struct Radix2Domain<F: PrimeField> {
/// generator of subgroup g
pub gen: F,
/// index of the quotient group (i.e. the `offset`)
pub offset: F,
/// dimension of evaluation domain
pub dim: u64,
}
impl<F: PrimeField> Radix2Domain<F> {
/// order of the domain
pub fn order(&self) -> usize {
1 << self.dim
}
/// Returns g, g^2, ..., g^{dim}
fn powers_of_gen(&self, dim: usize) -> Vec<F> {
let mut result = Vec::new();
let mut cur = self.gen;
for _ in 0..dim {
result.push(cur);
cur = cur * cur;
}
result
}
/// For domain `h<g>` with dimension `n`, `position` represented by `query_pos` in big endian form,
/// returns `h*g^{position}<g^{n-query_pos.len()}>`
pub fn query_position_to_coset(
&self,
query_pos: &[Boolean<F>],
coset_dim: u64,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut coset_index = query_pos;
assert!(
query_pos.len() == self.dim as usize
|| query_pos.len() == (self.dim - coset_dim) as usize
);
if query_pos.len() == self.dim as usize {
coset_index = &coset_index[0..(coset_index.len() - coset_dim as usize)];
}
let mut coset = Vec::new();
let powers_of_g = &self.powers_of_gen(self.dim as usize)[(coset_dim as usize)..];
let mut first_point_in_coset: FpVar<F> = FpVar::zero();
for i in 0..coset_index.len() {
let term = coset_index[i].select(&FpVar::constant(powers_of_g[i]), &FpVar::zero())?;
first_point_in_coset += &term;
}
first_point_in_coset *= &FpVar::Constant(self.offset);
coset.push(first_point_in_coset);
for i in 1..(1 << (coset_dim as usize)) {
let new_elem = &coset[i - 1] * &FpVar::Constant(self.gen);
coset.push(new_elem);
}
Ok(coset)
}
}

+ 79
- 0
src/poly/domain/vanishing_poly.rs

@ -0,0 +1,79 @@
use crate::fields::fp::FpVar;
use crate::fields::FieldVar;
use ark_ff::{Field, PrimeField};
use ark_relations::r1cs::SynthesisError;
use ark_std::ops::Sub;
/// Struct describing vanishing polynomial for a multiplicative coset H where |H| is a power of 2.
/// As H is a coset, every element can be described as h*g^i and therefore
/// has vanishing polynomial Z_H(x) = x^|H| - h^|H|
#[derive(Clone)]
pub struct VanishingPolynomial<F: Field> {
/// h^|H|
pub constant_term: F,
/// log_2(|H|)
pub dim_h: u64,
/// |H|
pub order_h: u64,
}
impl<F: PrimeField> VanishingPolynomial<F> {
/// returns a VanishingPolynomial of coset `H = h<g>`.
pub fn new(offset: F, dim_h: u64) -> Self {
let order_h = 1 << dim_h;
let vp = VanishingPolynomial {
constant_term: offset.pow([order_h]),
dim_h,
order_h,
};
vp
}
/// Evaluates the vanishing polynomial without generating the constraints.
pub fn evaluate(&self, x: &F) -> F {
let mut result = x.pow([self.order_h]);
result -= &self.constant_term;
result
}
/// Evaluates the constraints and just gives you the gadget for the result.
/// Caution for use in holographic lincheck: The output has 2 entries in one matrix
pub fn evaluate_constraints(&self, x: &FpVar<F>) -> Result<FpVar<F>, SynthesisError> {
if self.dim_h == 1 {
let result = x.sub(x);
return Ok(result);
}
let mut cur = x.square()?;
for _ in 1..self.dim_h {
cur.square_in_place()?;
}
cur -= &FpVar::Constant(self.constant_term);
Ok(cur)
}
}
#[cfg(test)]
mod tests {
use crate::alloc::AllocVar;
use crate::fields::fp::FpVar;
use crate::poly::domain::vanishing_poly::VanishingPolynomial;
use crate::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
use ark_std::{test_rng, UniformRand};
use ark_test_curves::bls12_381::Fr;
#[test]
fn constraints_test() {
let mut rng = test_rng();
let offset = Fr::rand(&mut rng);
let cs = ConstraintSystem::new_ref();
let x = Fr::rand(&mut rng);
let x_var = FpVar::new_witness(ns!(cs, "x_var"), || Ok(x)).unwrap();
let vp = VanishingPolynomial::new(offset, 12);
let native = vp.evaluate(&x);
let result_var = vp.evaluate_constraints(&x_var).unwrap();
assert!(cs.is_satisfied().unwrap());
assert_eq!(result_var.value().unwrap(), native);
}
}

+ 1
- 0
src/poly/evaluations/mod.rs

@ -0,0 +1 @@
pub mod univariate;

+ 142
- 0
src/poly/evaluations/univariate/lagrange_interpolator.rs

@ -0,0 +1,142 @@
use crate::poly::domain::vanishing_poly::VanishingPolynomial;
use ark_ff::{batch_inversion, PrimeField};
use ark_std::vec::Vec;
/// Struct describing Lagrange interpolation for a multiplicative coset I,
/// with |I| a power of 2.
/// TODO: Pull in lagrange poly explanation from libiop
#[derive(Clone)]
pub struct LagrangeInterpolator<F: PrimeField> {
pub(crate) domain_order: usize,
pub(crate) all_domain_elems: Vec<F>,
pub(crate) v_inv_elems: Vec<F>,
pub(crate) domain_vp: VanishingPolynomial<F>,
poly_evaluations: Vec<F>,
}
impl<F: PrimeField> LagrangeInterpolator<F> {
/// Returns a lagrange interpolator, given the domain specification.
pub fn new(
domain_offset: F,
domain_generator: F,
domain_dim: u64,
poly_evaluations: Vec<F>,
) -> Self {
let domain_order = 1 << domain_dim;
assert_eq!(poly_evaluations.len(), domain_order);
let mut cur_elem = domain_offset;
let mut all_domain_elems = vec![domain_offset];
let mut v_inv_elems: Vec<F> = Vec::new();
// Cache all elements in the domain
for _ in 1..domain_order {
cur_elem *= domain_generator;
all_domain_elems.push(cur_elem);
}
/*
By computing the following elements as constants,
we can further reduce the interpolation costs.
m = order of the interpolation domain
v_inv[i] = prod_{j != i} h(g^i - g^j)
We use the following facts to compute this:
v_inv[0] = m*h^{m-1}
v_inv[i] = g^{-1} * v_inv[i-1]
*/
// TODO: Include proof of the above two points
let g_inv = domain_generator.inverse().unwrap();
let m = F::from((1 << domain_dim) as u128);
let mut v_inv_i = m * domain_offset.pow([(domain_order - 1) as u64]);
for _ in 0..domain_order {
v_inv_elems.push(v_inv_i);
v_inv_i *= g_inv;
}
// TODO: Cache the intermediate terms with Z_H(x) evaluations.
let vp = VanishingPolynomial::new(domain_offset, domain_dim);
let lagrange_interpolation: LagrangeInterpolator<F> = LagrangeInterpolator {
domain_order,
all_domain_elems,
v_inv_elems,
domain_vp: vp,
poly_evaluations,
};
lagrange_interpolation
}
pub(crate) fn compute_lagrange_coefficients(&self, interpolation_point: F) -> Vec<F> {
/*
* Let t be the interpolation point, H be the multiplicative coset, with elements of the form h*g^i.
Compute each L_{i,H}(t) as Z_{H}(t) * v_i / (t- h g^i)
where:
- Z_{H}(t) = \prod_{j} (t-h*g^j) = (t^m-h^m), and
- v_{i} = 1 / \prod_{j \neq i} h(g^i-g^j).
Below we use the fact that v_{0} = 1/(m * h^(m-1)) and v_{i+1} = g * v_{i}.
We compute the inverse of each coefficient, and then batch invert the entire result.
*/
let vp_t_inv = self
.domain_vp
.evaluate(&interpolation_point)
.inverse()
.unwrap();
let mut inverted_lagrange_coeffs: Vec<F> = Vec::with_capacity(self.all_domain_elems.len());
for i in 0..self.domain_order {
let l = vp_t_inv * self.v_inv_elems[i];
let r = self.all_domain_elems[i];
inverted_lagrange_coeffs.push(l * (interpolation_point - r));
}
let lagrange_coeffs = inverted_lagrange_coeffs.as_mut_slice();
batch_inversion::<F>(lagrange_coeffs);
lagrange_coeffs.iter().cloned().collect()
}
pub fn interpolate(&self, interpolation_point: F) -> F {
let lagrange_coeffs = self.compute_lagrange_coefficients(interpolation_point);
let mut interpolation = F::zero();
for i in 0..self.domain_order {
interpolation += lagrange_coeffs[i] * self.poly_evaluations[i];
}
interpolation
}
}
#[cfg(test)]
mod tests {
use crate::poly::domain::Radix2Domain;
use crate::poly::evaluations::univariate::lagrange_interpolator::LagrangeInterpolator;
use ark_ff::{FftField, Field, One};
use ark_poly::univariate::DensePolynomial;
use ark_poly::{Polynomial, UVPolynomial};
use ark_std::{test_rng, UniformRand};
use ark_test_curves::bls12_381::Fr;
#[test]
pub fn test_native_interpolate() {
let mut rng = test_rng();
let poly = DensePolynomial::rand(15, &mut rng);
let gen = Fr::get_root_of_unity(1 << 4).unwrap();
assert_eq!(gen.pow(&[1 << 4]), Fr::one());
let domain = Radix2Domain {
gen,
offset: Fr::multiplicative_generator(),
dim: 4, // 2^4 = 16
};
// generate evaluations of `poly` on this domain
let mut coset_point = domain.offset;
let mut oracle_evals = Vec::new();
for _ in 0..(1 << 4) {
oracle_evals.push(poly.evaluate(&coset_point));
coset_point *= gen;
}
let interpolator =
LagrangeInterpolator::new(domain.offset, domain.gen, domain.dim, oracle_evals);
// the point to evaluate at
let interpolate_point = Fr::rand(&mut rng);
let expected = poly.evaluate(&interpolate_point);
let actual = interpolator.interpolate(interpolate_point);
assert_eq!(actual, expected)
}
}

+ 320
- 0
src/poly/evaluations/univariate/mod.rs

@ -0,0 +1,320 @@
pub mod lagrange_interpolator;
use crate::alloc::AllocVar;
use crate::fields::fp::FpVar;
use crate::fields::FieldVar;
use crate::poly::domain::Radix2Domain;
use crate::poly::evaluations::univariate::lagrange_interpolator::LagrangeInterpolator;
use crate::R1CSVar;
use ark_ff::{batch_inversion, PrimeField};
use ark_relations::r1cs::SynthesisError;
use ark_std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
use ark_std::vec::Vec;
#[derive(Clone)]
/// Stores a UV polynomial in evaluation form.
pub struct EvaluationsVar<F: PrimeField> {
/// Evaluations of univariate polynomial over domain
pub evals: Vec<FpVar<F>>,
/// Optional Lagrange Interpolator. Useful for lagrange interpolation.
pub lagrange_interpolator: Option<LagrangeInterpolator<F>>,
domain: Radix2Domain<F>,
}
impl<F: PrimeField> EvaluationsVar<F> {
/// Construct `Self` from evaluations and a domain.
/// `interpolate` indicates if user wants to interpolate this polynomial
/// using lagrange interpolation.
pub fn from_vec_and_domain(
evaluations: Vec<FpVar<F>>,
domain: Radix2Domain<F>,
interpolate: bool,
) -> Self {
assert_eq!(
evaluations.len(),
1 << domain.dim,
"evaluations and domain has different dimensions"
);
let mut ev = Self {
evals: evaluations,
lagrange_interpolator: None,
domain,
};
if interpolate {
ev.generate_lagrange_interpolator();
}
ev
}
/// Generate lagrange interpolator and mark it ready to interpolate
pub fn generate_lagrange_interpolator(&mut self) {
let poly_evaluations_val: Vec<_> = self.evals.iter().map(|v| v.value().unwrap()).collect();
let domain = &self.domain;
let lagrange_interpolator =
LagrangeInterpolator::new(domain.offset, domain.gen, domain.dim, poly_evaluations_val);
self.lagrange_interpolator = Some(lagrange_interpolator)
}
fn compute_lagrange_coefficients(
&self,
interpolation_point: &FpVar<F>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
// ref: https://github.com/alexchmit/perfect-constraints/blob/79692f2652a95a57f2c7187f5b5276345e680230/fractal/src/algebra/lagrange_interpolation.rs#L159
let cs = interpolation_point.cs();
let t = interpolation_point;
let lagrange_interpolator = self
.lagrange_interpolator
.as_ref()
.expect("lagrange interpolator has not been initialized. \
Call `self.generate_lagrange_interpolator` first or set `interpolate` to true in constructor. ");
let lagrange_coeffs =
lagrange_interpolator.compute_lagrange_coefficients(t.value().unwrap());
let mut lagrange_coeffs_fg = Vec::new();
// Now we convert these lagrange coefficients to gadgets, and then constrain them.
// The i-th lagrange coefficients constraint is:
// (v_inv[i] * t - v_inv[i] * domain_elem[i]) * (coeff) = 1/Z_I(t)
let vp_t = lagrange_interpolator.domain_vp.evaluate_constraints(t)?;
// let inv_vp_t = vp_t.inverse()?;
for i in 0..lagrange_interpolator.domain_order {
let constant: F =
(-lagrange_interpolator.all_domain_elems[i]) * lagrange_interpolator.v_inv_elems[i];
let mut a_element: FpVar<F> =
t * &FpVar::constant(lagrange_interpolator.v_inv_elems[i]);
a_element += FpVar::constant(constant);
let lag_coeff: FpVar<F> =
FpVar::new_witness(ns!(cs, "generate lagrange coefficient"), || {
Ok(lagrange_coeffs[i])
})?;
// Enforce the actual constraint (A_element) * (lagrange_coeff) = 1/Z_I(t)
assert_eq!(
(lagrange_interpolator.v_inv_elems[i] * t.value().unwrap()
- lagrange_interpolator.v_inv_elems[i]
* lagrange_interpolator.all_domain_elems[i])
* lagrange_coeffs[i],
vp_t.value().unwrap()
);
a_element.mul_equals(&lag_coeff, &vp_t)?;
lagrange_coeffs_fg.push(lag_coeff);
}
Ok(lagrange_coeffs_fg)
}
/// Returns constraints for Interpolating and evaluating at `interpolation_point`
pub fn interpolate_and_evaluate(
&self,
interpolation_point: &FpVar<F>,
) -> Result<FpVar<F>, SynthesisError> {
let lagrange_interpolator = self
.lagrange_interpolator
.as_ref()
.expect("lagrange interpolator has not been initialized. ");
let lagrange_coeffs = self.compute_lagrange_coefficients(interpolation_point)?;
let mut interpolation: FpVar<F> = FpVar::zero();
for i in 0..lagrange_interpolator.domain_order {
let intermediate = &lagrange_coeffs[i] * &self.evals[i];
interpolation += &intermediate
}
Ok(interpolation)
}
}
impl<'a, 'b, F: PrimeField> Add<&'a EvaluationsVar<F>> for &'b EvaluationsVar<F> {
type Output = EvaluationsVar<F>;
fn add(self, rhs: &'a EvaluationsVar<F>) -> Self::Output {
let mut result = self.clone();
result += rhs;
result
}
}
impl<'a, F: PrimeField> AddAssign<&'a EvaluationsVar<F>> for EvaluationsVar<F> {
fn add_assign(&mut self, other: &'a EvaluationsVar<F>) {
assert_eq!(self.domain, other.domain, "domains are unequal");
self.lagrange_interpolator = None;
self.evals
.iter_mut()
.zip(&other.evals)
.for_each(|(a, b)| *a = &*a + b)
}
}
impl<'a, 'b, F: PrimeField> Sub<&'a EvaluationsVar<F>> for &'b EvaluationsVar<F> {
type Output = EvaluationsVar<F>;
fn sub(self, rhs: &'a EvaluationsVar<F>) -> Self::Output {
let mut result = self.clone();
result -= rhs;
result
}
}
impl<'a, F: PrimeField> SubAssign<&'a EvaluationsVar<F>> for EvaluationsVar<F> {
fn sub_assign(&mut self, other: &'a EvaluationsVar<F>) {
assert_eq!(self.domain, other.domain, "domains are unequal");
self.lagrange_interpolator = None;
self.evals
.iter_mut()
.zip(&other.evals)
.for_each(|(a, b)| *a = &*a - b)
}
}
impl<'a, 'b, F: PrimeField> Mul<&'a EvaluationsVar<F>> for &'b EvaluationsVar<F> {
type Output = EvaluationsVar<F>;
fn mul(self, rhs: &'a EvaluationsVar<F>) -> Self::Output {
let mut result = self.clone();
result *= rhs;
result
}
}
impl<'a, F: PrimeField> MulAssign<&'a EvaluationsVar<F>> for EvaluationsVar<F> {
fn mul_assign(&mut self, other: &'a EvaluationsVar<F>) {
assert_eq!(self.domain, other.domain, "domains are unequal");
self.lagrange_interpolator = None;
self.evals
.iter_mut()
.zip(&other.evals)
.for_each(|(a, b)| *a = &*a * b)
}
}
impl<'a, 'b, F: PrimeField> Div<&'a EvaluationsVar<F>> for &'b EvaluationsVar<F> {
type Output = EvaluationsVar<F>;
fn div(self, rhs: &'a EvaluationsVar<F>) -> Self::Output {
let mut result = self.clone();
result /= rhs;
result
}
}
impl<'a, F: PrimeField> DivAssign<&'a EvaluationsVar<F>> for EvaluationsVar<F> {
fn div_assign(&mut self, other: &'a EvaluationsVar<F>) {
assert_eq!(self.domain, other.domain, "domains are unequal");
let cs = self.evals[0].cs();
// the prover can generate result = (1 / other) * self offline
let mut result_val: Vec<_> = other.evals.iter().map(|x| x.value().unwrap()).collect();
batch_inversion(&mut result_val);
result_val
.iter_mut()
.zip(&self.evals)
.for_each(|(a, self_var)| *a *= self_var.value().unwrap());
let result_var: Vec<_> = result_val
.iter()
.map(|x| FpVar::new_witness(ns!(cs, "div result"), || Ok(*x)).unwrap())
.collect();
// enforce constraint
for i in 0..result_var.len() {
result_var[i]
.mul_equals(&other.evals[i], &self.evals[i])
.unwrap();
}
self.lagrange_interpolator = None;
self.evals = result_var
}
}
#[cfg(test)]
mod tests {
use crate::alloc::AllocVar;
use crate::fields::fp::FpVar;
use crate::poly::domain::Radix2Domain;
use crate::poly::evaluations::univariate::EvaluationsVar;
use crate::R1CSVar;
use ark_ff::{FftField, Field, One, UniformRand};
use ark_poly::polynomial::univariate::DensePolynomial;
use ark_poly::{Polynomial, UVPolynomial};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::test_rng;
use ark_test_curves::bls12_381::Fr;
#[test]
fn test_interpolate() {
let mut rng = test_rng();
let poly = DensePolynomial::rand(15, &mut rng);
let gen = Fr::get_root_of_unity(1 << 4).unwrap();
assert_eq!(gen.pow(&[1 << 4]), Fr::one());
let domain = Radix2Domain {
gen,
offset: Fr::multiplicative_generator(),
dim: 4, // 2^4 = 16
};
let mut coset_point = domain.offset;
let mut oracle_evals = Vec::new();
for _ in 0..(1 << 4) {
oracle_evals.push(poly.evaluate(&coset_point));
coset_point *= gen;
}
let cs = ConstraintSystem::new_ref();
let evaluations_fp: Vec<_> = oracle_evals
.iter()
.map(|x| FpVar::new_input(ns!(cs, "evaluations"), || Ok(x)).unwrap())
.collect();
let evaluations_var = EvaluationsVar::from_vec_and_domain(evaluations_fp, domain, true);
let interpolate_point = Fr::rand(&mut rng);
let interpolate_point_fp =
FpVar::new_input(ns!(cs, "interpolate point"), || Ok(interpolate_point)).unwrap();
let expected = poly.evaluate(&interpolate_point);
let actual = evaluations_var
.interpolate_and_evaluate(&interpolate_point_fp)
.unwrap()
.value()
.unwrap();
assert_eq!(actual, expected);
assert!(cs.is_satisfied().unwrap());
}
#[test]
fn test_division() {
let mut rng = test_rng();
let gen = Fr::get_root_of_unity(1 << 4).unwrap();
assert_eq!(gen.pow(&[1 << 4]), Fr::one());
let domain = Radix2Domain {
gen,
offset: Fr::multiplicative_generator(),
dim: 4, // 2^4 = 16
};
let cs = ConstraintSystem::new_ref();
let ev_a = EvaluationsVar::from_vec_and_domain(
(0..16)
.map(|_| FpVar::new_input(ns!(cs, "poly_a"), || Ok(Fr::rand(&mut rng))).unwrap())
.collect(),
domain.clone(),
false,
);
let ev_b = EvaluationsVar::from_vec_and_domain(
(0..16)
.map(|_| FpVar::new_input(ns!(cs, "poly_a"), || Ok(Fr::rand(&mut rng))).unwrap())
.collect(),
domain.clone(),
false,
);
let a_div_b = (&ev_a) / (&ev_b);
assert!(cs.is_satisfied().unwrap());
let b_div_a = (&ev_b) / (&ev_a);
let one = &a_div_b * &b_div_a;
for ev in one.evals.iter() {
assert!(Fr::is_one(&ev.value().unwrap()))
}
assert!(cs.is_satisfied().unwrap());
}
}

+ 2
- 0
src/poly/mod.rs

@ -1,2 +1,4 @@
pub mod domain;
pub mod evaluations;
/// Modules for working with polynomials in coefficient forms. /// Modules for working with polynomials in coefficient forms.
pub mod polynomial; pub mod polynomial;

Loading…
Cancel
Save