Browse Source

Add UInt64 used for representing Merkle tree node locations

master
weikeng 4 years ago
committed by Pratyush Mishra
parent
commit
e524e46d0b
3 changed files with 556 additions and 1 deletions
  1. +1
    -0
      r1cs-std/src/bits/mod.rs
  2. +6
    -1
      r1cs-std/src/bits/uint32.rs
  3. +549
    -0
      r1cs-std/src/bits/uint64.rs

+ 1
- 0
r1cs-std/src/bits/mod.rs

@ -6,6 +6,7 @@ use algebra::Field;
use r1cs_core::{ConstraintSystem, SynthesisError};
pub mod boolean;
pub mod uint64;
pub mod uint32;
pub mod uint8;

+ 6
- 1
r1cs-std/src/bits/uint32.rs

@ -167,9 +167,14 @@ impl UInt32 {
// Make some arbitrary bounds for ourselves to avoid overflows
// in the scalar field
assert!(ConstraintF::Params::MODULUS_BITS >= 64);
assert!(operands.len() >= 2); // Weird trivial cases that should never happen
assert!(operands.len() >= 1);
assert!(operands.len() <= 10);
if operands.len() == 1 {
return Ok(operands[0].clone());
}
// Compute the maximum value of the sum so we allocate enough bits for
// the result
let mut max_value = (operands.len() as u64) * u64::from(u32::max_value());

+ 549
- 0
r1cs-std/src/bits/uint64.rs

@ -0,0 +1,549 @@
use algebra::{Field, FpParameters, PrimeField};
use r1cs_core::{ConstraintSystem, LinearCombination, SynthesisError};
use crate::{
boolean::{AllocatedBit, Boolean},
prelude::*,
Assignment, Vec,
};
/// Represents an interpretation of 64 `Boolean` objects as an
/// unsigned integer.
#[derive(Clone, Debug)]
pub struct UInt64 {
// Least significant bit_gadget first
bits: Vec<Boolean>,
value: Option<u64>,
}
impl UInt64 {
/// Construct a constant `UInt64` from a `u64`
pub fn constant(value: u64) -> Self {
let mut bits = Vec::with_capacity(64);
let mut tmp = value;
for _ in 0..64 {
if tmp & 1 == 1 {
bits.push(Boolean::constant(true))
} else {
bits.push(Boolean::constant(false))
}
tmp >>= 1;
}
UInt64 {
bits,
value: Some(value),
}
}
/// Allocate a `UInt64` in the constraint system
pub fn alloc<ConstraintF, CS>(mut cs: CS, value: Option<u64>) -> Result<Self, SynthesisError>
where
ConstraintF: Field,
CS: ConstraintSystem<ConstraintF>,
{
let values = match value {
Some(mut val) => {
let mut v = Vec::with_capacity(64);
for _ in 0..64 {
v.push(Some(val & 1 == 1));
val >>= 1;
}
v
},
None => vec![None; 64],
};
let bits = values
.into_iter()
.enumerate()
.map(|(i, v)| {
Ok(Boolean::from(AllocatedBit::alloc(
cs.ns(|| format!("allocated bit_gadget {}", i)),
|| v.get(),
)?))
})
.collect::<Result<Vec<_>, SynthesisError>>()?;
Ok(UInt64 { bits, value })
}
/// Turns this `UInt64` into its little-endian byte order representation.
pub fn to_bits_le(&self) -> Vec<Boolean> {
self.bits.clone()
}
/// Converts a little-endian byte order representation of bits into a
/// `UInt64`.
pub fn from_bits_le(bits: &[Boolean]) -> Self {
assert_eq!(bits.len(), 64);
let bits = bits.to_vec();
let mut value = Some(0u64);
for b in bits.iter().rev() {
value.as_mut().map(|v| *v <<= 1);
match b {
&Boolean::Constant(b) => {
if b {
value.as_mut().map(|v| *v |= 1);
}
},
&Boolean::Is(ref b) => match b.get_value() {
Some(true) => {
value.as_mut().map(|v| *v |= 1);
},
Some(false) => {},
None => value = None,
},
&Boolean::Not(ref b) => match b.get_value() {
Some(false) => {
value.as_mut().map(|v| *v |= 1);
},
Some(true) => {},
None => value = None,
},
}
}
Self { value, bits }
}
pub fn rotr(&self, by: usize) -> Self {
let by = by % 64;
let new_bits = self
.bits
.iter()
.skip(by)
.chain(self.bits.iter())
.take(64)
.cloned()
.collect();
UInt64 {
bits: new_bits,
value: self.value.map(|v| v.rotate_right(by as u32)),
}
}
/// XOR this `UInt64` with another `UInt64`
pub fn xor<ConstraintF, CS>(&self, mut cs: CS, other: &Self) -> Result<Self, SynthesisError>
where
ConstraintF: Field,
CS: ConstraintSystem<ConstraintF>,
{
let new_value = match (self.value, other.value) {
(Some(a), Some(b)) => Some(a ^ b),
_ => None,
};
let bits = self
.bits
.iter()
.zip(other.bits.iter())
.enumerate()
.map(|(i, (a, b))| Boolean::xor(cs.ns(|| format!("xor of bit_gadget {}", i)), a, b))
.collect::<Result<_, _>>()?;
Ok(UInt64 {
bits,
value: new_value,
})
}
/// Perform modular addition of several `UInt64` objects.
pub fn addmany<ConstraintF, CS>(mut cs: CS, operands: &[Self]) -> Result<Self, SynthesisError>
where
ConstraintF: PrimeField,
CS: ConstraintSystem<ConstraintF>,
{
// Make some arbitrary bounds for ourselves to avoid overflows
// in the scalar field
assert!(ConstraintF::Params::MODULUS_BITS >= 128);
assert!(operands.len() >= 1);
assert!(operands.len() <= 10);
if operands.len() == 1 {
return Ok(operands[0].clone());
}
// Compute the maximum value of the sum so we allocate enough bits for
// the result
let mut max_value = (operands.len() as u128) * u128::from(u64::max_value());
// Keep track of the resulting value
let mut result_value = Some(0u64 as u128);
// This is a linear combination that we will enforce to be "zero"
let mut lc = LinearCombination::zero();
let mut all_constants = true;
// Iterate over the operands
for op in operands {
// Accumulate the value
match op.value {
Some(val) => {
result_value.as_mut().map(|v| *v += u128::from(val));
},
None => {
// If any of our operands have unknown value, we won't
// know the value of the result
result_value = None;
},
}
// Iterate over each bit_gadget of the operand and add the operand to
// the linear combination
let mut coeff = ConstraintF::one();
for bit in &op.bits {
match *bit {
Boolean::Is(ref bit) => {
all_constants = false;
// Add coeff * bit_gadget
lc += (coeff, bit.get_variable());
},
Boolean::Not(ref bit) => {
all_constants = false;
// Add coeff * (1 - bit_gadget) = coeff * ONE - coeff * bit_gadget
lc = lc + (coeff, CS::one()) - (coeff, bit.get_variable());
},
Boolean::Constant(bit) => {
if bit {
lc += (coeff, CS::one());
}
},
}
coeff.double_in_place();
}
}
// The value of the actual result is modulo 2^64
let modular_value = result_value.map(|v| v as u64);
if all_constants && modular_value.is_some() {
// We can just return a constant, rather than
// unpacking the result into allocated bits.
return Ok(UInt64::constant(modular_value.unwrap()));
}
// Storage area for the resulting bits
let mut result_bits = vec![];
// Allocate each bit_gadget of the result
let mut coeff = ConstraintF::one();
let mut i = 0;
while max_value != 0 {
// Allocate the bit_gadget
let b = AllocatedBit::alloc(cs.ns(|| format!("result bit_gadget {}", i)), || {
result_value.map(|v| (v >> i) & 1 == 1).get()
})?;
// Subtract this bit_gadget from the linear combination to ensure the sums
// balance out
lc = lc - (coeff, b.get_variable());
result_bits.push(b.into());
max_value >>= 1;
i += 1;
coeff.double_in_place();
}
// Enforce that the linear combination equals zero
cs.enforce(|| "modular addition", |lc| lc, |lc| lc, |_| lc);
// Discard carry bits that we don't care about
result_bits.truncate(64);
Ok(UInt64 {
bits: result_bits,
value: modular_value,
})
}
}
impl<ConstraintF: Field> ToBytesGadget<ConstraintF> for UInt64 {
#[inline]
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
_cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let value_chunks = match self.value.map(|val| {
use algebra::bytes::ToBytes;
let mut bytes = [0u8; 8];
val.write(bytes.as_mut()).unwrap();
bytes
}) {
Some(chunks) => [
Some(chunks[0]),
Some(chunks[1]),
Some(chunks[2]),
Some(chunks[3]),
Some(chunks[4]),
Some(chunks[5]),
Some(chunks[6]),
Some(chunks[7]),
],
None => [None, None, None, None, None, None, None, None],
};
let mut bytes = Vec::new();
for (i, chunk8) in self.to_bits_le().chunks(8).enumerate() {
let byte = UInt8 {
bits: chunk8.to_vec(),
value: value_chunks[i],
};
bytes.push(byte);
}
Ok(bytes)
}
fn to_bytes_strict<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
self.to_bytes(cs)
}
}
impl PartialEq for UInt64 {
fn eq(&self, other: &Self) -> bool {
self.value.is_some() && other.value.is_some() && self.value == other.value
}
}
impl Eq for UInt64 {}
impl<ConstraintF: Field> ConditionalEqGadget<ConstraintF> for UInt64 {
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
for (i, (a, b)) in self.bits.iter().zip(&other.bits).enumerate() {
a.conditional_enforce_equal(
&mut cs.ns(|| format!("uint64_equal_{}", i)),
b,
condition,
)?;
}
Ok(())
}
fn cost() -> usize {
64 * <Boolean as ConditionalEqGadget<ConstraintF>>::cost()
}
}
#[cfg(test)]
mod test {
use super::UInt64;
use crate::{bits::boolean::Boolean, test_constraint_system::TestConstraintSystem, Vec};
use algebra::{bls12_381::Fr, One, Zero};
use r1cs_core::ConstraintSystem;
use rand::{Rng, SeedableRng};
use rand_xorshift::XorShiftRng;
#[test]
fn test_uint64_from_bits() {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
for _ in 0..1000 {
let v = (0..64)
.map(|_| Boolean::constant(rng.gen()))
.collect::<Vec<_>>();
let b = UInt64::from_bits_le(&v);
for (i, bit_gadget) in b.bits.iter().enumerate() {
match bit_gadget {
&Boolean::Constant(bit_gadget) => {
assert!(bit_gadget == ((b.value.unwrap() >> i) & 1 == 1));
},
_ => unreachable!(),
}
}
let expected_to_be_same = b.to_bits_le();
for x in v.iter().zip(expected_to_be_same.iter()) {
match x {
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
_ => unreachable!(),
}
}
}
}
#[test]
fn test_uint64_xor() {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
for _ in 0..1000 {
let mut cs = TestConstraintSystem::<Fr>::new();
let a: u64 = rng.gen();
let b: u64 = rng.gen();
let c: u64 = rng.gen();
let mut expected = a ^ b ^ c;
let a_bit = UInt64::alloc(cs.ns(|| "a_bit"), Some(a)).unwrap();
let b_bit = UInt64::constant(b);
let c_bit = UInt64::alloc(cs.ns(|| "c_bit"), Some(c)).unwrap();
let r = a_bit.xor(cs.ns(|| "first xor"), &b_bit).unwrap();
let r = r.xor(cs.ns(|| "second xor"), &c_bit).unwrap();
assert!(cs.is_satisfied());
assert!(r.value == Some(expected));
for b in r.bits.iter() {
match b {
&Boolean::Is(ref b) => {
assert!(b.get_value().unwrap() == (expected & 1 == 1));
},
&Boolean::Not(ref b) => {
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
},
&Boolean::Constant(b) => {
assert!(b == (expected & 1 == 1));
},
}
expected >>= 1;
}
}
}
#[test]
fn test_uint64_addmany_constants() {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
for _ in 0..1000 {
let mut cs = TestConstraintSystem::<Fr>::new();
let a: u64 = rng.gen();
let b: u64 = rng.gen();
let c: u64 = rng.gen();
let a_bit = UInt64::constant(a);
let b_bit = UInt64::constant(b);
let c_bit = UInt64::constant(c);
let mut expected = a.wrapping_add(b).wrapping_add(c);
let r = UInt64::addmany(cs.ns(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap();
assert!(r.value == Some(expected));
for b in r.bits.iter() {
match b {
&Boolean::Is(_) => panic!(),
&Boolean::Not(_) => panic!(),
&Boolean::Constant(b) => {
assert!(b == (expected & 1 == 1));
},
}
expected >>= 1;
}
}
}
#[test]
fn test_uint64_addmany() {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
for _ in 0..1000 {
let mut cs = TestConstraintSystem::<Fr>::new();
let a: u64 = rng.gen();
let b: u64 = rng.gen();
let c: u64 = rng.gen();
let d: u64 = rng.gen();
let mut expected = (a ^ b).wrapping_add(c).wrapping_add(d);
let a_bit = UInt64::alloc(cs.ns(|| "a_bit"), Some(a)).unwrap();
let b_bit = UInt64::constant(b);
let c_bit = UInt64::constant(c);
let d_bit = UInt64::alloc(cs.ns(|| "d_bit"), Some(d)).unwrap();
let r = a_bit.xor(cs.ns(|| "xor"), &b_bit).unwrap();
let r = UInt64::addmany(cs.ns(|| "addition"), &[r, c_bit, d_bit]).unwrap();
assert!(cs.is_satisfied());
assert!(r.value == Some(expected));
for b in r.bits.iter() {
match b {
&Boolean::Is(ref b) => {
assert!(b.get_value().unwrap() == (expected & 1 == 1));
},
&Boolean::Not(ref b) => {
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
},
&Boolean::Constant(_) => unreachable!(),
}
expected >>= 1;
}
// Flip a bit_gadget and see if the addition constraint still works
if cs.get("addition/result bit_gadget 0/boolean").is_zero() {
cs.set("addition/result bit_gadget 0/boolean", Fr::one());
} else {
cs.set("addition/result bit_gadget 0/boolean", Fr::zero());
}
assert!(!cs.is_satisfied());
}
}
#[test]
fn test_uint64_rotr() {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut num = rng.gen();
let a = UInt64::constant(num);
for i in 0..64 {
let b = a.rotr(i);
assert!(b.value.unwrap() == num);
let mut tmp = num;
for b in &b.bits {
match b {
&Boolean::Constant(b) => {
assert_eq!(b, tmp & 1 == 1);
},
_ => unreachable!(),
}
tmp >>= 1;
}
num = num.rotate_right(1);
}
}
}

Loading…
Cancel
Save