Initial commit to extract crypto-primitives to new crate

This commit is contained in:
Pratyush Mishra
2019-09-24 20:21:49 -07:00
parent 5a78e24e15
commit a244e719d1
33 changed files with 4746 additions and 1 deletions

View File

@@ -0,0 +1,25 @@
use algebra::Field;
use std::fmt::Debug;
use crate::crh::FixedLengthCRH;
use r1cs_core::{ConstraintSystem, SynthesisError};
use r1cs_std::prelude::*;
pub trait FixedLengthCRHGadget<H: FixedLengthCRH, ConstraintF: Field>: Sized {
type OutputGadget: ConditionalEqGadget<ConstraintF>
+ EqGadget<ConstraintF>
+ ToBytesGadget<ConstraintF>
+ CondSelectGadget<ConstraintF>
+ AllocGadget<H::Output, ConstraintF>
+ Debug
+ Clone
+ Sized;
type ParametersGadget: AllocGadget<H::Parameters, ConstraintF> + Clone;
fn check_evaluation_gadget<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
parameters: &Self::ParametersGadget,
input: &[UInt8],
) -> Result<Self::OutputGadget, SynthesisError>;
}

View File

@@ -0,0 +1,115 @@
use std::{fmt::Debug, marker::PhantomData};
use crate::crh::{
FixedLengthCRHGadget,
injective_map::{InjectiveMap, PedersenCRHCompressor, TECompressor},
pedersen::{
PedersenWindow,
constraints::{PedersenCRHGadget, PedersenCRHGadgetParameters},
}
};
use algebra::{
curves::{
models::{ModelParameters, TEModelParameters},
twisted_edwards_extended::{GroupAffine as TEAffine, GroupProjective as TEProjective},
},
fields::{Field, PrimeField, SquareRootField},
groups::Group,
};
use r1cs_core::{ConstraintSystem, SynthesisError};
use r1cs_std::{
fields::fp::FpGadget,
groups::{curves::twisted_edwards::AffineGadget as TwistedEdwardsGadget, GroupGadget},
prelude::*,
};
pub trait InjectiveMapGadget<G: Group, I: InjectiveMap<G>, ConstraintF: Field, GG: GroupGadget<G, ConstraintF>>
{
type OutputGadget: EqGadget<ConstraintF>
+ ToBytesGadget<ConstraintF>
+ CondSelectGadget<ConstraintF>
+ AllocGadget<I::Output, ConstraintF>
+ Debug
+ Clone
+ Sized;
fn evaluate_map<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
ge: &GG,
) -> Result<Self::OutputGadget, SynthesisError>;
}
pub struct TECompressorGadget;
impl<ConstraintF, P> InjectiveMapGadget<TEAffine<P>, TECompressor, ConstraintF, TwistedEdwardsGadget<P, ConstraintF, FpGadget<ConstraintF>>>
for TECompressorGadget
where
ConstraintF: PrimeField + SquareRootField,
P: TEModelParameters + ModelParameters<BaseField = ConstraintF>,
{
type OutputGadget = FpGadget<ConstraintF>;
fn evaluate_map<CS: ConstraintSystem<ConstraintF>>(
_cs: CS,
ge: &TwistedEdwardsGadget<P, ConstraintF, FpGadget<ConstraintF>>,
) -> Result<Self::OutputGadget, SynthesisError> {
Ok(ge.x.clone())
}
}
impl<ConstraintF, P>
InjectiveMapGadget<TEProjective<P>, TECompressor, ConstraintF, TwistedEdwardsGadget<P, ConstraintF, FpGadget<ConstraintF>>>
for TECompressorGadget
where
ConstraintF: PrimeField + SquareRootField,
P: TEModelParameters + ModelParameters<BaseField = ConstraintF>,
{
type OutputGadget = FpGadget<ConstraintF>;
fn evaluate_map<CS: ConstraintSystem<ConstraintF>>(
_cs: CS,
ge: &TwistedEdwardsGadget<P, ConstraintF, FpGadget<ConstraintF>>,
) -> Result<Self::OutputGadget, SynthesisError> {
Ok(ge.x.clone())
}
}
pub struct PedersenCRHCompressorGadget<
G: Group,
I: InjectiveMap<G>,
ConstraintF: Field,
GG: GroupGadget<G, ConstraintF>,
IG: InjectiveMapGadget<G, I, ConstraintF, GG>,
> {
_compressor: PhantomData<I>,
_compressor_gadget: PhantomData<IG>,
_crh: PedersenCRHGadget<G, ConstraintF, GG>,
}
impl<G, I, ConstraintF, GG, IG, W> FixedLengthCRHGadget<PedersenCRHCompressor<G, I, W>, ConstraintF>
for PedersenCRHCompressorGadget<G, I, ConstraintF, GG, IG>
where
G: Group,
I: InjectiveMap<G>,
ConstraintF: Field,
GG: GroupGadget<G, ConstraintF>,
IG: InjectiveMapGadget<G, I, ConstraintF, GG>,
W: PedersenWindow,
{
type OutputGadget = IG::OutputGadget;
type ParametersGadget = PedersenCRHGadgetParameters<G, W, ConstraintF, GG>;
fn check_evaluation_gadget<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
parameters: &Self::ParametersGadget,
input: &[UInt8],
) -> Result<Self::OutputGadget, SynthesisError> {
let result = PedersenCRHGadget::<G, ConstraintF, GG>::check_evaluation_gadget(
cs.ns(|| "PedCRH"),
parameters,
input,
)?;
IG::evaluate_map(cs.ns(|| "InjectiveMap"), &result)
}
}

View File

@@ -0,0 +1,76 @@
use crate::CryptoError;
use algebra::bytes::ToBytes;
use crate::Error;
use rand::Rng;
use std::{fmt::Debug, hash::Hash, marker::PhantomData};
use super::{
pedersen::{PedersenCRH, PedersenParameters, PedersenWindow},
FixedLengthCRH,
};
use algebra::{
curves::{
models::{ModelParameters, TEModelParameters},
twisted_edwards_extended::{GroupAffine as TEAffine, GroupProjective as TEProjective},
ProjectiveCurve,
},
groups::Group,
};
#[cfg(feature = "r1cs")]
pub mod constraints;
pub trait InjectiveMap<G: Group> {
type Output: ToBytes + Clone + Eq + Hash + Default + Debug;
fn injective_map(ge: &G) -> Result<Self::Output, CryptoError>;
}
pub struct TECompressor;
impl<P: TEModelParameters> InjectiveMap<TEAffine<P>> for TECompressor {
type Output = <P as ModelParameters>::BaseField;
fn injective_map(ge: &TEAffine<P>) -> Result<Self::Output, CryptoError> {
debug_assert!(ge.is_in_correct_subgroup_assuming_on_curve());
Ok(ge.x)
}
}
impl<P: TEModelParameters> InjectiveMap<TEProjective<P>> for TECompressor {
type Output = <P as ModelParameters>::BaseField;
fn injective_map(ge: &TEProjective<P>) -> Result<Self::Output, CryptoError> {
let ge = ge.into_affine();
debug_assert!(ge.is_in_correct_subgroup_assuming_on_curve());
Ok(ge.x)
}
}
pub struct PedersenCRHCompressor<G: Group, I: InjectiveMap<G>, W: PedersenWindow> {
_group: PhantomData<G>,
_compressor: PhantomData<I>,
_crh: PedersenCRH<G, W>,
}
impl<G: Group, I: InjectiveMap<G>, W: PedersenWindow> FixedLengthCRH
for PedersenCRHCompressor<G, I, W>
{
const INPUT_SIZE_BITS: usize = PedersenCRH::<G, W>::INPUT_SIZE_BITS;
type Output = I::Output;
type Parameters = PedersenParameters<G>;
fn setup<R: Rng>(rng: &mut R) -> Result<Self::Parameters, Error> {
let time = start_timer!(|| format!("PedersenCRHCompressor::Setup"));
let params = PedersenCRH::<G, W>::setup(rng);
end_timer!(time);
params
}
fn evaluate(parameters: &Self::Parameters, input: &[u8]) -> Result<Self::Output, Error> {
let eval_time = start_timer!(|| "PedersenCRHCompressor::Eval");
let result = I::injective_map(&PedersenCRH::<G, W>::evaluate(parameters, input)?)?;
end_timer!(eval_time);
Ok(result)
}
}

View File

@@ -0,0 +1,24 @@
use algebra::bytes::ToBytes;
use rand::Rng;
use std::hash::Hash;
pub mod injective_map;
pub mod pedersen;
use crate::Error;
#[cfg(feature = "r1cs")]
pub mod constraints;
#[cfg(feature = "r1cs")]
pub use constraints::*;
pub trait FixedLengthCRH {
const INPUT_SIZE_BITS: usize;
type Output: ToBytes + Clone + Eq + Hash + Default;
type Parameters: Clone + Default;
fn setup<R: Rng>(r: &mut R) -> Result<Self::Parameters, Error>;
fn evaluate(parameters: &Self::Parameters, input: &[u8]) -> Result<Self::Output, Error>;
}

View File

@@ -0,0 +1,193 @@
use algebra::Field;
use crate::crh::{
FixedLengthCRHGadget,
pedersen::{PedersenCRH, PedersenParameters, PedersenWindow},
};
use algebra::groups::Group;
use r1cs_core::{ConstraintSystem, SynthesisError};
use r1cs_std::prelude::*;
use std::{borrow::Borrow, marker::PhantomData};
#[derive(Derivative)]
#[derivative(Clone(
bound = "G: Group, W: PedersenWindow, ConstraintF: Field, GG: GroupGadget<G, ConstraintF>"
))]
pub struct PedersenCRHGadgetParameters<
G: Group,
W: PedersenWindow,
ConstraintF: Field,
GG: GroupGadget<G, ConstraintF>,
> {
params: PedersenParameters<G>,
_group_g: PhantomData<GG>,
_engine: PhantomData<ConstraintF>,
_window: PhantomData<W>,
}
pub struct PedersenCRHGadget<G: Group, ConstraintF: Field, GG: GroupGadget<G, ConstraintF>> {
#[doc(hideen)]
_group: PhantomData<*const G>,
#[doc(hideen)]
_group_gadget: PhantomData<*const GG>,
#[doc(hideen)]
_engine: PhantomData<ConstraintF>,
}
impl<ConstraintF, G, GG, W> FixedLengthCRHGadget<PedersenCRH<G, W>, ConstraintF> for PedersenCRHGadget<G, ConstraintF, GG>
where
ConstraintF: Field,
G: Group,
GG: GroupGadget<G, ConstraintF>,
W: PedersenWindow,
{
type OutputGadget = GG;
type ParametersGadget = PedersenCRHGadgetParameters<G, W, ConstraintF, GG>;
fn check_evaluation_gadget<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
parameters: &Self::ParametersGadget,
input: &[UInt8],
) -> Result<Self::OutputGadget, SynthesisError> {
let mut padded_input = input.to_vec();
// Pad the input if it is not the current length.
if input.len() * 8 < W::WINDOW_SIZE * W::NUM_WINDOWS {
let current_length = input.len();
for _ in current_length..(W::WINDOW_SIZE * W::NUM_WINDOWS / 8) {
padded_input.push(UInt8::constant(0u8));
}
}
assert_eq!(padded_input.len() * 8, W::WINDOW_SIZE * W::NUM_WINDOWS);
assert_eq!(parameters.params.generators.len(), W::NUM_WINDOWS);
// Allocate new variable for the result.
let input_in_bits: Vec<_> = padded_input
.iter()
.flat_map(|byte| byte.into_bits_le())
.collect();
let input_in_bits = input_in_bits.chunks(W::WINDOW_SIZE);
let result =
GG::precomputed_base_multiscalar_mul(cs, &parameters.params.generators, input_in_bits)?;
Ok(result)
}
}
impl<G: Group, W: PedersenWindow, ConstraintF: Field, GG: GroupGadget<G, ConstraintF>>
AllocGadget<PedersenParameters<G>, ConstraintF> for PedersenCRHGadgetParameters<G, W, ConstraintF, GG>
{
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(_cs: CS, value_gen: F) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<PedersenParameters<G>>,
{
let params = value_gen()?.borrow().clone();
Ok(PedersenCRHGadgetParameters {
params,
_group_g: PhantomData,
_engine: PhantomData,
_window: PhantomData,
})
}
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
_cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<PedersenParameters<G>>,
{
let params = value_gen()?.borrow().clone();
Ok(PedersenCRHGadgetParameters {
params,
_group_g: PhantomData,
_engine: PhantomData,
_window: PhantomData,
})
}
}
#[cfg(test)]
mod test {
use algebra::fields::bls12_381::fr::Fr;
use rand::{thread_rng, Rng};
use crate::crh::{
pedersen::{PedersenCRH, PedersenWindow},
pedersen::constraints::PedersenCRHGadget,
FixedLengthCRH,
FixedLengthCRHGadget
};
use algebra::curves::{jubjub::JubJubProjective as JubJub, ProjectiveCurve};
use r1cs_core::ConstraintSystem;
use r1cs_std::{
groups::curves::twisted_edwards::jubjub::JubJubGadget,
test_constraint_system::TestConstraintSystem, prelude::*,
};
type TestCRH = PedersenCRH<JubJub, Window>;
type TestCRHGadget = PedersenCRHGadget<JubJub, Fr, JubJubGadget>;
#[derive(Clone, PartialEq, Eq, Hash)]
pub(super) struct Window;
impl PedersenWindow for Window {
const WINDOW_SIZE: usize = 128;
const NUM_WINDOWS: usize = 8;
}
fn generate_input<CS: ConstraintSystem<Fr>, R: Rng>(
mut cs: CS,
rng: &mut R,
) -> ([u8; 128], Vec<UInt8>) {
let mut input = [1u8; 128];
rng.fill_bytes(&mut input);
let mut input_bytes = vec![];
for (byte_i, input_byte) in input.into_iter().enumerate() {
let cs = cs.ns(|| format!("input_byte_gadget_{}", byte_i));
input_bytes.push(UInt8::alloc(cs, || Ok(*input_byte)).unwrap());
}
(input, input_bytes)
}
#[test]
fn crh_primitive_gadget_test() {
let rng = &mut thread_rng();
let mut cs = TestConstraintSystem::<Fr>::new();
let (input, input_bytes) = generate_input(&mut cs, rng);
println!("number of constraints for input: {}", cs.num_constraints());
let parameters = TestCRH::setup(rng).unwrap();
let primitive_result = TestCRH::evaluate(&parameters, &input).unwrap();
let gadget_parameters =
<TestCRHGadget as FixedLengthCRHGadget<TestCRH, Fr>>::ParametersGadget::alloc(
&mut cs.ns(|| "gadget_parameters"),
|| Ok(&parameters),
)
.unwrap();
println!(
"number of constraints for input + params: {}",
cs.num_constraints()
);
let gadget_result =
<TestCRHGadget as FixedLengthCRHGadget<TestCRH, Fr>>::check_evaluation_gadget(
&mut cs.ns(|| "gadget_evaluation"),
&gadget_parameters,
&input_bytes,
)
.unwrap();
println!("number of constraints total: {}", cs.num_constraints());
let primitive_result = primitive_result.into_affine();
assert_eq!(primitive_result.x, gadget_result.x.value.unwrap());
assert_eq!(primitive_result.y, gadget_result.y.value.unwrap());
assert!(cs.is_satisfied());
}
}

View File

@@ -0,0 +1,141 @@
use crate::Error;
use rand::Rng;
use rayon::prelude::*;
use std::{
fmt::{Debug, Formatter, Result as FmtResult},
marker::PhantomData,
};
use crate::crh::FixedLengthCRH;
use algebra::groups::Group;
#[cfg(feature = "r1cs")]
pub mod constraints;
pub trait PedersenWindow: Clone {
const WINDOW_SIZE: usize;
const NUM_WINDOWS: usize;
}
#[derive(Clone, Default)]
pub struct PedersenParameters<G: Group> {
pub generators: Vec<Vec<G>>,
}
pub struct PedersenCRH<G: Group, W: PedersenWindow> {
group: PhantomData<G>,
window: PhantomData<W>,
}
impl<G: Group, W: PedersenWindow> PedersenCRH<G, W> {
pub fn create_generators<R: Rng>(rng: &mut R) -> Vec<Vec<G>> {
let mut generators_powers = Vec::new();
for _ in 0..W::NUM_WINDOWS {
generators_powers.push(Self::generator_powers(W::WINDOW_SIZE, rng));
}
generators_powers
}
pub fn generator_powers<R: Rng>(num_powers: usize, rng: &mut R) -> Vec<G> {
let mut cur_gen_powers = Vec::with_capacity(num_powers);
let mut base = G::rand(rng);
for _ in 0..num_powers {
cur_gen_powers.push(base);
base.double_in_place();
}
cur_gen_powers
}
}
impl<G: Group, W: PedersenWindow> FixedLengthCRH for PedersenCRH<G, W> {
const INPUT_SIZE_BITS: usize = W::WINDOW_SIZE * W::NUM_WINDOWS;
type Output = G;
type Parameters = PedersenParameters<G>;
fn setup<R: Rng>(rng: &mut R) -> Result<Self::Parameters, Error> {
let time = start_timer!(|| format!(
"PedersenCRH::Setup: {} {}-bit windows; {{0,1}}^{{{}}} -> G",
W::NUM_WINDOWS,
W::WINDOW_SIZE,
W::NUM_WINDOWS * W::WINDOW_SIZE
));
let generators = Self::create_generators(rng);
end_timer!(time);
Ok(Self::Parameters { generators })
}
fn evaluate(parameters: &Self::Parameters, input: &[u8]) -> Result<Self::Output, Error> {
let eval_time = start_timer!(|| "PedersenCRH::Eval");
if (input.len() * 8) > W::WINDOW_SIZE * W::NUM_WINDOWS {
panic!(
"incorrect input length {:?} for window params {:?}x{:?}",
input.len(),
W::WINDOW_SIZE,
W::NUM_WINDOWS
);
}
let mut padded_input = Vec::with_capacity(input.len());
let mut input = input;
// Pad the input if it is not the current length.
if (input.len() * 8) < W::WINDOW_SIZE * W::NUM_WINDOWS {
let current_length = input.len();
padded_input.extend_from_slice(input);
for _ in current_length..((W::WINDOW_SIZE * W::NUM_WINDOWS) / 8) {
padded_input.push(0u8);
}
input = padded_input.as_slice();
}
assert_eq!(
parameters.generators.len(),
W::NUM_WINDOWS,
"Incorrect pp of size {:?}x{:?} for window params {:?}x{:?}",
parameters.generators[0].len(),
parameters.generators.len(),
W::WINDOW_SIZE,
W::NUM_WINDOWS
);
// Compute sum of h_i^{m_i} for all i.
let result = bytes_to_bits(input)
.par_chunks(W::WINDOW_SIZE)
.zip(&parameters.generators)
.map(|(bits, generator_powers)| {
let mut encoded = G::zero();
for (bit, base) in bits.iter().zip(generator_powers.iter()) {
if *bit {
encoded = encoded + base;
}
}
encoded
})
.reduce(|| G::zero(), |a, b| a + &b);
end_timer!(eval_time);
Ok(result)
}
}
pub fn bytes_to_bits(bytes: &[u8]) -> Vec<bool> {
let mut bits = Vec::with_capacity(bytes.len() * 8);
for byte in bytes {
for i in 0..8 {
let bit = (*byte >> i) & 1;
bits.push(bit == 1)
}
}
bits
}
impl<G: Group> Debug for PedersenParameters<G> {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "Pedersen Hash Parameters {{\n")?;
for (i, g) in self.generators.iter().enumerate() {
write!(f, "\t Generator {}: {:?}\n", i, g)?;
}
write!(f, "}}\n")
}
}