@ -1,567 +0,0 @@ |
|||
macro_rules! make_uint {
|
|||
($name:ident, $size:expr, $native:ident, $mod_name:ident, $r1cs_doc_name:expr, $native_doc_name:expr, $num_bits_doc:expr) => {
|
|||
#[doc = "This module contains the "]
|
|||
#[doc = $r1cs_doc_name]
|
|||
#[doc = "type, which is the R1CS equivalent of the "]
|
|||
#[doc = $native_doc_name]
|
|||
#[doc = " type."]
|
|||
pub mod $mod_name {
|
|||
use ark_ff::{Field, One, PrimeField, Zero};
|
|||
use core::{borrow::Borrow, convert::TryFrom};
|
|||
use num_bigint::BigUint;
|
|||
use num_traits::cast::ToPrimitive;
|
|||
|
|||
use ark_relations::r1cs::{
|
|||
ConstraintSystemRef, LinearCombination, Namespace, SynthesisError, Variable,
|
|||
};
|
|||
|
|||
use crate::{
|
|||
boolean::{AllocatedBool, Boolean},
|
|||
prelude::*,
|
|||
Assignment, Vec,
|
|||
};
|
|||
|
|||
#[doc = "This struct represent an unsigned"]
|
|||
#[doc = $num_bits_doc]
|
|||
#[doc = " bit integer as a sequence of "]
|
|||
#[doc = $num_bits_doc]
|
|||
#[doc = " `Boolean`s. \n"]
|
|||
#[doc = "This is the R1CS equivalent of the native "]
|
|||
#[doc = $native_doc_name]
|
|||
#[doc = " unsigned integer type."]
|
|||
#[derive(Clone, Debug)]
|
|||
pub struct $name<F: Field> {
|
|||
// Least significant bit first
|
|||
bits: [Boolean<F>; $size],
|
|||
value: Option<$native>,
|
|||
}
|
|||
|
|||
impl<F: Field> R1CSVar<F> for $name<F> {
|
|||
type Value = $native;
|
|||
|
|||
fn cs(&self) -> ConstraintSystemRef<F> {
|
|||
self.bits.as_ref().cs()
|
|||
}
|
|||
|
|||
fn value(&self) -> Result<Self::Value, SynthesisError> {
|
|||
let mut value = None;
|
|||
for (i, bit) in self.bits.iter().enumerate() {
|
|||
let b = $native::from(bit.value()?);
|
|||
value = match value {
|
|||
Some(value) => Some(value + (b << i)),
|
|||
None => Some(b << i),
|
|||
};
|
|||
}
|
|||
debug_assert_eq!(self.value, value);
|
|||
value.get()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> $name<F> {
|
|||
#[doc = "Construct a constant "]
|
|||
#[doc = $r1cs_doc_name]
|
|||
#[doc = " from the native "]
|
|||
#[doc = $native_doc_name]
|
|||
#[doc = " type."]
|
|||
pub fn constant(value: $native) -> Self {
|
|||
let mut bits = [Boolean::FALSE; $size];
|
|||
|
|||
let mut tmp = value;
|
|||
for i in 0..$size {
|
|||
bits[i] = Boolean::constant((tmp & 1) == 1);
|
|||
tmp >>= 1;
|
|||
}
|
|||
|
|||
$name {
|
|||
bits,
|
|||
value: Some(value),
|
|||
}
|
|||
}
|
|||
|
|||
/// Turns `self` into the underlying little-endian bits.
|
|||
pub fn to_bits_le(&self) -> Vec<Boolean<F>> {
|
|||
self.bits.to_vec()
|
|||
}
|
|||
|
|||
/// Construct `Self` from a slice of `Boolean`s.
|
|||
///
|
|||
/// # Panics
|
|||
#[doc = "This method panics if `bits.len() != "]
|
|||
#[doc = $num_bits_doc]
|
|||
#[doc = "`."]
|
|||
pub fn from_bits_le(bits: &[Boolean<F>]) -> Self {
|
|||
assert_eq!(bits.len(), $size);
|
|||
|
|||
let bits = <&[Boolean<F>; $size]>::try_from(bits).unwrap().clone();
|
|||
|
|||
let mut value = Some(0);
|
|||
for b in bits.iter().rev() {
|
|||
value.as_mut().map(|v| *v <<= 1);
|
|||
|
|||
match *b {
|
|||
Boolean::Constant(b) => {
|
|||
value.as_mut().map(|v| *v |= $native::from(b));
|
|||
},
|
|||
Boolean::Is(ref b) => match b.value() {
|
|||
Ok(b) => {
|
|||
value.as_mut().map(|v| *v |= $native::from(b));
|
|||
},
|
|||
Err(_) => value = None,
|
|||
},
|
|||
Boolean::Not(ref b) => match b.value() {
|
|||
Ok(b) => {
|
|||
value.as_mut().map(|v| *v |= $native::from(!b));
|
|||
},
|
|||
Err(_) => value = None,
|
|||
},
|
|||
}
|
|||
}
|
|||
|
|||
Self { value, bits }
|
|||
}
|
|||
|
|||
/// Rotates `self` to the right by `by` steps, wrapping around.
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
pub fn rotr(&self, by: usize) -> Self {
|
|||
let mut result = self.clone();
|
|||
let by = by % $size;
|
|||
|
|||
let new_bits = self.bits.iter().skip(by).chain(&self.bits).take($size);
|
|||
|
|||
for (res, new) in result.bits.iter_mut().zip(new_bits) {
|
|||
*res = new.clone();
|
|||
}
|
|||
|
|||
result.value = self
|
|||
.value
|
|||
.map(|v| v.rotate_right(u32::try_from(by).unwrap()));
|
|||
result
|
|||
}
|
|||
|
|||
/// Outputs `self ^ other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this
|
|||
/// method *does not* create any constraints or variables.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
pub fn xor(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
let mut result = self.clone();
|
|||
result.value = match (self.value, other.value) {
|
|||
(Some(a), Some(b)) => Some(a ^ b),
|
|||
_ => None,
|
|||
};
|
|||
|
|||
let new_bits = self.bits.iter().zip(&other.bits).map(|(a, b)| a.xor(b));
|
|||
|
|||
for (res, new) in result.bits.iter_mut().zip(new_bits) {
|
|||
*res = new?;
|
|||
}
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Perform modular addition of `operands`.
|
|||
///
|
|||
/// The user must ensure that overflow does not occur.
|
|||
#[tracing::instrument(target = "r1cs", skip(operands))]
|
|||
pub fn addmany(operands: &[Self]) -> Result<Self, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
// Make some arbitrary bounds for ourselves to avoid overflows
|
|||
// in the scalar field
|
|||
assert!(F::MODULUS_BIT_SIZE >= 2 * $size);
|
|||
|
|||
// Support up to 128
|
|||
assert!($size <= 128);
|
|||
|
|||
assert!(operands.len() >= 1);
|
|||
assert!($size + ark_std::log2(operands.len()) <= F::MODULUS_BIT_SIZE);
|
|||
|
|||
if operands.len() == 1 {
|
|||
return Ok(operands[0].clone());
|
|||
}
|
|||
|
|||
// Compute the maximum value of the sum so we allocate enough bits for
|
|||
// the result
|
|||
let mut max_value =
|
|||
BigUint::from($native::max_value()) * BigUint::from(operands.len());
|
|||
|
|||
// Keep track of the resulting value
|
|||
let mut result_value = Some(BigUint::zero());
|
|||
|
|||
// This is a linear combination that we will enforce to be "zero"
|
|||
let mut lc = LinearCombination::zero();
|
|||
|
|||
let mut all_constants = true;
|
|||
|
|||
// Iterate over the operands
|
|||
for op in operands {
|
|||
// Accumulate the value
|
|||
match op.value {
|
|||
Some(val) => {
|
|||
result_value.as_mut().map(|v| *v += BigUint::from(val));
|
|||
},
|
|||
|
|||
None => {
|
|||
// If any of our operands have unknown value, we won't
|
|||
// know the value of the result
|
|||
result_value = None;
|
|||
},
|
|||
}
|
|||
|
|||
// Iterate over each bit_gadget of the operand and add the operand to
|
|||
// the linear combination
|
|||
let mut coeff = F::one();
|
|||
for bit in &op.bits {
|
|||
match *bit {
|
|||
Boolean::Is(ref bit) => {
|
|||
all_constants = false;
|
|||
|
|||
// Add coeff * bit_gadget
|
|||
lc += (coeff, bit.variable());
|
|||
},
|
|||
Boolean::Not(ref bit) => {
|
|||
all_constants = false;
|
|||
|
|||
// Add coeff * (1 - bit_gadget) = coeff * ONE - coeff *
|
|||
// bit_gadget
|
|||
lc = lc + (coeff, Variable::One) - (coeff, bit.variable());
|
|||
},
|
|||
Boolean::Constant(bit) => {
|
|||
if bit {
|
|||
lc += (coeff, Variable::One);
|
|||
}
|
|||
},
|
|||
}
|
|||
|
|||
coeff.double_in_place();
|
|||
}
|
|||
}
|
|||
|
|||
// The value of the actual result is modulo 2^$size
|
|||
let modular_value = result_value.clone().map(|v| {
|
|||
let modulus = BigUint::from(1u64) << ($size as u32);
|
|||
(v % modulus).to_u128().unwrap() as $native
|
|||
});
|
|||
|
|||
if all_constants && modular_value.is_some() {
|
|||
// We can just return a constant, rather than
|
|||
// unpacking the result into allocated bits.
|
|||
|
|||
return Ok($name::constant(modular_value.unwrap()));
|
|||
}
|
|||
let cs = operands.cs();
|
|||
|
|||
// Storage area for the resulting bits
|
|||
let mut result_bits = vec![];
|
|||
|
|||
// Allocate each bit_gadget of the result
|
|||
let mut coeff = F::one();
|
|||
let mut i = 0;
|
|||
while max_value != BigUint::zero() {
|
|||
// Allocate the bit_gadget
|
|||
let b = AllocatedBool::new_witness(cs.clone(), || {
|
|||
result_value
|
|||
.clone()
|
|||
.map(|v| (v >> i) & BigUint::one() == BigUint::one())
|
|||
.get()
|
|||
})?;
|
|||
|
|||
// Subtract this bit_gadget from the linear combination to ensure the sums
|
|||
// balance out
|
|||
lc = lc - (coeff, b.variable());
|
|||
|
|||
result_bits.push(b.into());
|
|||
|
|||
max_value >>= 1;
|
|||
i += 1;
|
|||
coeff.double_in_place();
|
|||
}
|
|||
|
|||
// Enforce that the linear combination equals zero
|
|||
cs.enforce_constraint(lc!(), lc!(), lc)?;
|
|||
|
|||
// Discard carry bits that we don't care about
|
|||
result_bits.truncate($size);
|
|||
let bits = TryFrom::try_from(result_bits).unwrap();
|
|||
|
|||
Ok($name {
|
|||
bits,
|
|||
value: modular_value,
|
|||
})
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> ToBytesGadget<ConstraintF> for $name<ConstraintF> {
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn to_bytes(&self) -> Result<Vec<UInt8<ConstraintF>>, SynthesisError> {
|
|||
Ok(self
|
|||
.to_bits_le()
|
|||
.chunks(8)
|
|||
.map(UInt8::from_bits_le)
|
|||
.collect())
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> EqGadget<ConstraintF> for $name<ConstraintF> {
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn is_eq(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {
|
|||
self.bits.as_ref().is_eq(&other.bits)
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn conditional_enforce_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<ConstraintF>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
self.bits.conditional_enforce_equal(&other.bits, condition)
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn conditional_enforce_not_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<ConstraintF>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
self.bits
|
|||
.conditional_enforce_not_equal(&other.bits, condition)
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> CondSelectGadget<ConstraintF> for $name<ConstraintF> {
|
|||
#[tracing::instrument(target = "r1cs", skip(cond, true_value, false_value))]
|
|||
fn conditionally_select(
|
|||
cond: &Boolean<ConstraintF>,
|
|||
true_value: &Self,
|
|||
false_value: &Self,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let selected_bits = true_value
|
|||
.bits
|
|||
.iter()
|
|||
.zip(&false_value.bits)
|
|||
.map(|(t, f)| cond.select(t, f));
|
|||
let mut bits = [Boolean::FALSE; $size];
|
|||
for (result, new) in bits.iter_mut().zip(selected_bits) {
|
|||
*result = new?;
|
|||
}
|
|||
|
|||
let value = cond.value().ok().and_then(|cond| {
|
|||
if cond {
|
|||
true_value.value().ok()
|
|||
} else {
|
|||
false_value.value().ok()
|
|||
}
|
|||
});
|
|||
Ok(Self { bits, value })
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> AllocVar<$native, ConstraintF> for $name<ConstraintF> {
|
|||
fn new_variable<T: Borrow<$native>>(
|
|||
cs: impl Into<Namespace<ConstraintF>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let value = f().map(|f| *f.borrow()).ok();
|
|||
|
|||
let mut values = [None; $size];
|
|||
if let Some(val) = value {
|
|||
values
|
|||
.iter_mut()
|
|||
.enumerate()
|
|||
.for_each(|(i, v)| *v = Some((val >> i) & 1 == 1));
|
|||
}
|
|||
|
|||
let mut bits = [Boolean::FALSE; $size];
|
|||
for (b, v) in bits.iter_mut().zip(&values) {
|
|||
*b = Boolean::new_variable(cs.clone(), || v.get(), mode)?;
|
|||
}
|
|||
Ok(Self { bits, value })
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod test {
|
|||
use super::$name;
|
|||
use crate::{bits::boolean::Boolean, prelude::*, Vec};
|
|||
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|||
use ark_std::rand::Rng;
|
|||
use ark_test_curves::mnt4_753::Fr;
|
|||
|
|||
#[test]
|
|||
fn test_from_bits() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let v = (0..$size)
|
|||
.map(|_| Boolean::constant(rng.gen()))
|
|||
.collect::<Vec<Boolean<Fr>>>();
|
|||
|
|||
let b = $name::from_bits_le(&v);
|
|||
|
|||
for (i, bit) in b.bits.iter().enumerate() {
|
|||
match bit {
|
|||
&Boolean::Constant(bit) => {
|
|||
assert_eq!(bit, ((b.value()? >> i) & 1 == 1));
|
|||
},
|
|||
_ => unreachable!(),
|
|||
}
|
|||
}
|
|||
|
|||
let expected_to_be_same = b.to_bits_le();
|
|||
|
|||
for x in v.iter().zip(expected_to_be_same.iter()) {
|
|||
match x {
|
|||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
|||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
|||
_ => unreachable!(),
|
|||
}
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_xor() -> Result<(), SynthesisError> {
|
|||
use Boolean::*;
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let a: $native = rng.gen();
|
|||
let b: $native = rng.gen();
|
|||
let c: $native = rng.gen();
|
|||
|
|||
let mut expected = a ^ b ^ c;
|
|||
|
|||
let a_bit = $name::new_witness(cs.clone(), || Ok(a))?;
|
|||
let b_bit = $name::constant(b);
|
|||
let c_bit = $name::new_witness(cs.clone(), || Ok(c))?;
|
|||
|
|||
let r = a_bit.xor(&b_bit).unwrap();
|
|||
let r = r.xor(&c_bit).unwrap();
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
|
|||
assert!(r.value == Some(expected));
|
|||
|
|||
for b in r.bits.iter() {
|
|||
match b {
|
|||
Is(b) => assert_eq!(b.value()?, (expected & 1 == 1)),
|
|||
Not(b) => assert_eq!(!b.value()?, (expected & 1 == 1)),
|
|||
Constant(b) => assert_eq!(*b, (expected & 1 == 1)),
|
|||
}
|
|||
|
|||
expected >>= 1;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_addmany_constants() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let a: $native = rng.gen();
|
|||
let b: $native = rng.gen();
|
|||
let c: $native = rng.gen();
|
|||
|
|||
let a_bit = $name::new_constant(cs.clone(), a)?;
|
|||
let b_bit = $name::new_constant(cs.clone(), b)?;
|
|||
let c_bit = $name::new_constant(cs.clone(), c)?;
|
|||
|
|||
let mut expected = a.wrapping_add(b).wrapping_add(c);
|
|||
|
|||
let r = $name::addmany(&[a_bit, b_bit, c_bit]).unwrap();
|
|||
|
|||
assert!(r.value == Some(expected));
|
|||
|
|||
for b in r.bits.iter() {
|
|||
match b {
|
|||
Boolean::Is(_) => unreachable!(),
|
|||
Boolean::Not(_) => unreachable!(),
|
|||
Boolean::Constant(b) => assert_eq!(*b, (expected & 1 == 1)),
|
|||
}
|
|||
|
|||
expected >>= 1;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_addmany() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let a: $native = rng.gen();
|
|||
let b: $native = rng.gen();
|
|||
let c: $native = rng.gen();
|
|||
let d: $native = rng.gen();
|
|||
|
|||
let mut expected = (a ^ b).wrapping_add(c).wrapping_add(d);
|
|||
|
|||
let a_bit = $name::new_witness(ark_relations::ns!(cs, "a_bit"), || Ok(a))?;
|
|||
let b_bit = $name::constant(b);
|
|||
let c_bit = $name::constant(c);
|
|||
let d_bit = $name::new_witness(ark_relations::ns!(cs, "d_bit"), || Ok(d))?;
|
|||
|
|||
let r = a_bit.xor(&b_bit).unwrap();
|
|||
let r = $name::addmany(&[r, c_bit, d_bit]).unwrap();
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert!(r.value == Some(expected));
|
|||
|
|||
for b in r.bits.iter() {
|
|||
match b {
|
|||
Boolean::Is(b) => assert_eq!(b.value()?, (expected & 1 == 1)),
|
|||
Boolean::Not(b) => assert_eq!(!b.value()?, (expected & 1 == 1)),
|
|||
Boolean::Constant(_) => unreachable!(),
|
|||
}
|
|||
|
|||
expected >>= 1;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_rotr() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
let mut num = rng.gen();
|
|||
|
|||
let a: $name<Fr> = $name::constant(num);
|
|||
|
|||
for i in 0..$size {
|
|||
let b = a.rotr(i);
|
|||
|
|||
assert!(b.value.unwrap() == num);
|
|||
|
|||
let mut tmp = num;
|
|||
for b in &b.bits {
|
|||
match b {
|
|||
Boolean::Constant(b) => assert_eq!(*b, tmp & 1 == 1),
|
|||
_ => unreachable!(),
|
|||
}
|
|||
|
|||
tmp >>= 1;
|
|||
}
|
|||
|
|||
num = num.rotate_right(1);
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
}
|
|||
}
|
|||
};
|
|||
}
|
@ -1,550 +0,0 @@ |
|||
use ark_ff::{Field, PrimeField, ToConstraintField};
|
|||
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError};
|
|||
|
|||
use crate::{
|
|||
fields::fp::{AllocatedFp, FpVar},
|
|||
prelude::*,
|
|||
Assignment, ToConstraintFieldGadget, Vec,
|
|||
};
|
|||
use core::{borrow::Borrow, convert::TryFrom};
|
|||
|
|||
/// Represents an interpretation of 8 `Boolean` objects as an
|
|||
/// unsigned integer.
|
|||
#[derive(Clone, Debug)]
|
|||
pub struct UInt8<F: Field> {
|
|||
/// Little-endian representation: least significant bit first
|
|||
pub(crate) bits: [Boolean<F>; 8],
|
|||
pub(crate) value: Option<u8>,
|
|||
}
|
|||
|
|||
impl<F: Field> R1CSVar<F> for UInt8<F> {
|
|||
type Value = u8;
|
|||
|
|||
fn cs(&self) -> ConstraintSystemRef<F> {
|
|||
self.bits.as_ref().cs()
|
|||
}
|
|||
|
|||
fn value(&self) -> Result<Self::Value, SynthesisError> {
|
|||
let mut value = None;
|
|||
for (i, bit) in self.bits.iter().enumerate() {
|
|||
let b = u8::from(bit.value()?);
|
|||
value = match value {
|
|||
Some(value) => Some(value + (b << i)),
|
|||
None => Some(b << i),
|
|||
};
|
|||
}
|
|||
debug_assert_eq!(self.value, value);
|
|||
value.get()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> UInt8<F> {
|
|||
/// Construct a constant vector of `UInt8` from a vector of `u8`
|
|||
///
|
|||
/// This *does not* create any new variables or constraints.
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let var = vec![UInt8::new_witness(cs.clone(), || Ok(2))?];
|
|||
///
|
|||
/// let constant = UInt8::constant_vec(&[2]);
|
|||
/// var.enforce_equal(&constant)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn constant_vec(values: &[u8]) -> Vec<Self> {
|
|||
let mut result = Vec::new();
|
|||
for value in values {
|
|||
result.push(UInt8::constant(*value));
|
|||
}
|
|||
result
|
|||
}
|
|||
|
|||
/// Construct a constant `UInt8` from a `u8`
|
|||
///
|
|||
/// This *does not* create new variables or constraints.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let var = UInt8::new_witness(cs.clone(), || Ok(2))?;
|
|||
///
|
|||
/// let constant = UInt8::constant(2);
|
|||
/// var.enforce_equal(&constant)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn constant(value: u8) -> Self {
|
|||
let mut bits = [Boolean::FALSE; 8];
|
|||
|
|||
let mut tmp = value;
|
|||
for i in 0..8 {
|
|||
// If last bit is one, push one.
|
|||
bits[i] = Boolean::constant((tmp & 1) == 1);
|
|||
tmp >>= 1;
|
|||
}
|
|||
|
|||
Self {
|
|||
bits,
|
|||
value: Some(value),
|
|||
}
|
|||
}
|
|||
|
|||
/// Allocates a slice of `u8`'s as private witnesses.
|
|||
pub fn new_witness_vec(
|
|||
cs: impl Into<Namespace<F>>,
|
|||
values: &[impl Into<Option<u8>> + Copy],
|
|||
) -> Result<Vec<Self>, SynthesisError> {
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let mut output_vec = Vec::with_capacity(values.len());
|
|||
for value in values {
|
|||
let byte: Option<u8> = Into::into(*value);
|
|||
output_vec.push(Self::new_witness(cs.clone(), || byte.get())?);
|
|||
}
|
|||
Ok(output_vec)
|
|||
}
|
|||
|
|||
/// Allocates a slice of `u8`'s as public inputs by first packing them into
|
|||
/// elements of `F`, (thus reducing the number of input allocations),
|
|||
/// allocating these elements as public inputs, and then converting
|
|||
/// these field variables `FpVar<F>` variables back into bytes.
|
|||
///
|
|||
/// From a user perspective, this trade-off adds constraints, but improves
|
|||
/// verifier time and verification key size.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let two = UInt8::new_witness(cs.clone(), || Ok(2))?;
|
|||
/// let var = vec![two.clone(); 32];
|
|||
///
|
|||
/// let c = UInt8::new_input_vec(cs.clone(), &[2; 32])?;
|
|||
/// var.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn new_input_vec(
|
|||
cs: impl Into<Namespace<F>>,
|
|||
values: &[u8],
|
|||
) -> Result<Vec<Self>, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let values_len = values.len();
|
|||
let field_elements: Vec<F> = ToConstraintField::<F>::to_field_elements(values).unwrap();
|
|||
|
|||
let max_size = 8 * ((F::MODULUS_BIT_SIZE - 1) / 8) as usize;
|
|||
let mut allocated_bits = Vec::new();
|
|||
for field_element in field_elements.into_iter() {
|
|||
let fe = AllocatedFp::new_input(cs.clone(), || Ok(field_element))?;
|
|||
let fe_bits = fe.to_bits_le()?;
|
|||
|
|||
// Remove the most significant bit, because we know it should be zero
|
|||
// because `values.to_field_elements()` only
|
|||
// packs field elements up to the penultimate bit.
|
|||
// That is, the most significant bit (`ConstraintF::NUM_BITS`-th bit) is
|
|||
// unset, so we can just pop it off.
|
|||
allocated_bits.extend_from_slice(&fe_bits[0..max_size]);
|
|||
}
|
|||
|
|||
// Chunk up slices of 8 bit into bytes.
|
|||
Ok(allocated_bits[0..(8 * values_len)]
|
|||
.chunks(8)
|
|||
.map(Self::from_bits_le)
|
|||
.collect())
|
|||
}
|
|||
|
|||
/// Converts a little-endian byte order representation of bits into a
|
|||
/// `UInt8`.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let var = UInt8::new_witness(cs.clone(), || Ok(128))?;
|
|||
///
|
|||
/// let f = Boolean::FALSE;
|
|||
/// let t = Boolean::TRUE;
|
|||
///
|
|||
/// // Construct [0, 0, 0, 0, 0, 0, 0, 1]
|
|||
/// let mut bits = vec![f.clone(); 7];
|
|||
/// bits.push(t);
|
|||
///
|
|||
/// let mut c = UInt8::from_bits_le(&bits);
|
|||
/// var.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn from_bits_le(bits: &[Boolean<F>]) -> Self {
|
|||
assert_eq!(bits.len(), 8);
|
|||
let bits = <&[Boolean<F>; 8]>::try_from(bits).unwrap().clone();
|
|||
|
|||
let mut value = Some(0u8);
|
|||
for (i, b) in bits.iter().enumerate() {
|
|||
value = match b.value().ok() {
|
|||
Some(b) => value.map(|v| v + (u8::from(b) << i)),
|
|||
None => None,
|
|||
}
|
|||
}
|
|||
|
|||
Self { value, bits }
|
|||
}
|
|||
|
|||
/// Outputs `self ^ other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(1))?;
|
|||
///
|
|||
/// a.xor(&b)?.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn xor(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
let mut result = self.clone();
|
|||
result.value = match (self.value, other.value) {
|
|||
(Some(a), Some(b)) => Some(a ^ b),
|
|||
_ => None,
|
|||
};
|
|||
|
|||
let new_bits = self.bits.iter().zip(&other.bits).map(|(a, b)| a.xor(b));
|
|||
|
|||
for (res, new) in result.bits.iter_mut().zip(new_bits) {
|
|||
*res = new?;
|
|||
}
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> EqGadget<ConstraintF> for UInt8<ConstraintF> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn is_eq(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {
|
|||
self.bits.as_ref().is_eq(&other.bits)
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn conditional_enforce_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<ConstraintF>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
self.bits.conditional_enforce_equal(&other.bits, condition)
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn conditional_enforce_not_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<ConstraintF>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
self.bits
|
|||
.conditional_enforce_not_equal(&other.bits, condition)
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> CondSelectGadget<ConstraintF> for UInt8<ConstraintF> {
|
|||
#[tracing::instrument(target = "r1cs", skip(cond, true_value, false_value))]
|
|||
fn conditionally_select(
|
|||
cond: &Boolean<ConstraintF>,
|
|||
true_value: &Self,
|
|||
false_value: &Self,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let selected_bits = true_value
|
|||
.bits
|
|||
.iter()
|
|||
.zip(&false_value.bits)
|
|||
.map(|(t, f)| cond.select(t, f));
|
|||
let mut bits = [Boolean::FALSE; 8];
|
|||
for (result, new) in bits.iter_mut().zip(selected_bits) {
|
|||
*result = new?;
|
|||
}
|
|||
|
|||
let value = cond.value().ok().and_then(|cond| {
|
|||
if cond {
|
|||
true_value.value().ok()
|
|||
} else {
|
|||
false_value.value().ok()
|
|||
}
|
|||
});
|
|||
Ok(Self { bits, value })
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: Field> AllocVar<u8, ConstraintF> for UInt8<ConstraintF> {
|
|||
fn new_variable<T: Borrow<u8>>(
|
|||
cs: impl Into<Namespace<ConstraintF>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let value = f().map(|f| *f.borrow()).ok();
|
|||
|
|||
let mut values = [None; 8];
|
|||
if let Some(val) = value {
|
|||
values
|
|||
.iter_mut()
|
|||
.enumerate()
|
|||
.for_each(|(i, v)| *v = Some((val >> i) & 1 == 1));
|
|||
}
|
|||
|
|||
let mut bits = [Boolean::FALSE; 8];
|
|||
for (b, v) in bits.iter_mut().zip(&values) {
|
|||
*b = Boolean::new_variable(cs.clone(), || v.get(), mode)?;
|
|||
}
|
|||
Ok(Self { bits, value })
|
|||
}
|
|||
}
|
|||
|
|||
/// Parses the `Vec<UInt8<ConstraintF>>` in fixed-sized
|
|||
/// `ConstraintF::MODULUS_BIT_SIZE - 1` chunks and converts each chunk, which is
|
|||
/// assumed to be little-endian, to its `FpVar<ConstraintF>` representation.
|
|||
/// This is the gadget counterpart to the `[u8]` implementation of
|
|||
/// [`ToConstraintField`].
|
|||
impl<ConstraintF: PrimeField> ToConstraintFieldGadget<ConstraintF> for [UInt8<ConstraintF>] {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn to_constraint_field(&self) -> Result<Vec<FpVar<ConstraintF>>, SynthesisError> {
|
|||
let max_size = ((ConstraintF::MODULUS_BIT_SIZE - 1) / 8) as usize;
|
|||
self.chunks(max_size)
|
|||
.map(|chunk| Boolean::le_bits_to_fp_var(chunk.to_bits_le()?.as_slice()))
|
|||
.collect::<Result<Vec<_>, SynthesisError>>()
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: PrimeField> ToConstraintFieldGadget<ConstraintF> for Vec<UInt8<ConstraintF>> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn to_constraint_field(&self) -> Result<Vec<FpVar<ConstraintF>>, SynthesisError> {
|
|||
self.as_slice().to_constraint_field()
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod test {
|
|||
use super::UInt8;
|
|||
use crate::{
|
|||
fields::fp::FpVar,
|
|||
prelude::{
|
|||
AllocationMode::{Constant, Input, Witness},
|
|||
*,
|
|||
},
|
|||
ToConstraintFieldGadget, Vec,
|
|||
};
|
|||
use ark_ff::{PrimeField, ToConstraintField};
|
|||
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|||
use ark_std::rand::{distributions::Uniform, Rng};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn test_uint8_from_bits_to_bits() -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let byte_val = 0b01110001;
|
|||
let byte =
|
|||
UInt8::new_witness(ark_relations::ns!(cs, "alloc value"), || Ok(byte_val)).unwrap();
|
|||
let bits = byte.to_bits_le()?;
|
|||
for (i, bit) in bits.iter().enumerate() {
|
|||
assert_eq!(bit.value()?, (byte_val >> i) & 1 == 1)
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_new_input_vec() -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let byte_vals = (64u8..128u8).collect::<Vec<_>>();
|
|||
let bytes =
|
|||
UInt8::new_input_vec(ark_relations::ns!(cs, "alloc value"), &byte_vals).unwrap();
|
|||
dbg!(bytes.value())?;
|
|||
for (native, variable) in byte_vals.into_iter().zip(bytes) {
|
|||
let bits = variable.to_bits_le()?;
|
|||
for (i, bit) in bits.iter().enumerate() {
|
|||
assert_eq!(
|
|||
bit.value()?,
|
|||
(native >> i) & 1 == 1,
|
|||
"native value {}: bit {:?}",
|
|||
native,
|
|||
i
|
|||
)
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_from_bits() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let v = (0..8)
|
|||
.map(|_| Boolean::<Fr>::Constant(rng.gen()))
|
|||
.collect::<Vec<_>>();
|
|||
|
|||
let val = UInt8::from_bits_le(&v);
|
|||
|
|||
for (i, bit) in val.bits.iter().enumerate() {
|
|||
match bit {
|
|||
Boolean::Constant(b) => assert!(*b == ((val.value()? >> i) & 1 == 1)),
|
|||
_ => unreachable!(),
|
|||
}
|
|||
}
|
|||
|
|||
let expected_to_be_same = val.to_bits_le()?;
|
|||
|
|||
for x in v.iter().zip(expected_to_be_same.iter()) {
|
|||
match x {
|
|||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
|||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
|||
_ => unreachable!(),
|
|||
}
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_xor() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let a: u8 = rng.gen();
|
|||
let b: u8 = rng.gen();
|
|||
let c: u8 = rng.gen();
|
|||
|
|||
let mut expected = a ^ b ^ c;
|
|||
|
|||
let a_bit = UInt8::new_witness(ark_relations::ns!(cs, "a_bit"), || Ok(a)).unwrap();
|
|||
let b_bit = UInt8::constant(b);
|
|||
let c_bit = UInt8::new_witness(ark_relations::ns!(cs, "c_bit"), || Ok(c)).unwrap();
|
|||
|
|||
let r = a_bit.xor(&b_bit).unwrap();
|
|||
let r = r.xor(&c_bit).unwrap();
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
|
|||
assert!(r.value == Some(expected));
|
|||
|
|||
for b in r.bits.iter() {
|
|||
match b {
|
|||
Boolean::Is(b) => assert!(b.value()? == (expected & 1 == 1)),
|
|||
Boolean::Not(b) => assert!(!b.value()? == (expected & 1 == 1)),
|
|||
Boolean::Constant(b) => assert!(*b == (expected & 1 == 1)),
|
|||
}
|
|||
|
|||
expected >>= 1;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_to_constraint_field() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
let max_size = ((<Fr as PrimeField>::MODULUS_BIT_SIZE - 1) / 8) as usize;
|
|||
|
|||
let modes = [Input, Witness, Constant];
|
|||
for mode in &modes {
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let bytes: Vec<u8> = (&mut rng)
|
|||
.sample_iter(&Uniform::new_inclusive(0, u8::max_value()))
|
|||
.take(max_size * 3 + 5)
|
|||
.collect();
|
|||
|
|||
let bytes_var = bytes
|
|||
.iter()
|
|||
.map(|byte| UInt8::new_variable(cs.clone(), || Ok(*byte), *mode))
|
|||
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
|||
|
|||
let f_vec: Vec<Fr> = bytes.to_field_elements().unwrap();
|
|||
let f_var_vec: Vec<FpVar<Fr>> = bytes_var.to_constraint_field()?;
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(f_vec, f_var_vec.value()?);
|
|||
}
|
|||
}
|
|||
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_random_access() {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..100 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
// value array
|
|||
let values: Vec<u8> = (0..128).map(|_| rng.gen()).collect();
|
|||
let values_const: Vec<UInt8<Fr>> = values.iter().map(|x| UInt8::constant(*x)).collect();
|
|||
|
|||
// index array
|
|||
let position: Vec<bool> = (0..7).map(|_| rng.gen()).collect();
|
|||
let position_var: Vec<Boolean<Fr>> = position
|
|||
.iter()
|
|||
.map(|b| {
|
|||
Boolean::new_witness(ark_relations::ns!(cs, "index_arr_element"), || Ok(*b))
|
|||
.unwrap()
|
|||
})
|
|||
.collect();
|
|||
|
|||
// index
|
|||
let mut index = 0;
|
|||
for x in position {
|
|||
index *= 2;
|
|||
index += if x { 1 } else { 0 };
|
|||
}
|
|||
|
|||
assert_eq!(
|
|||
UInt8::conditionally_select_power_of_two_vector(&position_var, &values_const)
|
|||
.unwrap()
|
|||
.value()
|
|||
.unwrap(),
|
|||
values[index]
|
|||
)
|
|||
}
|
|||
}
|
|||
}
|
@ -0,0 +1,334 @@ |
|||
use core::borrow::Borrow;
|
|||
|
|||
use ark_ff::{Field, PrimeField};
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError, Variable};
|
|||
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
select::CondSelectGadget,
|
|||
Assignment,
|
|||
};
|
|||
|
|||
use super::Boolean;
|
|||
|
|||
/// Represents a variable in the constraint system which is guaranteed
|
|||
/// to be either zero or one.
|
|||
///
|
|||
/// In general, one should prefer using `Boolean` instead of `AllocatedBool`,
|
|||
/// as `Boolean` offers better support for constant values, and implements
|
|||
/// more traits.
|
|||
#[derive(Clone, Debug, Eq, PartialEq)]
|
|||
#[must_use]
|
|||
pub struct AllocatedBool<F: Field> {
|
|||
pub(super) variable: Variable,
|
|||
pub(super) cs: ConstraintSystemRef<F>,
|
|||
}
|
|||
|
|||
pub(crate) fn bool_to_field<F: Field>(val: impl Borrow<bool>) -> F {
|
|||
F::from(*val.borrow())
|
|||
}
|
|||
|
|||
impl<F: Field> AllocatedBool<F> {
|
|||
/// Get the assigned value for `self`.
|
|||
pub fn value(&self) -> Result<bool, SynthesisError> {
|
|||
let value = self.cs.assigned_value(self.variable).get()?;
|
|||
if value.is_zero() {
|
|||
Ok(false)
|
|||
} else if value.is_one() {
|
|||
Ok(true)
|
|||
} else {
|
|||
unreachable!("Incorrect value assigned: {:?}", value);
|
|||
}
|
|||
}
|
|||
|
|||
/// Get the R1CS variable for `self`.
|
|||
pub fn variable(&self) -> Variable {
|
|||
self.variable
|
|||
}
|
|||
|
|||
/// Allocate a witness variable without a booleanity check.
|
|||
#[doc(hidden)]
|
|||
pub fn new_witness_without_booleanity_check<T: Borrow<bool>>(
|
|||
cs: ConstraintSystemRef<F>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let variable = cs.new_witness_variable(|| f().map(bool_to_field))?;
|
|||
Ok(Self { variable, cs })
|
|||
}
|
|||
|
|||
/// Performs an XOR operation over the two operands, returning
|
|||
/// an `AllocatedBool`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn not(&self) -> Result<Self, SynthesisError> {
|
|||
let variable = self.cs.new_lc(lc!() + Variable::One - self.variable)?;
|
|||
Ok(Self {
|
|||
variable,
|
|||
cs: self.cs.clone(),
|
|||
})
|
|||
}
|
|||
|
|||
/// Performs an XOR operation over the two operands, returning
|
|||
/// an `AllocatedBool`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn xor(&self, b: &Self) -> Result<Self, SynthesisError> {
|
|||
let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
|
|||
Ok(self.value()? ^ b.value()?)
|
|||
})?;
|
|||
|
|||
// Constrain (a + a) * (b) = (a + b - c)
|
|||
// Given that a and b are boolean constrained, if they
|
|||
// are equal, the only solution for c is 0, and if they
|
|||
// are different, the only solution for c is 1.
|
|||
//
|
|||
// ¬(a ∧ b) ∧ ¬(¬a ∧ ¬b) = c
|
|||
// (1 - (a * b)) * (1 - ((1 - a) * (1 - b))) = c
|
|||
// (1 - ab) * (1 - (1 - a - b + ab)) = c
|
|||
// (1 - ab) * (a + b - ab) = c
|
|||
// a + b - ab - (a^2)b - (b^2)a + (a^2)(b^2) = c
|
|||
// a + b - ab - ab - ab + ab = c
|
|||
// a + b - 2ab = c
|
|||
// -2a * b = c - a - b
|
|||
// 2a * b = a + b - c
|
|||
// (a + a) * b = a + b - c
|
|||
self.cs.enforce_constraint(
|
|||
lc!() + self.variable + self.variable,
|
|||
lc!() + b.variable,
|
|||
lc!() + self.variable + b.variable - result.variable,
|
|||
)?;
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Performs an AND operation over the two operands, returning
|
|||
/// an `AllocatedBool`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn and(&self, b: &Self) -> Result<Self, SynthesisError> {
|
|||
let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
|
|||
Ok(self.value()? & b.value()?)
|
|||
})?;
|
|||
|
|||
// Constrain (a) * (b) = (c), ensuring c is 1 iff
|
|||
// a AND b are both 1.
|
|||
self.cs.enforce_constraint(
|
|||
lc!() + self.variable,
|
|||
lc!() + b.variable,
|
|||
lc!() + result.variable,
|
|||
)?;
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Performs an OR operation over the two operands, returning
|
|||
/// an `AllocatedBool`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn or(&self, b: &Self) -> Result<Self, SynthesisError> {
|
|||
let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
|
|||
Ok(self.value()? | b.value()?)
|
|||
})?;
|
|||
|
|||
// Constrain (1 - a) * (1 - b) = (1 - c), ensuring c is 0 iff
|
|||
// a and b are both false, and otherwise c is 1.
|
|||
self.cs.enforce_constraint(
|
|||
lc!() + Variable::One - self.variable,
|
|||
lc!() + Variable::One - b.variable,
|
|||
lc!() + Variable::One - result.variable,
|
|||
)?;
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Calculates `a AND (NOT b)`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn and_not(&self, b: &Self) -> Result<Self, SynthesisError> {
|
|||
let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
|
|||
Ok(self.value()? & !b.value()?)
|
|||
})?;
|
|||
|
|||
// Constrain (a) * (1 - b) = (c), ensuring c is 1 iff
|
|||
// a is true and b is false, and otherwise c is 0.
|
|||
self.cs.enforce_constraint(
|
|||
lc!() + self.variable,
|
|||
lc!() + Variable::One - b.variable,
|
|||
lc!() + result.variable,
|
|||
)?;
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Calculates `(NOT a) AND (NOT b)`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn nor(&self, b: &Self) -> Result<Self, SynthesisError> {
|
|||
let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
|
|||
Ok(!(self.value()? | b.value()?))
|
|||
})?;
|
|||
|
|||
// Constrain (1 - a) * (1 - b) = (c), ensuring c is 1 iff
|
|||
// a and b are both false, and otherwise c is 0.
|
|||
self.cs.enforce_constraint(
|
|||
lc!() + Variable::One - self.variable,
|
|||
lc!() + Variable::One - b.variable,
|
|||
lc!() + result.variable,
|
|||
)?;
|
|||
|
|||
Ok(result)
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> AllocVar<bool, F> for AllocatedBool<F> {
|
|||
/// Produces a new variable of the appropriate kind
|
|||
/// (instance or witness), with a booleanity check.
|
|||
///
|
|||
/// N.B.: we could omit the booleanity check when allocating `self`
|
|||
/// as a new public input, but that places an additional burden on
|
|||
/// protocol designers. Better safe than sorry!
|
|||
fn new_variable<T: Borrow<bool>>(
|
|||
cs: impl Into<Namespace<F>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
if mode == AllocationMode::Constant {
|
|||
let variable = if *f()?.borrow() {
|
|||
Variable::One
|
|||
} else {
|
|||
Variable::Zero
|
|||
};
|
|||
Ok(Self { variable, cs })
|
|||
} else {
|
|||
let variable = if mode == AllocationMode::Input {
|
|||
cs.new_input_variable(|| f().map(bool_to_field))?
|
|||
} else {
|
|||
cs.new_witness_variable(|| f().map(bool_to_field))?
|
|||
};
|
|||
|
|||
// Constrain: (1 - a) * a = 0
|
|||
// This constrains a to be either 0 or 1.
|
|||
|
|||
cs.enforce_constraint(lc!() + Variable::One - variable, lc!() + variable, lc!())?;
|
|||
|
|||
Ok(Self { variable, cs })
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: PrimeField> CondSelectGadget<F> for AllocatedBool<F> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn conditionally_select(
|
|||
cond: &Boolean<F>,
|
|||
true_val: &Self,
|
|||
false_val: &Self,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let res = Boolean::conditionally_select(
|
|||
cond,
|
|||
&true_val.clone().into(),
|
|||
&false_val.clone().into(),
|
|||
)?;
|
|||
match res {
|
|||
Boolean::Var(a) => Ok(a),
|
|||
_ => unreachable!("Impossible"),
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod test {
|
|||
use super::*;
|
|||
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
#[test]
|
|||
fn allocated_xor() -> Result<(), SynthesisError> {
|
|||
for a_val in [false, true].iter().copied() {
|
|||
for b_val in [false, true].iter().copied() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
|
|||
let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
|
|||
let c = AllocatedBool::xor(&a, &b)?;
|
|||
assert_eq!(c.value()?, a_val ^ b_val);
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(a.value()?, (a_val));
|
|||
assert_eq!(b.value()?, (b_val));
|
|||
assert_eq!(c.value()?, (a_val ^ b_val));
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn allocated_or() -> Result<(), SynthesisError> {
|
|||
for a_val in [false, true].iter().copied() {
|
|||
for b_val in [false, true].iter().copied() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
|
|||
let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
|
|||
let c = AllocatedBool::or(&a, &b)?;
|
|||
assert_eq!(c.value()?, a_val | b_val);
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(a.value()?, (a_val));
|
|||
assert_eq!(b.value()?, (b_val));
|
|||
assert_eq!(c.value()?, (a_val | b_val));
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn allocated_and() -> Result<(), SynthesisError> {
|
|||
for a_val in [false, true].iter().copied() {
|
|||
for b_val in [false, true].iter().copied() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
|
|||
let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
|
|||
let c = AllocatedBool::and(&a, &b)?;
|
|||
assert_eq!(c.value()?, a_val & b_val);
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(a.value()?, (a_val));
|
|||
assert_eq!(b.value()?, (b_val));
|
|||
assert_eq!(c.value()?, (a_val & b_val));
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn allocated_and_not() -> Result<(), SynthesisError> {
|
|||
for a_val in [false, true].iter().copied() {
|
|||
for b_val in [false, true].iter().copied() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
|
|||
let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
|
|||
let c = AllocatedBool::and_not(&a, &b)?;
|
|||
assert_eq!(c.value()?, a_val & !b_val);
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(a.value()?, (a_val));
|
|||
assert_eq!(b.value()?, (b_val));
|
|||
assert_eq!(c.value()?, (a_val & !b_val));
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn allocated_nor() -> Result<(), SynthesisError> {
|
|||
for a_val in [false, true].iter().copied() {
|
|||
for b_val in [false, true].iter().copied() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
|
|||
let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
|
|||
let c = AllocatedBool::nor(&a, &b)?;
|
|||
assert_eq!(c.value()?, !a_val & !b_val);
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(a.value()?, (a_val));
|
|||
assert_eq!(b.value()?, (b_val));
|
|||
assert_eq!(c.value()?, (!a_val & !b_val));
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
}
|
@ -0,0 +1,331 @@ |
|||
use ark_ff::{Field, PrimeField};
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::BitAnd, ops::BitAndAssign};
|
|||
|
|||
use crate::{fields::fp::FpVar, prelude::EqGadget};
|
|||
|
|||
use super::Boolean;
|
|||
|
|||
impl<F: Field> Boolean<F> {
|
|||
fn _and(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
use Boolean::*;
|
|||
match (self, other) {
|
|||
// false AND x is always false
|
|||
(&Constant(false), _) | (_, &Constant(false)) => Ok(Constant(false)),
|
|||
// true AND x is always x
|
|||
(&Constant(true), x) | (x, &Constant(true)) => Ok(x.clone()),
|
|||
(Var(ref x), Var(ref y)) => Ok(Var(x.and(y)?)),
|
|||
}
|
|||
}
|
|||
|
|||
/// Outputs `!(self & other)`.
|
|||
pub fn nand(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
self._and(other).map(|x| !x)
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: PrimeField> Boolean<F> {
|
|||
/// Outputs `bits[0] & bits[1] & ... & bits.last().unwrap()`.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
/// let c = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
///
|
|||
/// Boolean::kary_and(&[a.clone(), b.clone(), c.clone()])?.enforce_equal(&Boolean::FALSE)?;
|
|||
/// Boolean::kary_and(&[a.clone(), c.clone()])?.enforce_equal(&Boolean::TRUE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn kary_and(bits: &[Self]) -> Result<Self, SynthesisError> {
|
|||
assert!(!bits.is_empty());
|
|||
if bits.len() <= 3 {
|
|||
let mut cur: Option<Self> = None;
|
|||
for next in bits {
|
|||
cur = if let Some(b) = cur {
|
|||
Some(b & next)
|
|||
} else {
|
|||
Some(next.clone())
|
|||
};
|
|||
}
|
|||
|
|||
Ok(cur.expect("should not be 0"))
|
|||
} else {
|
|||
// b0 & b1 & ... & bN == 1 if and only if sum(b0, b1, ..., bN) == N
|
|||
let sum_bits: FpVar<_> = bits.iter().map(|b| FpVar::from(b.clone())).sum();
|
|||
let num_bits = FpVar::Constant(F::from(bits.len() as u64));
|
|||
sum_bits.is_eq(&num_bits)
|
|||
}
|
|||
}
|
|||
|
|||
/// Outputs `!(bits[0] & bits[1] & ... & bits.last().unwrap())`.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
/// let c = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
///
|
|||
/// Boolean::kary_nand(&[a.clone(), b.clone(), c.clone()])?.enforce_equal(&Boolean::TRUE)?;
|
|||
/// Boolean::kary_nand(&[a.clone(), c.clone()])?.enforce_equal(&Boolean::FALSE)?;
|
|||
/// Boolean::kary_nand(&[b.clone(), c.clone()])?.enforce_equal(&Boolean::TRUE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn kary_nand(bits: &[Self]) -> Result<Self, SynthesisError> {
|
|||
Ok(!Self::kary_and(bits)?)
|
|||
}
|
|||
|
|||
/// Enforces that `!(bits[0] & bits[1] & ... ) == Boolean::TRUE`.
|
|||
///
|
|||
/// Informally, this means that at least one element in `bits` must be
|
|||
/// `false`.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn enforce_kary_nand(bits: &[Self]) -> Result<(), SynthesisError> {
|
|||
Self::kary_and(bits)?.enforce_equal(&Boolean::FALSE)
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitAnd<Self> for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
/// Outputs `self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
///
|
|||
/// (&a & &a).enforce_equal(&Boolean::TRUE)?;
|
|||
///
|
|||
/// (&a & &b).enforce_equal(&Boolean::FALSE)?;
|
|||
/// (&b & &a).enforce_equal(&Boolean::FALSE)?;
|
|||
/// (&b & &b).enforce_equal(&Boolean::FALSE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: Self) -> Self::Output {
|
|||
self._and(other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitAnd<&'a Self> for Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: &Self) -> Self::Output {
|
|||
self._and(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitAnd<Boolean<F>> for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: Boolean<F>) -> Self::Output {
|
|||
self._and(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> BitAnd<Self> for Boolean<F> {
|
|||
type Output = Self;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: Self) -> Self::Output {
|
|||
self._and(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> BitAndAssign<Self> for Boolean<F> {
|
|||
/// Sets `self = self & other`.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand_assign(&mut self, other: Self) {
|
|||
let result = self._and(&other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitAndAssign<&'a Self> for Boolean<F> {
|
|||
/// Sets `self = self & other`.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand_assign(&mut self, other: &'a Self) {
|
|||
let result = self._and(other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
boolean::test_utils::run_binary_exhaustive,
|
|||
prelude::EqGadget,
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn and() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a & &b;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? & b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn nand() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = a.nand(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = Boolean::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(!(a.value()? & b.value()?)),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn enforce_nand() -> Result<(), SynthesisError> {
|
|||
{
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
assert!(
|
|||
Boolean::enforce_kary_nand(&[Boolean::new_constant(cs.clone(), false)?]).is_ok()
|
|||
);
|
|||
assert!(
|
|||
Boolean::enforce_kary_nand(&[Boolean::new_constant(cs.clone(), true)?]).is_err()
|
|||
);
|
|||
}
|
|||
|
|||
for i in 1..5 {
|
|||
// with every possible assignment for them
|
|||
for mut b in 0..(1 << i) {
|
|||
// with every possible negation
|
|||
for mut n in 0..(1 << i) {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let mut expected = true;
|
|||
|
|||
let mut bits = vec![];
|
|||
for _ in 0..i {
|
|||
expected &= b & 1 == 1;
|
|||
|
|||
let bit = if n & 1 == 1 {
|
|||
Boolean::new_witness(cs.clone(), || Ok(b & 1 == 1))?
|
|||
} else {
|
|||
!Boolean::new_witness(cs.clone(), || Ok(b & 1 == 0))?
|
|||
};
|
|||
bits.push(bit);
|
|||
|
|||
b >>= 1;
|
|||
n >>= 1;
|
|||
}
|
|||
|
|||
let expected = !expected;
|
|||
|
|||
Boolean::enforce_kary_nand(&bits)?;
|
|||
|
|||
if expected {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
} else {
|
|||
assert!(!cs.is_satisfied().unwrap());
|
|||
}
|
|||
}
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn kary_and() -> Result<(), SynthesisError> {
|
|||
// test different numbers of operands
|
|||
for i in 1..15 {
|
|||
// with every possible assignment for them
|
|||
for mut b in 0..(1 << i) {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let mut expected = true;
|
|||
|
|||
let mut bits = vec![];
|
|||
for _ in 0..i {
|
|||
expected &= b & 1 == 1;
|
|||
bits.push(Boolean::new_witness(cs.clone(), || Ok(b & 1 == 1))?);
|
|||
b >>= 1;
|
|||
}
|
|||
|
|||
let r = Boolean::kary_and(&bits)?;
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
|
|||
if let Boolean::Var(ref r) = r {
|
|||
assert_eq!(r.value()?, expected);
|
|||
}
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
}
|
@ -0,0 +1,95 @@ |
|||
use crate::cmp::CmpGadget;
|
|||
|
|||
use super::*;
|
|||
use ark_ff::PrimeField;
|
|||
|
|||
impl<F: PrimeField> CmpGadget<F> for Boolean<F> {
|
|||
fn is_ge(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
|
|||
// a | b | (a | !b) | a >= b
|
|||
// --|---|--------|--------
|
|||
// 0 | 0 | 1 | 1
|
|||
// 1 | 0 | 1 | 1
|
|||
// 0 | 1 | 0 | 0
|
|||
// 1 | 1 | 1 | 1
|
|||
Ok(self | &(!other))
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: PrimeField> Boolean<F> {
|
|||
/// Enforces that `bits`, when interpreted as a integer, is less than
|
|||
/// `F::characteristic()`, That is, interpret bits as a little-endian
|
|||
/// integer, and enforce that this integer is "in the field Z_p", where
|
|||
/// `p = F::characteristic()` .
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn enforce_in_field_le(bits: &[Self]) -> Result<(), SynthesisError> {
|
|||
// `bits` < F::characteristic() <==> `bits` <= F::characteristic() -1
|
|||
let mut b = F::characteristic().to_vec();
|
|||
assert_eq!(b[0] % 2, 1);
|
|||
b[0] -= 1; // This works, because the LSB is one, so there's no borrows.
|
|||
let run = Self::enforce_smaller_or_equal_than_le(bits, b)?;
|
|||
|
|||
// We should always end in a "run" of zeros, because
|
|||
// the characteristic is an odd prime. So, this should
|
|||
// be empty.
|
|||
assert!(run.is_empty());
|
|||
|
|||
Ok(())
|
|||
}
|
|||
|
|||
/// Enforces that `bits` is less than or equal to `element`,
|
|||
/// when both are interpreted as (little-endian) integers.
|
|||
#[tracing::instrument(target = "r1cs", skip(element))]
|
|||
pub fn enforce_smaller_or_equal_than_le(
|
|||
bits: &[Self],
|
|||
element: impl AsRef<[u64]>,
|
|||
) -> Result<Vec<Self>, SynthesisError> {
|
|||
let b: &[u64] = element.as_ref();
|
|||
|
|||
let mut bits_iter = bits.iter().rev(); // Iterate in big-endian
|
|||
|
|||
// Runs of ones in r
|
|||
let mut last_run = Boolean::constant(true);
|
|||
let mut current_run = vec![];
|
|||
|
|||
let mut element_num_bits = 0;
|
|||
for _ in BitIteratorBE::without_leading_zeros(b) {
|
|||
element_num_bits += 1;
|
|||
}
|
|||
|
|||
if bits.len() > element_num_bits {
|
|||
let mut or_result = Boolean::constant(false);
|
|||
for should_be_zero in &bits[element_num_bits..] {
|
|||
or_result |= should_be_zero;
|
|||
let _ = bits_iter.next().unwrap();
|
|||
}
|
|||
or_result.enforce_equal(&Boolean::constant(false))?;
|
|||
}
|
|||
|
|||
for (b, a) in BitIteratorBE::without_leading_zeros(b).zip(bits_iter.by_ref()) {
|
|||
if b {
|
|||
// This is part of a run of ones.
|
|||
current_run.push(a.clone());
|
|||
} else {
|
|||
if !current_run.is_empty() {
|
|||
// This is the start of a run of zeros, but we need
|
|||
// to k-ary AND against `last_run` first.
|
|||
|
|||
current_run.push(last_run.clone());
|
|||
last_run = Self::kary_and(¤t_run)?;
|
|||
current_run.truncate(0);
|
|||
}
|
|||
|
|||
// If `last_run` is true, `a` must be false, or it would
|
|||
// not be in the field.
|
|||
//
|
|||
// If `last_run` is false, `a` can be true or false.
|
|||
//
|
|||
// Ergo, at least one of `last_run` and `a` must be false.
|
|||
Self::enforce_kary_nand(&[last_run.clone(), a.clone()])?;
|
|||
}
|
|||
}
|
|||
assert!(bits_iter.next().is_none());
|
|||
|
|||
Ok(current_run)
|
|||
}
|
|||
}
|
@ -0,0 +1,21 @@ |
|||
use super::*;
|
|||
use crate::convert::{ToBytesGadget, ToConstraintFieldGadget};
|
|||
|
|||
impl<F: Field> ToBytesGadget<F> for Boolean<F> {
|
|||
/// Outputs `1u8` if `self` is true, and `0u8` otherwise.
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn to_bytes(&self) -> Result<Vec<UInt8<F>>, SynthesisError> {
|
|||
let value = self.value().map(u8::from).ok();
|
|||
let mut bits = [Boolean::FALSE; 8];
|
|||
bits[0] = self.clone();
|
|||
Ok(vec![UInt8 { bits, value }])
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: PrimeField> ToConstraintFieldGadget<F> for Boolean<F> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn to_constraint_field(&self) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|||
let var = From::from(self.clone());
|
|||
Ok(vec![var])
|
|||
}
|
|||
}
|
@ -0,0 +1,229 @@ |
|||
use ark_relations::r1cs::SynthesisError;
|
|||
|
|||
use crate::boolean::Boolean;
|
|||
use crate::eq::EqGadget;
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<F: Field> EqGadget<F> for Boolean<F> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn is_eq(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
|
|||
// self | other | XNOR(self, other) | self == other
|
|||
// -----|-------|-------------------|--------------
|
|||
// 0 | 0 | 1 | 1
|
|||
// 0 | 1 | 0 | 0
|
|||
// 1 | 0 | 0 | 0
|
|||
// 1 | 1 | 1 | 1
|
|||
Ok(!(self ^ other))
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn conditional_enforce_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
use Boolean::*;
|
|||
let one = Variable::One;
|
|||
// We will use the following trick: a == b <=> a - b == 0
|
|||
// This works because a - b == 0 if and only if a = 0 and b = 0, or a = 1 and b = 1,
|
|||
// which is exactly the definition of a == b.
|
|||
let difference = match (self, other) {
|
|||
// 1 == 1; 0 == 0
|
|||
(Constant(true), Constant(true)) | (Constant(false), Constant(false)) => return Ok(()),
|
|||
// false != true
|
|||
(Constant(_), Constant(_)) => return Err(SynthesisError::Unsatisfiable),
|
|||
// 1 - a
|
|||
(Constant(true), Var(a)) | (Var(a), Constant(true)) => lc!() + one - a.variable(),
|
|||
// a - 0 = a
|
|||
(Constant(false), Var(a)) | (Var(a), Constant(false)) => lc!() + a.variable(),
|
|||
// b - a,
|
|||
(Var(a), Var(b)) => lc!() + b.variable() - a.variable(),
|
|||
};
|
|||
|
|||
if condition != &Constant(false) {
|
|||
let cs = self.cs().or(other.cs()).or(condition.cs());
|
|||
cs.enforce_constraint(lc!() + difference, condition.lc(), lc!())?;
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn conditional_enforce_not_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
should_enforce: &Boolean<F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
use Boolean::*;
|
|||
let one = Variable::One;
|
|||
// We will use the following trick: a != b <=> a + b == 1
|
|||
// This works because a + b == 1 if and only if a = 0 and b = 1, or a = 1 and b = 0,
|
|||
// which is exactly the definition of a != b.
|
|||
let sum = match (self, other) {
|
|||
// 1 != 0; 0 != 1
|
|||
(Constant(true), Constant(false)) | (Constant(false), Constant(true)) => return Ok(()),
|
|||
// false == false and true == true
|
|||
(Constant(_), Constant(_)) => return Err(SynthesisError::Unsatisfiable),
|
|||
// 1 + a
|
|||
(Constant(true), Var(a)) | (Var(a), Constant(true)) => lc!() + one + a.variable(),
|
|||
// a + 0 = a
|
|||
(Constant(false), Var(a)) | (Var(a), Constant(false)) => lc!() + a.variable(),
|
|||
// b + a,
|
|||
(Var(a), Var(b)) => lc!() + b.variable() + a.variable(),
|
|||
};
|
|||
|
|||
if should_enforce != &Constant(false) {
|
|||
let cs = self.cs().or(other.cs()).or(should_enforce.cs());
|
|||
cs.enforce_constraint(sum, should_enforce.lc(), lc!() + one)?;
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
boolean::test_utils::{run_binary_exhaustive, run_unary_exhaustive},
|
|||
prelude::EqGadget,
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn eq() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a.is_eq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? == b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn neq() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a.is_neq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? != b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn neq_and_eq_consistency() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let is_neq = &a.is_neq(&b)?;
|
|||
let is_eq = &a.is_eq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected_is_neq =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? != b.value()?), expected_mode)?;
|
|||
assert_eq!(expected_is_neq.value(), is_neq.value());
|
|||
assert_ne!(expected_is_neq.value(), is_eq.value());
|
|||
expected_is_neq.enforce_equal(is_neq)?;
|
|||
expected_is_neq.enforce_equal(&!is_eq)?;
|
|||
expected_is_neq.enforce_not_equal(is_eq)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn enforce_eq_and_enforce_neq_consistency() {
|
|||
run_unary_exhaustive::<Fr>(|a| {
|
|||
let cs = a.cs();
|
|||
let not_a = !&a;
|
|||
a.enforce_equal(&a)?;
|
|||
not_a.enforce_equal(¬_a)?;
|
|||
a.enforce_not_equal(¬_a)?;
|
|||
not_a.enforce_not_equal(&a)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn eq_soundness() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a.is_eq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? != b.value()?), expected_mode)?;
|
|||
assert_ne!(expected.value(), computed.value());
|
|||
expected.enforce_not_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn neq_soundness() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a.is_neq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? == b.value()?), expected_mode)?;
|
|||
assert_ne!(expected.value(), computed.value());
|
|||
expected.enforce_not_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,337 @@ |
|||
use ark_ff::{BitIteratorBE, Field, PrimeField};
|
|||
|
|||
use crate::{fields::fp::FpVar, prelude::*, Vec};
|
|||
use ark_relations::r1cs::{
|
|||
ConstraintSystemRef, LinearCombination, Namespace, SynthesisError, Variable,
|
|||
};
|
|||
use core::borrow::Borrow;
|
|||
|
|||
mod allocated;
|
|||
mod and;
|
|||
mod cmp;
|
|||
mod convert;
|
|||
mod eq;
|
|||
mod not;
|
|||
mod or;
|
|||
mod select;
|
|||
mod xor;
|
|||
|
|||
pub use allocated::AllocatedBool;
|
|||
|
|||
#[cfg(test)]
|
|||
mod test_utils;
|
|||
|
|||
/// Represents a boolean value in the constraint system which is guaranteed
|
|||
/// to be either zero or one.
|
|||
#[derive(Clone, Debug, Eq, PartialEq)]
|
|||
#[must_use]
|
|||
pub enum Boolean<F: Field> {
|
|||
Var(AllocatedBool<F>),
|
|||
Constant(bool),
|
|||
}
|
|||
|
|||
impl<F: Field> R1CSVar<F> for Boolean<F> {
|
|||
type Value = bool;
|
|||
|
|||
fn cs(&self) -> ConstraintSystemRef<F> {
|
|||
match self {
|
|||
Self::Var(a) => a.cs.clone(),
|
|||
_ => ConstraintSystemRef::None,
|
|||
}
|
|||
}
|
|||
|
|||
fn value(&self) -> Result<Self::Value, SynthesisError> {
|
|||
match self {
|
|||
Boolean::Constant(c) => Ok(*c),
|
|||
Boolean::Var(ref v) => v.value(),
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> Boolean<F> {
|
|||
/// The constant `true`.
|
|||
pub const TRUE: Self = Boolean::Constant(true);
|
|||
|
|||
/// The constant `false`.
|
|||
pub const FALSE: Self = Boolean::Constant(false);
|
|||
|
|||
/// Constructs a `Boolean` vector from a slice of constant `u8`.
|
|||
/// The `u8`s are decomposed in little-endian manner.
|
|||
///
|
|||
/// This *does not* create any new variables or constraints.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let t = Boolean::<Fr>::TRUE;
|
|||
/// let f = Boolean::<Fr>::FALSE;
|
|||
///
|
|||
/// let bits = vec![f, t];
|
|||
/// let generated_bits = Boolean::constant_vec_from_bytes(&[2]);
|
|||
/// bits[..2].enforce_equal(&generated_bits[..2])?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn constant_vec_from_bytes(values: &[u8]) -> Vec<Self> {
|
|||
let mut bits = vec![];
|
|||
for byte in values {
|
|||
for i in 0..8 {
|
|||
bits.push(Self::Constant(((byte >> i) & 1u8) == 1u8));
|
|||
}
|
|||
}
|
|||
bits
|
|||
}
|
|||
|
|||
/// Constructs a constant `Boolean` with value `b`.
|
|||
///
|
|||
/// This *does not* create any new variables or constraints.
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let true_var = Boolean::<Fr>::TRUE;
|
|||
/// let false_var = Boolean::<Fr>::FALSE;
|
|||
///
|
|||
/// true_var.enforce_equal(&Boolean::constant(true))?;
|
|||
/// false_var.enforce_equal(&Boolean::constant(false))?;
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn constant(b: bool) -> Self {
|
|||
Boolean::Constant(b)
|
|||
}
|
|||
|
|||
/// Constructs a `LinearCombination` from `Self`'s variables according
|
|||
/// to the following map.
|
|||
///
|
|||
/// * `Boolean::TRUE => lc!() + Variable::One`
|
|||
/// * `Boolean::FALSE => lc!()`
|
|||
/// * `Boolean::Var(v) => lc!() + v.variable()`
|
|||
pub fn lc(&self) -> LinearCombination<F> {
|
|||
match self {
|
|||
&Boolean::Constant(false) => lc!(),
|
|||
&Boolean::Constant(true) => lc!() + Variable::One,
|
|||
Boolean::Var(v) => v.variable().into(),
|
|||
}
|
|||
}
|
|||
|
|||
/// Convert a little-endian bitwise representation of a field element to
|
|||
/// `FpVar<F>`
|
|||
///
|
|||
/// Wraps around if the bit representation is larger than the field modulus.
|
|||
#[tracing::instrument(target = "r1cs", skip(bits))]
|
|||
pub fn le_bits_to_fp(bits: &[Self]) -> Result<FpVar<F>, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
// Compute the value of the `FpVar` variable via double-and-add.
|
|||
let mut value = None;
|
|||
let cs = bits.cs();
|
|||
// Assign a value only when `cs` is in setup mode, or if we are constructing
|
|||
// a constant.
|
|||
let should_construct_value = (!cs.is_in_setup_mode()) || bits.is_constant();
|
|||
if should_construct_value {
|
|||
let bits = bits.iter().map(|b| b.value().unwrap()).collect::<Vec<_>>();
|
|||
let bytes = bits
|
|||
.chunks(8)
|
|||
.map(|c| {
|
|||
let mut value = 0u8;
|
|||
for (i, &bit) in c.iter().enumerate() {
|
|||
value += (bit as u8) << i;
|
|||
}
|
|||
value
|
|||
})
|
|||
.collect::<Vec<_>>();
|
|||
value = Some(F::from_le_bytes_mod_order(&bytes));
|
|||
}
|
|||
|
|||
if bits.is_constant() {
|
|||
Ok(FpVar::constant(value.unwrap()))
|
|||
} else {
|
|||
let mut power = F::one();
|
|||
// Compute a linear combination for the new field variable, again
|
|||
// via double and add.
|
|||
|
|||
let combined = bits
|
|||
.iter()
|
|||
.map(|b| {
|
|||
let result = FpVar::from(b.clone()) * power;
|
|||
power.double_in_place();
|
|||
result
|
|||
})
|
|||
.sum();
|
|||
// If the number of bits is less than the size of the field,
|
|||
// then we do not need to enforce that the element is less than
|
|||
// the modulus.
|
|||
if bits.len() >= F::MODULUS_BIT_SIZE as usize {
|
|||
Self::enforce_in_field_le(bits)?;
|
|||
}
|
|||
Ok(combined)
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> From<AllocatedBool<F>> for Boolean<F> {
|
|||
fn from(b: AllocatedBool<F>) -> Self {
|
|||
Boolean::Var(b)
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> AllocVar<bool, F> for Boolean<F> {
|
|||
fn new_variable<T: Borrow<bool>>(
|
|||
cs: impl Into<Namespace<F>>,
|
|||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
if mode == AllocationMode::Constant {
|
|||
Ok(Boolean::Constant(*f()?.borrow()))
|
|||
} else {
|
|||
AllocatedBool::new_variable(cs, f, mode).map(Boolean::Var)
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod test {
|
|||
use super::Boolean;
|
|||
use crate::convert::ToBytesGadget;
|
|||
use crate::prelude::*;
|
|||
use ark_ff::{
|
|||
AdditiveGroup, BitIteratorBE, BitIteratorLE, Field, One, PrimeField, UniformRand,
|
|||
};
|
|||
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn test_boolean_to_byte() -> Result<(), SynthesisError> {
|
|||
for val in [true, false].iter() {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let a = Boolean::new_witness(cs.clone(), || Ok(*val))?;
|
|||
let bytes = a.to_bytes()?;
|
|||
assert_eq!(bytes.len(), 1);
|
|||
let byte = &bytes[0];
|
|||
assert_eq!(byte.value()?, *val as u8);
|
|||
|
|||
for (i, bit) in byte.bits.iter().enumerate() {
|
|||
assert_eq!(bit.value()?, (byte.value()? >> i) & 1 == 1);
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_smaller_than_or_equal_to() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
for _ in 0..1000 {
|
|||
let mut r = Fr::rand(&mut rng);
|
|||
let mut s = Fr::rand(&mut rng);
|
|||
if r > s {
|
|||
core::mem::swap(&mut r, &mut s)
|
|||
}
|
|||
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let native_bits: Vec<_> = BitIteratorLE::new(r.into_bigint()).collect();
|
|||
let bits = Vec::new_witness(cs.clone(), || Ok(native_bits))?;
|
|||
Boolean::enforce_smaller_or_equal_than_le(&bits, s.into_bigint())?;
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
|
|||
for _ in 0..1000 {
|
|||
let r = Fr::rand(&mut rng);
|
|||
if r == -Fr::one() {
|
|||
continue;
|
|||
}
|
|||
let s = r + Fr::one();
|
|||
let s2 = r.double();
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let native_bits: Vec<_> = BitIteratorLE::new(r.into_bigint()).collect();
|
|||
let bits = Vec::new_witness(cs.clone(), || Ok(native_bits))?;
|
|||
Boolean::enforce_smaller_or_equal_than_le(&bits, s.into_bigint())?;
|
|||
if r < s2 {
|
|||
Boolean::enforce_smaller_or_equal_than_le(&bits, s2.into_bigint())?;
|
|||
}
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_enforce_in_field() -> Result<(), SynthesisError> {
|
|||
{
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let mut bits = vec![];
|
|||
for b in BitIteratorBE::new(Fr::characteristic()).skip(1) {
|
|||
bits.push(Boolean::new_witness(cs.clone(), || Ok(b))?);
|
|||
}
|
|||
bits.reverse();
|
|||
|
|||
Boolean::enforce_in_field_le(&bits)?;
|
|||
|
|||
assert!(!cs.is_satisfied().unwrap());
|
|||
}
|
|||
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let r = Fr::rand(&mut rng);
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let mut bits = vec![];
|
|||
for b in BitIteratorBE::new(r.into_bigint()).skip(1) {
|
|||
bits.push(Boolean::new_witness(cs.clone(), || Ok(b))?);
|
|||
}
|
|||
bits.reverse();
|
|||
|
|||
Boolean::enforce_in_field_le(&bits)?;
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_bits_to_fp() -> Result<(), SynthesisError> {
|
|||
use AllocationMode::*;
|
|||
let rng = &mut ark_std::test_rng();
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let modes = [Input, Witness, Constant];
|
|||
for &mode in modes.iter() {
|
|||
for _ in 0..1000 {
|
|||
let f = Fr::rand(rng);
|
|||
let bits = BitIteratorLE::new(f.into_bigint()).collect::<Vec<_>>();
|
|||
let bits: Vec<_> =
|
|||
AllocVar::new_variable(cs.clone(), || Ok(bits.as_slice()), mode)?;
|
|||
let f = AllocVar::new_variable(cs.clone(), || Ok(f), mode)?;
|
|||
let claimed_f = Boolean::le_bits_to_fp(&bits)?;
|
|||
claimed_f.enforce_equal(&f)?;
|
|||
}
|
|||
|
|||
for _ in 0..1000 {
|
|||
let f = Fr::from(u64::rand(rng));
|
|||
let bits = BitIteratorLE::new(f.into_bigint()).collect::<Vec<_>>();
|
|||
let bits: Vec<_> =
|
|||
AllocVar::new_variable(cs.clone(), || Ok(bits.as_slice()), mode)?;
|
|||
let f = AllocVar::new_variable(cs.clone(), || Ok(f), mode)?;
|
|||
let claimed_f = Boolean::le_bits_to_fp(&bits)?;
|
|||
claimed_f.enforce_equal(&f)?;
|
|||
}
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
|
|||
Ok(())
|
|||
}
|
|||
}
|
@ -0,0 +1,98 @@ |
|||
use ark_ff::Field;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::ops::Not;
|
|||
|
|||
use super::Boolean;
|
|||
|
|||
impl<F: Field> Boolean<F> {
|
|||
fn _not(&self) -> Result<Self, SynthesisError> {
|
|||
match *self {
|
|||
Boolean::Constant(c) => Ok(Boolean::Constant(!c)),
|
|||
Boolean::Var(ref v) => Ok(Boolean::Var(v.not().unwrap())),
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> Not for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
/// Negates `self`.
|
|||
///
|
|||
/// This *does not* create any new variables or constraints.
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
///
|
|||
/// (!&a).enforce_equal(&b)?;
|
|||
/// (!&b).enforce_equal(&a)?;
|
|||
///
|
|||
/// (!&a).enforce_equal(&Boolean::FALSE)?;
|
|||
/// (!&b).enforce_equal(&Boolean::TRUE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn not(self) -> Self::Output {
|
|||
self._not().unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> Not for &'a mut Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn not(self) -> Self::Output {
|
|||
self._not().unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> Not for Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn not(self) -> Self::Output {
|
|||
self._not().unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
boolean::test_utils::run_unary_exhaustive,
|
|||
prelude::EqGadget,
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn not() {
|
|||
run_unary_exhaustive::<Fr>(|a| {
|
|||
let cs = a.cs();
|
|||
let computed = !&a;
|
|||
let expected_mode = if a.is_constant() {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = Boolean::new_variable(cs.clone(), || Ok(!a.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,182 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::BitOr, ops::BitOrAssign};
|
|||
|
|||
use crate::{
|
|||
eq::EqGadget,
|
|||
fields::{fp::FpVar, FieldVar},
|
|||
};
|
|||
|
|||
use super::Boolean;
|
|||
|
|||
impl<F: PrimeField> Boolean<F> {
|
|||
fn _or(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
use Boolean::*;
|
|||
match (self, other) {
|
|||
(&Constant(false), x) | (x, &Constant(false)) => Ok(x.clone()),
|
|||
(&Constant(true), _) | (_, &Constant(true)) => Ok(Constant(true)),
|
|||
(Var(ref x), Var(ref y)) => Ok(Var(x.or(y)?)),
|
|||
}
|
|||
}
|
|||
|
|||
/// Outputs `bits[0] | bits[1] | ... | bits.last().unwrap()`.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
/// let c = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
///
|
|||
/// Boolean::kary_or(&[a.clone(), b.clone(), c.clone()])?.enforce_equal(&Boolean::TRUE)?;
|
|||
/// Boolean::kary_or(&[a.clone(), c.clone()])?.enforce_equal(&Boolean::TRUE)?;
|
|||
/// Boolean::kary_or(&[b.clone(), c.clone()])?.enforce_equal(&Boolean::FALSE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn kary_or(bits: &[Self]) -> Result<Self, SynthesisError> {
|
|||
assert!(!bits.is_empty());
|
|||
if bits.len() <= 3 {
|
|||
let mut cur: Option<Self> = None;
|
|||
for next in bits {
|
|||
cur = if let Some(b) = cur {
|
|||
Some(b | next)
|
|||
} else {
|
|||
Some(next.clone())
|
|||
};
|
|||
}
|
|||
|
|||
Ok(cur.expect("should not be 0"))
|
|||
} else {
|
|||
// b0 | b1 | ... | bN == 1 if and only if not all of b0, b1, ..., bN are 0.
|
|||
// We can enforce this by requiring that the sum of b0, b1, ..., bN is not 0.
|
|||
let sum_bits: FpVar<_> = bits.iter().map(|b| FpVar::from(b.clone())).sum();
|
|||
sum_bits.is_neq(&FpVar::zero())
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: PrimeField> BitOr<Self> for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
/// Outputs `self | other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
///
|
|||
/// (&a | &b).enforce_equal(&Boolean::TRUE)?;
|
|||
/// (&b | &a).enforce_equal(&Boolean::TRUE)?;
|
|||
///
|
|||
/// (&a | &a).enforce_equal(&Boolean::TRUE)?;
|
|||
/// (&b | &b).enforce_equal(&Boolean::FALSE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: Self) -> Self::Output {
|
|||
self._or(other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: PrimeField> BitOr<&'a Self> for Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: &Self) -> Self::Output {
|
|||
self._or(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: PrimeField> BitOr<Boolean<F>> for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: Boolean<F>) -> Self::Output {
|
|||
self._or(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: PrimeField> BitOr<Self> for Boolean<F> {
|
|||
type Output = Self;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: Self) -> Self::Output {
|
|||
self._or(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: PrimeField> BitOrAssign<Self> for Boolean<F> {
|
|||
/// Sets `self = self | other`.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor_assign(&mut self, other: Self) {
|
|||
let result = self._or(&other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: PrimeField> BitOrAssign<&'a Self> for Boolean<F> {
|
|||
/// Sets `self = self | other`.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor_assign(&mut self, other: &'a Self) {
|
|||
let result = self._or(other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
boolean::test_utils::run_binary_exhaustive,
|
|||
prelude::EqGadget,
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn or() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a | &b;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? | b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,134 @@ |
|||
use super::*;
|
|||
|
|||
impl<F: PrimeField> Boolean<F> {
|
|||
/// Conditionally selects one of `first` and `second` based on the value of
|
|||
/// `self`:
|
|||
///
|
|||
/// If `self.is_eq(&Boolean::TRUE)`, this outputs `first`; else, it outputs
|
|||
/// `second`.
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
///
|
|||
/// let cond = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
///
|
|||
/// cond.select(&a, &b)?.enforce_equal(&Boolean::TRUE)?;
|
|||
/// cond.select(&b, &a)?.enforce_equal(&Boolean::FALSE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(first, second))]
|
|||
pub fn select<T: CondSelectGadget<F>>(
|
|||
&self,
|
|||
first: &T,
|
|||
second: &T,
|
|||
) -> Result<T, SynthesisError> {
|
|||
T::conditionally_select(&self, first, second)
|
|||
}
|
|||
}
|
|||
impl<F: PrimeField> CondSelectGadget<F> for Boolean<F> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn conditionally_select(
|
|||
cond: &Boolean<F>,
|
|||
true_val: &Self,
|
|||
false_val: &Self,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
use Boolean::*;
|
|||
match cond {
|
|||
Constant(true) => Ok(true_val.clone()),
|
|||
Constant(false) => Ok(false_val.clone()),
|
|||
cond @ Var(_) => match (true_val, false_val) {
|
|||
(x, &Constant(false)) => Ok(cond & x),
|
|||
(&Constant(false), x) => Ok((!cond) & x),
|
|||
(&Constant(true), x) => Ok(cond | x),
|
|||
(x, &Constant(true)) => Ok((!cond) | x),
|
|||
(a, b) => {
|
|||
let cs = cond.cs();
|
|||
let result: Boolean<F> =
|
|||
AllocatedBool::new_witness_without_booleanity_check(cs.clone(), || {
|
|||
let cond = cond.value()?;
|
|||
Ok(if cond { a.value()? } else { b.value()? })
|
|||
})?
|
|||
.into();
|
|||
// a = self; b = other; c = cond;
|
|||
//
|
|||
// r = c * a + (1 - c) * b
|
|||
// r = b + c * (a - b)
|
|||
// c * (a - b) = r - b
|
|||
//
|
|||
// If a, b, cond are all boolean, so is r.
|
|||
//
|
|||
// self | other | cond | result
|
|||
// -----|-------|----------------
|
|||
// 0 | 0 | 1 | 0
|
|||
// 0 | 1 | 1 | 0
|
|||
// 1 | 0 | 1 | 1
|
|||
// 1 | 1 | 1 | 1
|
|||
// 0 | 0 | 0 | 0
|
|||
// 0 | 1 | 0 | 1
|
|||
// 1 | 0 | 0 | 0
|
|||
// 1 | 1 | 0 | 1
|
|||
cs.enforce_constraint(
|
|||
cond.lc(),
|
|||
lc!() + a.lc() - b.lc(),
|
|||
lc!() + result.lc() - b.lc(),
|
|||
)?;
|
|||
|
|||
Ok(result)
|
|||
},
|
|||
},
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
boolean::test_utils::run_binary_exhaustive,
|
|||
prelude::EqGadget,
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn or() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
for cond in [true, false] {
|
|||
let expected = Boolean::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(if cond { a.value()? } else { b.value()? }),
|
|||
expected_mode,
|
|||
)?;
|
|||
let cond = Boolean::new_variable(cs.clone(), || Ok(cond), expected_mode)?;
|
|||
let computed = cond.select(&a, &b)?;
|
|||
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,47 @@ |
|||
use crate::test_utils;
|
|||
|
|||
use super::*;
|
|||
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|||
|
|||
pub(crate) fn test_unary_op<F: Field>(
|
|||
a: bool,
|
|||
mode: AllocationMode,
|
|||
test: impl FnOnce(Boolean<F>) -> Result<(), SynthesisError>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<F>::new_ref();
|
|||
let a = Boolean::<F>::new_variable(cs.clone(), || Ok(a), mode)?;
|
|||
test(a)
|
|||
}
|
|||
|
|||
pub(crate) fn test_binary_op<F: Field>(
|
|||
a: bool,
|
|||
b: bool,
|
|||
mode_a: AllocationMode,
|
|||
mode_b: AllocationMode,
|
|||
test: impl FnOnce(Boolean<F>, Boolean<F>) -> Result<(), SynthesisError>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<F>::new_ref();
|
|||
let a = Boolean::<F>::new_variable(cs.clone(), || Ok(a), mode_a)?;
|
|||
let b = Boolean::<F>::new_variable(cs.clone(), || Ok(b), mode_b)?;
|
|||
test(a, b)
|
|||
}
|
|||
|
|||
pub(crate) fn run_binary_exhaustive<F: Field>(
|
|||
test: impl Fn(Boolean<F>, Boolean<F>) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError> {
|
|||
for (mode_a, a) in test_utils::combination([false, true].into_iter()) {
|
|||
for (mode_b, b) in test_utils::combination([false, true].into_iter()) {
|
|||
test_binary_op(a, b, mode_a, mode_b, test)?;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
pub(crate) fn run_unary_exhaustive<F: Field>(
|
|||
test: impl Fn(Boolean<F>) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError> {
|
|||
for (mode, a) in test_utils::combination([false, true].into_iter()) {
|
|||
test_unary_op(a, mode, test)?;
|
|||
}
|
|||
Ok(())
|
|||
}
|
@ -0,0 +1,132 @@ |
|||
use ark_ff::Field;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::BitXor, ops::BitXorAssign};
|
|||
|
|||
use super::Boolean;
|
|||
|
|||
impl<F: Field> Boolean<F> {
|
|||
fn _xor(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
use Boolean::*;
|
|||
match (self, other) {
|
|||
(&Constant(false), x) | (x, &Constant(false)) => Ok(x.clone()),
|
|||
(&Constant(true), x) | (x, &Constant(true)) => Ok(!x),
|
|||
(Var(ref x), Var(ref y)) => Ok(Var(x.xor(y)?)),
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitXor<Self> for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
/// Outputs `self ^ other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
///
|
|||
/// let a = Boolean::new_witness(cs.clone(), || Ok(true))?;
|
|||
/// let b = Boolean::new_witness(cs.clone(), || Ok(false))?;
|
|||
///
|
|||
/// (&a ^ &b).enforce_equal(&Boolean::TRUE)?;
|
|||
/// (&b ^ &a).enforce_equal(&Boolean::TRUE)?;
|
|||
///
|
|||
/// (&a ^ &a).enforce_equal(&Boolean::FALSE)?;
|
|||
/// (&b ^ &b).enforce_equal(&Boolean::FALSE)?;
|
|||
///
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: Self) -> Self::Output {
|
|||
self._xor(other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitXor<&'a Self> for Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: &Self) -> Self::Output {
|
|||
self._xor(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitXor<Boolean<F>> for &'a Boolean<F> {
|
|||
type Output = Boolean<F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: Boolean<F>) -> Self::Output {
|
|||
self._xor(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> BitXor<Self> for Boolean<F> {
|
|||
type Output = Self;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: Self) -> Self::Output {
|
|||
self._xor(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<F: Field> BitXorAssign<Self> for Boolean<F> {
|
|||
/// Sets `self = self ^ other`.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor_assign(&mut self, other: Self) {
|
|||
let result = self._xor(&other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, F: Field> BitXorAssign<&'a Self> for Boolean<F> {
|
|||
/// Sets `self = self ^ other`.
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor_assign(&mut self, other: &'a Self) {
|
|||
let result = self._xor(other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
boolean::test_utils::run_binary_exhaustive,
|
|||
prelude::EqGadget,
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn xor() {
|
|||
run_binary_exhaustive::<Fr>(|a, b| {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a ^ &b;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? ^ b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
})
|
|||
.unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,21 @@ |
|||
use ark_ff::Field;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
|
|||
use crate::boolean::Boolean;
|
|||
|
|||
/// Specifies how to generate constraints for comparing two variables.
|
|||
pub trait CmpGadget<F: Field> {
|
|||
fn is_gt(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
|
|||
other.is_lt(self)
|
|||
}
|
|||
|
|||
fn is_ge(&self, other: &Self) -> Result<Boolean<F>, SynthesisError>;
|
|||
|
|||
fn is_lt(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
|
|||
Ok(!self.is_ge(other)?)
|
|||
}
|
|||
|
|||
fn is_le(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
|
|||
other.is_ge(self)
|
|||
}
|
|||
}
|
@ -0,0 +1,15 @@ |
|||
use core::iter;
|
|||
|
|||
use crate::alloc::AllocationMode;
|
|||
|
|||
pub(crate) fn modes() -> impl Iterator<Item = AllocationMode> {
|
|||
use AllocationMode::*;
|
|||
[Constant, Input, Witness].into_iter()
|
|||
}
|
|||
|
|||
pub(crate) fn combination<T: Clone>(
|
|||
mut i: impl Iterator<Item = T>,
|
|||
) -> impl Iterator<Item = (AllocationMode, T)> {
|
|||
iter::from_fn(move || i.next().map(|t| modes().map(move |mode| (mode, t.clone()))))
|
|||
.flat_map(|x| x)
|
|||
}
|
@ -0,0 +1,50 @@ |
|||
use crate::fields::fp::FpVar;
|
|||
|
|||
use super::*;
|
|||
|
|||
mod saturating;
|
|||
mod wrapping;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> UInt<N, T, F> {
|
|||
/// Adds up `operands`, returning the bit decomposition of the result, along with
|
|||
/// the value of the result. If all the operands are constant, then the bit decomposition
|
|||
/// is empty, and the value is the constant value of the result.
|
|||
///
|
|||
/// # Panics
|
|||
///
|
|||
/// This method panics if the result of addition could possibly exceed the field size.
|
|||
#[tracing::instrument(target = "r1cs", skip(operands, adder))]
|
|||
fn add_many_helper(
|
|||
operands: &[Self],
|
|||
adder: impl Fn(T, T) -> T,
|
|||
) -> Result<(Vec<Boolean<F>>, Option<T>), SynthesisError> {
|
|||
// Bounds on `N` to avoid overflows
|
|||
|
|||
assert!(operands.len() >= 1);
|
|||
let max_value_size = N as u32 + ark_std::log2(operands.len());
|
|||
assert!(max_value_size <= F::MODULUS_BIT_SIZE);
|
|||
|
|||
if operands.len() == 1 {
|
|||
return Ok((operands[0].bits.to_vec(), operands[0].value));
|
|||
}
|
|||
|
|||
// Compute the value of the result.
|
|||
let mut value = Some(T::zero());
|
|||
for op in operands {
|
|||
value = value.and_then(|v| Some(adder(v, op.value?)));
|
|||
}
|
|||
if operands.is_constant() {
|
|||
// If all operands are constant, then the result is also constant.
|
|||
// In this case, we can return early.
|
|||
return Ok((Vec::new(), value));
|
|||
}
|
|||
|
|||
// Compute the full (non-wrapped) sum of the operands.
|
|||
let result = operands
|
|||
.iter()
|
|||
.map(|op| Boolean::le_bits_to_fp(&op.bits).unwrap())
|
|||
.sum::<FpVar<_>>();
|
|||
let (result, _) = result.to_bits_le_with_top_bits_zero(max_value_size as usize)?;
|
|||
Ok((result, value))
|
|||
}
|
|||
}
|
@ -0,0 +1,117 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
|
|||
use crate::uint::*;
|
|||
use crate::{boolean::Boolean, R1CSVar};
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> UInt<N, T, F> {
|
|||
/// Compute `*self = self.wrapping_add(other)`.
|
|||
pub fn saturating_add_in_place(&mut self, other: &Self) {
|
|||
let result = Self::saturating_add_many(&[self.clone(), other.clone()]).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
|
|||
/// Compute `self.wrapping_add(other)`.
|
|||
pub fn saturating_add(&self, other: &Self) -> Self {
|
|||
let mut result = self.clone();
|
|||
result.saturating_add_in_place(other);
|
|||
result
|
|||
}
|
|||
|
|||
/// Perform wrapping addition of `operands`.
|
|||
/// Computes `operands[0].wrapping_add(operands[1]).wrapping_add(operands[2])...`.
|
|||
///
|
|||
/// The user must ensure that overflow does not occur.
|
|||
#[tracing::instrument(target = "r1cs", skip(operands))]
|
|||
pub fn saturating_add_many(operands: &[Self]) -> Result<Self, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
let (sum_bits, value) = Self::add_many_helper(operands, |a, b| a.saturating_add(b))?;
|
|||
if operands.is_constant() {
|
|||
// If all operands are constant, then the result is also constant.
|
|||
// In this case, we can return early.
|
|||
Ok(UInt::constant(value.unwrap()))
|
|||
} else if sum_bits.len() == N {
|
|||
// No overflow occurred.
|
|||
Ok(UInt::from_bits_le(&sum_bits))
|
|||
} else {
|
|||
// Split the sum into the bottom `N` bits and the top bits.
|
|||
let (bottom_bits, top_bits) = sum_bits.split_at(N);
|
|||
|
|||
// Construct a candidate result assuming that no overflow occurred.
|
|||
let bits = TryFrom::try_from(bottom_bits.to_vec()).unwrap();
|
|||
let candidate_result = UInt { bits, value };
|
|||
|
|||
// Check if any of the top bits is set.
|
|||
// If any of them is set, then overflow occurred.
|
|||
let overflow_occurred = Boolean::kary_or(&top_bits)?;
|
|||
|
|||
// If overflow occurred, return the maximum value.
|
|||
overflow_occurred.select(&Self::MAX, &candidate_result)
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_saturating_add<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = a.saturating_add(&b);
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = UInt::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()?.saturating_add(b.value()?)),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_saturating_add() {
|
|||
run_binary_exhaustive(uint_saturating_add::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_saturating_add() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_saturating_add::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_saturating_add() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_saturating_add::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_saturating_add() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_saturating_add::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_saturating_add() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_saturating_add::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,106 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
|
|||
use crate::uint::*;
|
|||
use crate::R1CSVar;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> UInt<N, T, F> {
|
|||
/// Compute `*self = self.wrapping_add(other)`.
|
|||
pub fn wrapping_add_in_place(&mut self, other: &Self) {
|
|||
let result = Self::wrapping_add_many(&[self.clone(), other.clone()]).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
|
|||
/// Compute `self.wrapping_add(other)`.
|
|||
pub fn wrapping_add(&self, other: &Self) -> Self {
|
|||
let mut result = self.clone();
|
|||
result.wrapping_add_in_place(other);
|
|||
result
|
|||
}
|
|||
|
|||
/// Perform wrapping addition of `operands`.
|
|||
/// Computes `operands[0].wrapping_add(operands[1]).wrapping_add(operands[2])...`.
|
|||
///
|
|||
/// The user must ensure that overflow does not occur.
|
|||
#[tracing::instrument(target = "r1cs", skip(operands))]
|
|||
pub fn wrapping_add_many(operands: &[Self]) -> Result<Self, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
let (mut sum_bits, value) = Self::add_many_helper(operands, |a, b| a.wrapping_add(&b))?;
|
|||
if operands.is_constant() {
|
|||
// If all operands are constant, then the result is also constant.
|
|||
// In this case, we can return early.
|
|||
Ok(UInt::constant(value.unwrap()))
|
|||
} else {
|
|||
sum_bits.truncate(N);
|
|||
Ok(UInt {
|
|||
bits: sum_bits.try_into().unwrap(),
|
|||
value,
|
|||
})
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_wrapping_add<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = a.wrapping_add(&b);
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = UInt::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()?.wrapping_add(&b.value()?)),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_wrapping_add() {
|
|||
run_binary_exhaustive(uint_wrapping_add::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_wrapping_add() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_wrapping_add::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_wrapping_add() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_wrapping_add::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_wrapping_add() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_wrapping_add::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_wrapping_add() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_wrapping_add::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,263 @@ |
|||
use ark_ff::Field;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::BitAnd, ops::BitAndAssign};
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> UInt<N, T, F> {
|
|||
fn _and(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
let mut result = self.clone();
|
|||
for (a, b) in result.bits.iter_mut().zip(&other.bits) {
|
|||
*a &= b;
|
|||
}
|
|||
result.value = self.value.and_then(|a| Some(a & other.value?));
|
|||
Ok(result)
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitAnd<Self> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
/// Outputs `self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 & 17))?;
|
|||
///
|
|||
/// (a & &b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: Self) -> Self::Output {
|
|||
self._and(other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitAnd<&'a Self> for UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
/// Outputs `self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 & 17))?;
|
|||
///
|
|||
/// (a & &b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: &Self) -> Self::Output {
|
|||
self._and(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitAnd<UInt<N, T, F>> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
/// Outputs `self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 & 17))?;
|
|||
///
|
|||
/// (a & &b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: UInt<N, T, F>) -> Self::Output {
|
|||
self._and(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> BitAnd<Self> for UInt<N, T, F> {
|
|||
type Output = Self;
|
|||
|
|||
/// Outputs `self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 & 17))?;
|
|||
///
|
|||
/// (a & &b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand(self, other: Self) -> Self::Output {
|
|||
self._and(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> BitAndAssign<Self> for UInt<N, T, F> {
|
|||
/// Sets `self = self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let mut a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 & 17))?;
|
|||
///
|
|||
/// a &= &b;
|
|||
/// a.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand_assign(&mut self, other: Self) {
|
|||
let result = self._and(&other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitAndAssign<&'a Self> for UInt<N, T, F> {
|
|||
/// Sets `self = self & other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let mut a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 & 17))?;
|
|||
///
|
|||
/// a &= &b;
|
|||
/// a.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitand_assign(&mut self, other: &'a Self) {
|
|||
let result = self._and(other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_and<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a & &b;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = UInt::<N, T, F>::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()? & b.value()?),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_and() {
|
|||
run_binary_exhaustive(uint_and::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_and() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_and::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_and() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_and::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_and() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_and::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_and() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_and::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,218 @@ |
|||
use crate::cmp::CmpGadget;
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField + From<T>> CmpGadget<F> for UInt<N, T, F> {
|
|||
fn is_ge(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
|
|||
if N + 1 < ((F::MODULUS_BIT_SIZE - 1) as usize) {
|
|||
let a = self.to_fp()?;
|
|||
let b = other.to_fp()?;
|
|||
let (bits, _) = (a - b + F::from(T::max_value()) + F::one())
|
|||
.to_bits_le_with_top_bits_zero(N + 1)?;
|
|||
Ok(bits.last().unwrap().clone())
|
|||
} else {
|
|||
unimplemented!("bit sizes larger than modulus size not yet supported")
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_gt<T: PrimUInt, const N: usize, F: PrimeField + From<T>>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let computed = a.is_gt(&b)?;
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? > b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
fn uint_lt<T: PrimUInt, const N: usize, F: PrimeField + From<T>>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let computed = a.is_lt(&b)?;
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? < b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
fn uint_ge<T: PrimUInt, const N: usize, F: PrimeField + From<T>>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let computed = a.is_ge(&b)?;
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? >= b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
fn uint_le<T: PrimUInt, const N: usize, F: PrimeField + From<T>>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let computed = a.is_le(&b)?;
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? <= b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_gt() {
|
|||
run_binary_exhaustive(uint_gt::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_gt() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_gt::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_gt() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_gt::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_gt() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_gt::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_gt() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_gt::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_lt() {
|
|||
run_binary_exhaustive(uint_lt::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_lt() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_lt::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_lt() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_lt::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_lt() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_lt::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_lt() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_lt::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_le() {
|
|||
run_binary_exhaustive(uint_le::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_le() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_le::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_le() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_le::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_le() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_le::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_le() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_le::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_ge() {
|
|||
run_binary_exhaustive(uint_ge::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_ge() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_ge::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_ge() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_ge::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_ge() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_ge::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_ge() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_ge::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,129 @@ |
|||
use crate::convert::*;
|
|||
use crate::fields::fp::FpVar;
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<const N: usize, F: Field, T: PrimUInt> UInt<N, T, F> {
|
|||
/// Converts `self` into a field element. The elements comprising `self` are
|
|||
/// interpreted as a little-endian bit order representation of a field element.
|
|||
///
|
|||
/// # Panics
|
|||
/// Assumes that `N` is equal to at most the number of bits in `F::MODULUS_BIT_SIZE - 1`, and panics otherwise.
|
|||
pub fn to_fp(&self) -> Result<FpVar<F>, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
assert!(N <= F::MODULUS_BIT_SIZE as usize - 1);
|
|||
|
|||
Boolean::le_bits_to_fp(&self.bits)
|
|||
}
|
|||
|
|||
/// Converts a field element into its little-endian bit order representation.
|
|||
///
|
|||
/// # Panics
|
|||
///
|
|||
/// Assumes that `N` is at most the number of bits in `F::MODULUS_BIT_SIZE - 1`, and panics otherwise.
|
|||
pub fn from_fp(other: &FpVar<F>) -> Result<(Self, FpVar<F>), SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
let (bits, rest) = other.to_bits_le_with_top_bits_zero(N)?;
|
|||
let result = Self::from_bits_le(&bits);
|
|||
Ok((result, rest))
|
|||
}
|
|||
|
|||
/// Converts a little-endian byte order representation of bits into a
|
|||
/// `UInt`.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let var = UInt8::new_witness(cs.clone(), || Ok(128))?;
|
|||
///
|
|||
/// let f = Boolean::FALSE;
|
|||
/// let t = Boolean::TRUE;
|
|||
///
|
|||
/// // Construct [0, 0, 0, 0, 0, 0, 0, 1]
|
|||
/// let mut bits = vec![f.clone(); 7];
|
|||
/// bits.push(t);
|
|||
///
|
|||
/// let mut c = UInt8::from_bits_le(&bits);
|
|||
/// var.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
pub fn from_bits_le(bits: &[Boolean<F>]) -> Self {
|
|||
assert_eq!(bits.len(), N);
|
|||
let bits = <&[Boolean<F>; N]>::try_from(bits).unwrap().clone();
|
|||
let value_exists = bits.iter().all(|b| b.value().is_ok());
|
|||
let mut value = T::zero();
|
|||
for (i, b) in bits.iter().enumerate() {
|
|||
if let Ok(b) = b.value() {
|
|||
value = value + (T::from(b as u8).unwrap() << i);
|
|||
}
|
|||
}
|
|||
let value = value_exists.then_some(value);
|
|||
Self { bits, value }
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> ToBitsGadget<F> for UInt<N, T, F> {
|
|||
fn to_bits_le(&self) -> Result<Vec<Boolean<F>>, SynthesisError> {
|
|||
Ok(self.bits.to_vec())
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> ToBitsGadget<F> for [UInt<N, T, F>] {
|
|||
/// Interprets `self` as an integer, and outputs the little-endian
|
|||
/// bit-wise decomposition of that integer.
|
|||
fn to_bits_le(&self) -> Result<Vec<Boolean<F>>, SynthesisError> {
|
|||
let bits = self.iter().flat_map(|b| &b.bits).cloned().collect();
|
|||
Ok(bits)
|
|||
}
|
|||
}
|
|||
|
|||
/*****************************************************************************************/
|
|||
/********************************* Conversions to bytes. *********************************/
|
|||
/*****************************************************************************************/
|
|||
|
|||
impl<const N: usize, T: PrimUInt, ConstraintF: Field> ToBytesGadget<ConstraintF>
|
|||
for UInt<N, T, ConstraintF>
|
|||
{
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn to_bytes(&self) -> Result<Vec<UInt8<ConstraintF>>, SynthesisError> {
|
|||
Ok(self
|
|||
.to_bits_le()?
|
|||
.chunks(8)
|
|||
.map(UInt8::from_bits_le)
|
|||
.collect())
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> ToBytesGadget<F> for [UInt<N, T, F>] {
|
|||
fn to_bytes(&self) -> Result<Vec<UInt8<F>>, SynthesisError> {
|
|||
let mut bytes = Vec::with_capacity(self.len() * (N / 8));
|
|||
for elem in self {
|
|||
bytes.extend_from_slice(&elem.to_bytes()?);
|
|||
}
|
|||
Ok(bytes)
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> ToBytesGadget<F> for Vec<UInt<N, T, F>> {
|
|||
fn to_bytes(&self) -> Result<Vec<UInt8<F>>, SynthesisError> {
|
|||
self.as_slice().to_bytes()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> ToBytesGadget<F> for &'a [UInt<N, T, F>] {
|
|||
fn to_bytes(&self) -> Result<Vec<UInt8<F>>, SynthesisError> {
|
|||
(*self).to_bytes()
|
|||
}
|
|||
}
|
@ -0,0 +1,173 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::vec::Vec;
|
|||
|
|||
use crate::boolean::Boolean;
|
|||
use crate::eq::EqGadget;
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, ConstraintF: PrimeField> EqGadget<ConstraintF>
|
|||
for UInt<N, T, ConstraintF>
|
|||
{
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn is_eq(&self, other: &Self) -> Result<Boolean<ConstraintF>, SynthesisError> {
|
|||
let chunk_size = usize::try_from(ConstraintF::MODULUS_BIT_SIZE - 1).unwrap();
|
|||
let chunks_are_eq = self
|
|||
.bits
|
|||
.chunks(chunk_size)
|
|||
.zip(other.bits.chunks(chunk_size))
|
|||
.map(|(a, b)| {
|
|||
let a = Boolean::le_bits_to_fp(a)?;
|
|||
let b = Boolean::le_bits_to_fp(b)?;
|
|||
a.is_eq(&b)
|
|||
})
|
|||
.collect::<Result<Vec<_>, _>>()?;
|
|||
Boolean::kary_and(&chunks_are_eq)
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn conditional_enforce_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<ConstraintF>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let chunk_size = usize::try_from(ConstraintF::MODULUS_BIT_SIZE - 1).unwrap();
|
|||
for (a, b) in self
|
|||
.bits
|
|||
.chunks(chunk_size)
|
|||
.zip(other.bits.chunks(chunk_size))
|
|||
{
|
|||
let a = Boolean::le_bits_to_fp(a)?;
|
|||
let b = Boolean::le_bits_to_fp(b)?;
|
|||
a.conditional_enforce_equal(&b, condition)?;
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn conditional_enforce_not_equal(
|
|||
&self,
|
|||
other: &Self,
|
|||
condition: &Boolean<ConstraintF>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let chunk_size = usize::try_from(ConstraintF::MODULUS_BIT_SIZE - 1).unwrap();
|
|||
for (a, b) in self
|
|||
.bits
|
|||
.chunks(chunk_size)
|
|||
.zip(other.bits.chunks(chunk_size))
|
|||
{
|
|||
let a = Boolean::le_bits_to_fp(a)?;
|
|||
let b = Boolean::le_bits_to_fp(b)?;
|
|||
a.conditional_enforce_not_equal(&b, condition)?;
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_eq<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = a.is_eq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? == b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
fn uint_neq<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = a.is_neq(&b)?;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
Boolean::new_variable(cs.clone(), || Ok(a.value()? != b.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_eq() {
|
|||
run_binary_exhaustive(uint_eq::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_eq() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_eq::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_eq() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_eq::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_eq() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_eq::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_eq() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_eq::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_neq() {
|
|||
run_binary_exhaustive(uint_neq::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_neq() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_neq::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_neq() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_neq::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_neq() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_neq::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_neq() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_neq::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,160 @@ |
|||
use ark_ff::{Field, PrimeField};
|
|||
use core::{borrow::Borrow, convert::TryFrom, fmt::Debug};
|
|||
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError};
|
|||
|
|||
use crate::{boolean::Boolean, prelude::*, Assignment, Vec};
|
|||
|
|||
mod add;
|
|||
mod and;
|
|||
mod cmp;
|
|||
mod convert;
|
|||
mod eq;
|
|||
mod not;
|
|||
mod or;
|
|||
mod rotate;
|
|||
mod select;
|
|||
mod shl;
|
|||
mod shr;
|
|||
mod xor;
|
|||
|
|||
#[doc(hidden)]
|
|||
pub mod prim_uint;
|
|||
pub use prim_uint::*;
|
|||
|
|||
#[cfg(test)]
|
|||
pub(crate) mod test_utils;
|
|||
|
|||
/// This struct represent an unsigned `N` bit integer as a sequence of `N` [`Boolean`]s.
|
|||
#[derive(Clone, Debug)]
|
|||
pub struct UInt<const N: usize, T: PrimUInt, F: Field> {
|
|||
#[doc(hidden)]
|
|||
pub bits: [Boolean<F>; N],
|
|||
#[doc(hidden)]
|
|||
pub value: Option<T>,
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> R1CSVar<F> for UInt<N, T, F> {
|
|||
type Value = T;
|
|||
|
|||
fn cs(&self) -> ConstraintSystemRef<F> {
|
|||
self.bits.as_ref().cs()
|
|||
}
|
|||
|
|||
fn value(&self) -> Result<Self::Value, SynthesisError> {
|
|||
let mut value = T::zero();
|
|||
for (i, bit) in self.bits.iter().enumerate() {
|
|||
value = value + (T::from(bit.value()? as u8).unwrap() << i);
|
|||
}
|
|||
debug_assert_eq!(self.value, Some(value));
|
|||
Ok(value)
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> UInt<N, T, F> {
|
|||
pub const MAX: Self = Self {
|
|||
bits: [Boolean::TRUE; N],
|
|||
value: Some(T::MAX),
|
|||
};
|
|||
|
|||
/// Construct a constant [`UInt`] from the native unsigned integer type.
|
|||
///
|
|||
/// This *does not* create new variables or constraints.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let var = UInt8::new_witness(cs.clone(), || Ok(2))?;
|
|||
///
|
|||
/// let constant = UInt8::constant(2);
|
|||
/// var.enforce_equal(&constant)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn constant(value: T) -> Self {
|
|||
let mut bits = [Boolean::FALSE; N];
|
|||
let mut bit_values = value;
|
|||
|
|||
for i in 0..N {
|
|||
bits[i] = Boolean::constant((bit_values & T::one()) == T::one());
|
|||
bit_values = bit_values >> 1u8;
|
|||
}
|
|||
|
|||
Self {
|
|||
bits,
|
|||
value: Some(value),
|
|||
}
|
|||
}
|
|||
|
|||
/// Construct a constant vector of [`UInt`] from a vector of the native type
|
|||
///
|
|||
/// This *does not* create any new variables or constraints.
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let var = vec![UInt8::new_witness(cs.clone(), || Ok(2))?];
|
|||
///
|
|||
/// let constant = UInt8::constant_vec(&[2]);
|
|||
/// var.enforce_equal(&constant)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn constant_vec(values: &[T]) -> Vec<Self> {
|
|||
values.iter().map(|v| Self::constant(*v)).collect()
|
|||
}
|
|||
|
|||
/// Allocates a slice of `uN`'s as private witnesses.
|
|||
pub fn new_witness_vec(
|
|||
cs: impl Into<Namespace<F>>,
|
|||
values: &[impl Into<Option<T>> + Copy],
|
|||
) -> Result<Vec<Self>, SynthesisError> {
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let mut output_vec = Vec::with_capacity(values.len());
|
|||
for value in values {
|
|||
let byte: Option<T> = Into::into(*value);
|
|||
output_vec.push(Self::new_witness(cs.clone(), || byte.get())?);
|
|||
}
|
|||
Ok(output_vec)
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, ConstraintF: Field> AllocVar<T, ConstraintF>
|
|||
for UInt<N, T, ConstraintF>
|
|||
{
|
|||
fn new_variable<S: Borrow<T>>(
|
|||
cs: impl Into<Namespace<ConstraintF>>,
|
|||
f: impl FnOnce() -> Result<S, SynthesisError>,
|
|||
mode: AllocationMode,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let value = f().map(|f| *f.borrow()).ok();
|
|||
|
|||
let mut values = [None; N];
|
|||
if let Some(val) = value {
|
|||
values
|
|||
.iter_mut()
|
|||
.enumerate()
|
|||
.for_each(|(i, v)| *v = Some(((val >> i) & T::one()) == T::one()));
|
|||
}
|
|||
|
|||
let mut bits = [Boolean::FALSE; N];
|
|||
for (b, v) in bits.iter_mut().zip(&values) {
|
|||
*b = Boolean::new_variable(cs.clone(), || v.get(), mode)?;
|
|||
}
|
|||
Ok(Self { bits, value })
|
|||
}
|
|||
}
|
@ -0,0 +1,131 @@ |
|||
use ark_ff::Field;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::ops::Not;
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> UInt<N, T, F> {
|
|||
fn _not(&self) -> Result<Self, SynthesisError> {
|
|||
let mut result = self.clone();
|
|||
for a in &mut result.bits {
|
|||
*a = !&*a
|
|||
}
|
|||
result.value = self.value.map(Not::not);
|
|||
Ok(result)
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> Not for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
/// Outputs `!self`.
|
|||
///
|
|||
/// If `self` is a constant, then this method *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(2))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(!2))?;
|
|||
///
|
|||
/// (!a).enforce_equal(&b)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn not(self) -> Self::Output {
|
|||
self._not().unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> Not for UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
/// Outputs `!self`.
|
|||
///
|
|||
/// If `self` is a constant, then this method *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(2))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(!2))?;
|
|||
///
|
|||
/// (!a).enforce_equal(&b)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
fn not(self) -> Self::Output {
|
|||
self._not().unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_unary_exhaustive, run_unary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_not<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs();
|
|||
let computed = !&a;
|
|||
let expected_mode = if a.is_constant() {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
UInt::<N, T, F>::new_variable(cs.clone(), || Ok(!a.value()?), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_not() {
|
|||
run_unary_exhaustive(uint_not::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_not() {
|
|||
run_unary_random::<1000, 16, _, _>(uint_not::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_not() {
|
|||
run_unary_random::<1000, 32, _, _>(uint_not::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_not() {
|
|||
run_unary_random::<1000, 64, _, _>(uint_not::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128() {
|
|||
run_unary_random::<1000, 128, _, _>(uint_not::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,176 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::BitOr, ops::BitOrAssign};
|
|||
|
|||
use super::{PrimUInt, UInt};
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> UInt<N, T, F> {
|
|||
fn _or(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
let mut result = self.clone();
|
|||
for (a, b) in result.bits.iter_mut().zip(&other.bits) {
|
|||
*a |= b;
|
|||
}
|
|||
result.value = self.value.and_then(|a| Some(a | other.value?));
|
|||
Ok(result)
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: PrimeField> BitOr<Self> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
/// Output `self | other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 | 17))?;
|
|||
///
|
|||
/// (a | b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: Self) -> Self::Output {
|
|||
self._or(other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: PrimeField> BitOr<&'a Self> for UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: &Self) -> Self::Output {
|
|||
self._or(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: PrimeField> BitOr<UInt<N, T, F>> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: UInt<N, T, F>) -> Self::Output {
|
|||
self._or(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> BitOr<Self> for UInt<N, T, F> {
|
|||
type Output = Self;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor(self, other: Self) -> Self::Output {
|
|||
self._or(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> BitOrAssign<Self> for UInt<N, T, F> {
|
|||
/// Sets `self = self | other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let mut a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 | 17))?;
|
|||
///
|
|||
/// a |= b;
|
|||
/// a.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor_assign(&mut self, other: Self) {
|
|||
let result = self._or(&other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: PrimeField> BitOrAssign<&'a Self> for UInt<N, T, F> {
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitor_assign(&mut self, other: &'a Self) {
|
|||
let result = self._or(other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_or<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a | &b;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = UInt::<N, T, F>::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()? | b.value()?),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_or() {
|
|||
run_binary_exhaustive(uint_or::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_or() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_or::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_or() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_or::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_or() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_or::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_or() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_or::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,175 @@ |
|||
use core::ops::{Shl, ShlAssign, Shr, ShrAssign};
|
|||
use core::usize;
|
|||
|
|||
#[doc(hidden)]
|
|||
// Adapted from <https://github.com/rust-num/num-traits/pull/224>
|
|||
pub trait PrimUInt: |
|||
core::fmt::Debug
|
|||
+ num_traits::PrimInt
|
|||
+ num_traits::WrappingAdd
|
|||
+ num_traits::SaturatingAdd
|
|||
+ Shl<usize, Output = Self>
|
|||
+ Shl<u8, Output = Self>
|
|||
+ Shl<u16, Output = Self>
|
|||
+ Shl<u32, Output = Self>
|
|||
+ Shl<u64, Output = Self>
|
|||
+ Shl<u128, Output = Self>
|
|||
+ Shr<usize, Output = Self>
|
|||
+ Shr<u8, Output = Self>
|
|||
+ Shr<u16, Output = Self>
|
|||
+ Shr<u32, Output = Self>
|
|||
+ Shr<u64, Output = Self>
|
|||
+ Shr<u128, Output = Self>
|
|||
+ ShlAssign<usize>
|
|||
+ ShlAssign<u8>
|
|||
+ ShlAssign<u16>
|
|||
+ ShlAssign<u32>
|
|||
+ ShlAssign<u64>
|
|||
+ ShlAssign<u128>
|
|||
+ ShrAssign<usize>
|
|||
+ ShrAssign<u8>
|
|||
+ ShrAssign<u16>
|
|||
+ ShrAssign<u32>
|
|||
+ ShrAssign<u64>
|
|||
+ ShrAssign<u128>
|
|||
+ Into<u128>
|
|||
+ _private::Sealed
|
|||
+ ark_std::UniformRand
|
|||
{
|
|||
type Bytes: NumBytes;
|
|||
const MAX: Self;
|
|||
#[doc(hidden)]
|
|||
const MAX_VALUE_BIT_DECOMP: &'static [bool];
|
|||
|
|||
/// Return the memory representation of this number as a byte array in little-endian byte order.
|
|||
///
|
|||
/// # Examples
|
|||
///
|
|||
/// ```
|
|||
/// use ark_r1cs_std::uint::PrimUInt;
|
|||
///
|
|||
/// let bytes = PrimUInt::to_le_bytes(&0x12345678u32);
|
|||
/// assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]);
|
|||
/// ```
|
|||
fn to_le_bytes(&self) -> Self::Bytes;
|
|||
|
|||
/// Return the memory representation of this number as a byte array in big-endian byte order.
|
|||
///
|
|||
/// # Examples
|
|||
///
|
|||
/// ```
|
|||
/// use ark_r1cs_std::uint::PrimUInt;
|
|||
///
|
|||
/// let bytes = PrimUInt::to_be_bytes(&0x12345678u32);
|
|||
/// assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]);
|
|||
/// ```
|
|||
fn to_be_bytes(&self) -> Self::Bytes;
|
|||
}
|
|||
|
|||
impl PrimUInt for u8 {
|
|||
const MAX: Self = u8::MAX;
|
|||
const MAX_VALUE_BIT_DECOMP: &'static [bool] = &[true; 8];
|
|||
type Bytes = [u8; 1];
|
|||
|
|||
#[inline]
|
|||
fn to_le_bytes(&self) -> Self::Bytes {
|
|||
u8::to_le_bytes(*self)
|
|||
}
|
|||
|
|||
#[inline]
|
|||
fn to_be_bytes(&self) -> Self::Bytes {
|
|||
u8::to_be_bytes(*self)
|
|||
}
|
|||
}
|
|||
|
|||
impl PrimUInt for u16 {
|
|||
const MAX: Self = u16::MAX;
|
|||
const MAX_VALUE_BIT_DECOMP: &'static [bool] = &[true; 16];
|
|||
type Bytes = [u8; 2];
|
|||
|
|||
#[inline]
|
|||
fn to_le_bytes(&self) -> Self::Bytes {
|
|||
u16::to_le_bytes(*self)
|
|||
}
|
|||
|
|||
#[inline]
|
|||
fn to_be_bytes(&self) -> Self::Bytes {
|
|||
u16::to_be_bytes(*self)
|
|||
}
|
|||
}
|
|||
|
|||
impl PrimUInt for u32 {
|
|||
const MAX: Self = u32::MAX;
|
|||
const MAX_VALUE_BIT_DECOMP: &'static [bool] = &[true; 32];
|
|||
type Bytes = [u8; 4];
|
|||
|
|||
#[inline]
|
|||
fn to_le_bytes(&self) -> Self::Bytes {
|
|||
u32::to_le_bytes(*self)
|
|||
}
|
|||
|
|||
#[inline]
|
|||
fn to_be_bytes(&self) -> Self::Bytes {
|
|||
u32::to_be_bytes(*self)
|
|||
}
|
|||
}
|
|||
|
|||
impl PrimUInt for u64 {
|
|||
const MAX: Self = u64::MAX;
|
|||
const MAX_VALUE_BIT_DECOMP: &'static [bool] = &[true; 64];
|
|||
type Bytes = [u8; 8];
|
|||
|
|||
#[inline]
|
|||
fn to_le_bytes(&self) -> Self::Bytes {
|
|||
u64::to_le_bytes(*self)
|
|||
}
|
|||
|
|||
#[inline]
|
|||
fn to_be_bytes(&self) -> Self::Bytes {
|
|||
u64::to_be_bytes(*self)
|
|||
}
|
|||
}
|
|||
|
|||
impl PrimUInt for u128 {
|
|||
const MAX: Self = u128::MAX;
|
|||
const MAX_VALUE_BIT_DECOMP: &'static [bool] = &[true; 128];
|
|||
type Bytes = [u8; 16];
|
|||
|
|||
#[inline]
|
|||
fn to_le_bytes(&self) -> Self::Bytes {
|
|||
u128::to_le_bytes(*self)
|
|||
}
|
|||
|
|||
#[inline]
|
|||
fn to_be_bytes(&self) -> Self::Bytes {
|
|||
u128::to_be_bytes(*self)
|
|||
}
|
|||
}
|
|||
|
|||
#[doc(hidden)]
|
|||
pub trait NumBytes: |
|||
core::fmt::Debug
|
|||
+ AsRef<[u8]>
|
|||
+ AsMut<[u8]>
|
|||
+ PartialEq
|
|||
+ Eq
|
|||
+ PartialOrd
|
|||
+ Ord
|
|||
+ core::hash::Hash
|
|||
+ core::borrow::Borrow<[u8]>
|
|||
+ core::borrow::BorrowMut<[u8]>
|
|||
{
|
|||
}
|
|||
|
|||
#[doc(hidden)]
|
|||
impl<const N: usize> NumBytes for [u8; N] {}
|
|||
|
|||
mod _private {
|
|||
pub trait Sealed {}
|
|||
|
|||
impl Sealed for u8 {}
|
|||
impl Sealed for u16 {}
|
|||
impl Sealed for u32 {}
|
|||
impl Sealed for u64 {}
|
|||
impl Sealed for u128 {}
|
|||
}
|
@ -0,0 +1,174 @@ |
|||
use super::*;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, ConstraintF: Field> UInt<N, T, ConstraintF> {
|
|||
/// Rotates `self` to the right by `by` steps, wrapping around.
|
|||
///
|
|||
/// # Examples
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt32::new_witness(cs.clone(), || Ok(0xb301u32))?;
|
|||
/// let b = UInt32::new_witness(cs.clone(), || Ok(0x10000b3))?;
|
|||
///
|
|||
/// a.rotate_right(8).enforce_equal(&b)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
pub fn rotate_right(&self, by: usize) -> Self {
|
|||
let by = by % N;
|
|||
let mut result = self.clone();
|
|||
// `[T]::rotate_left` corresponds to a `rotate_right` of the bits.
|
|||
result.bits.rotate_left(by);
|
|||
result.value = self.value.map(|v| v.rotate_right(by as u32));
|
|||
result
|
|||
}
|
|||
|
|||
/// Rotates `self` to the left by `by` steps, wrapping around.
|
|||
///
|
|||
/// # Examples
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt32::new_witness(cs.clone(), || Ok(0x10000b3))?;
|
|||
/// let b = UInt32::new_witness(cs.clone(), || Ok(0xb301u32))?;
|
|||
///
|
|||
/// a.rotate_left(8).enforce_equal(&b)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self))]
|
|||
pub fn rotate_left(&self, by: usize) -> Self {
|
|||
let by = by % N;
|
|||
let mut result = self.clone();
|
|||
// `[T]::rotate_right` corresponds to a `rotate_left` of the bits.
|
|||
result.bits.rotate_right(by);
|
|||
result.value = self.value.map(|v| v.rotate_left(by as u32));
|
|||
result
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_unary_exhaustive, run_unary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_rotate_left<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs();
|
|||
let expected_mode = if a.is_constant() {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
for shift in 0..N {
|
|||
let computed = a.rotate_left(shift);
|
|||
let expected = UInt::<N, T, F>::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()?.rotate_left(shift as u32)),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
fn uint_rotate_right<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs();
|
|||
let expected_mode = if a.is_constant() {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
for shift in 0..N {
|
|||
let computed = a.rotate_right(shift);
|
|||
let expected = UInt::<N, T, F>::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()?.rotate_right(shift as u32)),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_rotate_left() {
|
|||
run_unary_exhaustive(uint_rotate_left::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_rotate_left() {
|
|||
run_unary_random::<1000, 16, _, _>(uint_rotate_left::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_rotate_left() {
|
|||
run_unary_random::<1000, 32, _, _>(uint_rotate_left::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_rotate_left() {
|
|||
run_unary_random::<200, 64, _, _>(uint_rotate_left::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_rotate_left() {
|
|||
run_unary_random::<100, 128, _, _>(uint_rotate_left::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_rotate_right() {
|
|||
run_unary_exhaustive(uint_rotate_right::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_rotate_right() {
|
|||
run_unary_random::<1000, 16, _, _>(uint_rotate_right::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_rotate_right() {
|
|||
run_unary_random::<1000, 32, _, _>(uint_rotate_right::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_rotate_right() {
|
|||
run_unary_random::<200, 64, _, _>(uint_rotate_right::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_rotate_right() {
|
|||
run_unary_random::<100, 128, _, _>(uint_rotate_right::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,98 @@ |
|||
use super::*;
|
|||
use crate::select::CondSelectGadget;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, ConstraintF: PrimeField> CondSelectGadget<ConstraintF>
|
|||
for UInt<N, T, ConstraintF>
|
|||
{
|
|||
#[tracing::instrument(target = "r1cs", skip(cond, true_value, false_value))]
|
|||
fn conditionally_select(
|
|||
cond: &Boolean<ConstraintF>,
|
|||
true_value: &Self,
|
|||
false_value: &Self,
|
|||
) -> Result<Self, SynthesisError> {
|
|||
let selected_bits = true_value
|
|||
.bits
|
|||
.iter()
|
|||
.zip(&false_value.bits)
|
|||
.map(|(t, f)| cond.select(t, f));
|
|||
let mut bits = [Boolean::FALSE; N];
|
|||
for (result, new) in bits.iter_mut().zip(selected_bits) {
|
|||
*result = new?;
|
|||
}
|
|||
|
|||
let value = cond.value().ok().and_then(|cond| {
|
|||
if cond {
|
|||
true_value.value().ok()
|
|||
} else {
|
|||
false_value.value().ok()
|
|||
}
|
|||
});
|
|||
Ok(Self { bits, value })
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_select<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
for cond in [true, false] {
|
|||
let expected = UInt::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(if cond { a.value()? } else { b.value()? }),
|
|||
expected_mode,
|
|||
)?;
|
|||
let cond = Boolean::new_variable(cs.clone(), || Ok(cond), expected_mode)?;
|
|||
let computed = cond.select(&a, &b)?;
|
|||
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_select() {
|
|||
run_binary_exhaustive(uint_select::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_select() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_select::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_select() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_select::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_select() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_select::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_select() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_select::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,154 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::Shl, ops::ShlAssign};
|
|||
|
|||
use crate::boolean::Boolean;
|
|||
|
|||
use super::{PrimUInt, UInt};
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> UInt<N, T, F> {
|
|||
fn _shl_u128(&self, other: u128) -> Result<Self, SynthesisError> {
|
|||
if other < N as u128 {
|
|||
let mut bits = [Boolean::FALSE; N];
|
|||
for (a, b) in bits[other as usize..].iter_mut().zip(&self.bits) {
|
|||
*a = b.clone();
|
|||
}
|
|||
|
|||
let value = self.value.and_then(|a| Some(a << other));
|
|||
Ok(Self { bits, value })
|
|||
} else {
|
|||
panic!("attempt to shift left with overflow")
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField, T2: PrimUInt> Shl<T2> for UInt<N, T, F> {
|
|||
type Output = Self;
|
|||
|
|||
/// Output `self << other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = 1u8;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 << 1))?;
|
|||
///
|
|||
/// (a << b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn shl(self, other: T2) -> Self::Output {
|
|||
self._shl_u128(other.into()).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: PrimeField, T2: PrimUInt> Shl<T2> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn shl(self, other: T2) -> Self::Output {
|
|||
self._shl_u128(other.into()).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField, T2: PrimUInt> ShlAssign<T2> for UInt<N, T, F> {
|
|||
/// Sets `self = self << other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let mut a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = 1u8;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 << 1))?;
|
|||
///
|
|||
/// a <<= b;
|
|||
/// a.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn shl_assign(&mut self, other: T2) {
|
|||
let result = self._shl_u128(other.into()).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive_with_native, run_binary_random_with_native},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_shl<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: T,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs();
|
|||
let b = b.into() % (N as u128);
|
|||
let computed = &a << b;
|
|||
let expected_mode = if a.is_constant() {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
UInt::<N, T, F>::new_variable(cs.clone(), || Ok(a.value()? << b), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_shl() {
|
|||
run_binary_exhaustive_with_native(uint_shl::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_shl() {
|
|||
run_binary_random_with_native::<1000, 16, _, _>(uint_shl::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_shl() {
|
|||
run_binary_random_with_native::<1000, 32, _, _>(uint_shl::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_shl() {
|
|||
run_binary_random_with_native::<1000, 64, _, _>(uint_shl::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_shl() {
|
|||
run_binary_random_with_native::<1000, 128, _, _>(uint_shl::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,154 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::Shr, ops::ShrAssign};
|
|||
|
|||
use crate::boolean::Boolean;
|
|||
|
|||
use super::{PrimUInt, UInt};
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField> UInt<N, T, F> {
|
|||
fn _shr_u128(&self, other: u128) -> Result<Self, SynthesisError> {
|
|||
if other < N as u128 {
|
|||
let mut bits = [Boolean::FALSE; N];
|
|||
for (a, b) in bits.iter_mut().zip(&self.bits[other as usize..]) {
|
|||
*a = b.clone();
|
|||
}
|
|||
|
|||
let value = self.value.and_then(|a| Some(a >> other));
|
|||
Ok(Self { bits, value })
|
|||
} else {
|
|||
panic!("attempt to shift right with overflow")
|
|||
}
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField, T2: PrimUInt> Shr<T2> for UInt<N, T, F> {
|
|||
type Output = Self;
|
|||
|
|||
/// Output `self >> other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = 1u8;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 >> 1))?;
|
|||
///
|
|||
/// (a >> b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn shr(self, other: T2) -> Self::Output {
|
|||
self._shr_u128(other.into()).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: PrimeField, T2: PrimUInt> Shr<T2> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn shr(self, other: T2) -> Self::Output {
|
|||
self._shr_u128(other.into()).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: PrimeField, T2: PrimUInt> ShrAssign<T2> for UInt<N, T, F> {
|
|||
/// Sets `self = self >> other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let mut a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = 1u8;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(16 >> 1))?;
|
|||
///
|
|||
/// a >>= b;
|
|||
/// a.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn shr_assign(&mut self, other: T2) {
|
|||
let result = self._shr_u128(other.into()).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive_with_native, run_binary_random_with_native},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_shr<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: T,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs();
|
|||
let b = b.into() % (N as u128);
|
|||
let computed = &a >> b;
|
|||
let expected_mode = if a.is_constant() {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected =
|
|||
UInt::<N, T, F>::new_variable(cs.clone(), || Ok(a.value()? >> b), expected_mode)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !a.is_constant() {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_shr() {
|
|||
run_binary_exhaustive_with_native(uint_shr::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_shr() {
|
|||
run_binary_random_with_native::<1000, 16, _, _>(uint_shr::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_shr() {
|
|||
run_binary_random_with_native::<1000, 32, _, _>(uint_shr::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_shr() {
|
|||
run_binary_random_with_native::<1000, 64, _, _>(uint_shr::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_shr() {
|
|||
run_binary_random_with_native::<1000, 128, _, _>(uint_shr::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,144 @@ |
|||
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|||
use std::ops::RangeInclusive;
|
|||
|
|||
use crate::test_utils::{self, modes};
|
|||
|
|||
use super::*;
|
|||
|
|||
pub(crate) fn test_unary_op<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: T,
|
|||
mode: AllocationMode,
|
|||
test: impl FnOnce(UInt<N, T, F>) -> Result<(), SynthesisError>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<F>::new_ref();
|
|||
let a = UInt::<N, T, F>::new_variable(cs.clone(), || Ok(a), mode)?;
|
|||
test(a)
|
|||
}
|
|||
|
|||
pub(crate) fn test_binary_op<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: T,
|
|||
b: T,
|
|||
mode_a: AllocationMode,
|
|||
mode_b: AllocationMode,
|
|||
test: impl FnOnce(UInt<N, T, F>, UInt<N, T, F>) -> Result<(), SynthesisError>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<F>::new_ref();
|
|||
let a = UInt::<N, T, F>::new_variable(cs.clone(), || Ok(a), mode_a)?;
|
|||
let b = UInt::<N, T, F>::new_variable(cs.clone(), || Ok(b), mode_b)?;
|
|||
test(a, b)
|
|||
}
|
|||
|
|||
pub(crate) fn test_binary_op_with_native<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: T,
|
|||
b: T,
|
|||
mode_a: AllocationMode,
|
|||
test: impl FnOnce(UInt<N, T, F>, T) -> Result<(), SynthesisError>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<F>::new_ref();
|
|||
let a = UInt::<N, T, F>::new_variable(cs.clone(), || Ok(a), mode_a)?;
|
|||
test(a, b)
|
|||
}
|
|||
|
|||
pub(crate) fn run_binary_random<const ITERATIONS: usize, const N: usize, T, F>(
|
|||
test: impl Fn(UInt<N, T, F>, UInt<N, T, F>) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError>
|
|||
where
|
|||
T: PrimUInt,
|
|||
F: PrimeField,
|
|||
{
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..ITERATIONS {
|
|||
for mode_a in modes() {
|
|||
let a = T::rand(&mut rng);
|
|||
for mode_b in modes() {
|
|||
let b = T::rand(&mut rng);
|
|||
test_binary_op(a, b, mode_a, mode_b, test)?;
|
|||
}
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
pub(crate) fn run_binary_exhaustive<const N: usize, T, F>(
|
|||
test: impl Fn(UInt<N, T, F>, UInt<N, T, F>) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError>
|
|||
where
|
|||
T: PrimUInt,
|
|||
F: PrimeField,
|
|||
RangeInclusive<T>: Iterator<Item = T>,
|
|||
{
|
|||
for (mode_a, a) in test_utils::combination(T::min_value()..=T::max_value()) {
|
|||
for (mode_b, b) in test_utils::combination(T::min_value()..=T::max_value()) {
|
|||
test_binary_op(a, b, mode_a, mode_b, test)?;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
pub(crate) fn run_binary_random_with_native<const ITERATIONS: usize, const N: usize, T, F>(
|
|||
test: impl Fn(UInt<N, T, F>, T) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError>
|
|||
where
|
|||
T: PrimUInt,
|
|||
F: PrimeField,
|
|||
{
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..ITERATIONS {
|
|||
for mode_a in modes() {
|
|||
let a = T::rand(&mut rng);
|
|||
let b = T::rand(&mut rng);
|
|||
test_binary_op_with_native(a, b, mode_a, test)?;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
pub(crate) fn run_binary_exhaustive_with_native<const N: usize, T, F>(
|
|||
test: impl Fn(UInt<N, T, F>, T) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError>
|
|||
where
|
|||
T: PrimUInt,
|
|||
F: PrimeField,
|
|||
RangeInclusive<T>: Iterator<Item = T>,
|
|||
{
|
|||
for (mode_a, a) in test_utils::combination(T::min_value()..=T::max_value()) {
|
|||
for b in T::min_value()..=T::max_value() {
|
|||
test_binary_op_with_native(a, b, mode_a, test)?;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
pub(crate) fn run_unary_random<const ITERATIONS: usize, const N: usize, T, F>(
|
|||
test: impl Fn(UInt<N, T, F>) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError>
|
|||
where
|
|||
T: PrimUInt,
|
|||
F: PrimeField,
|
|||
{
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..ITERATIONS {
|
|||
for mode_a in modes() {
|
|||
let a = T::rand(&mut rng);
|
|||
test_unary_op(a, mode_a, test)?;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
pub(crate) fn run_unary_exhaustive<const N: usize, T, F>(
|
|||
test: impl Fn(UInt<N, T, F>) -> Result<(), SynthesisError> + Copy,
|
|||
) -> Result<(), SynthesisError>
|
|||
where
|
|||
T: PrimUInt,
|
|||
F: PrimeField,
|
|||
RangeInclusive<T>: Iterator<Item = T>,
|
|||
{
|
|||
for (mode, a) in test_utils::combination(T::min_value()..=T::max_value()) {
|
|||
test_unary_op(a, mode, test)?;
|
|||
}
|
|||
Ok(())
|
|||
}
|
@ -0,0 +1,175 @@ |
|||
use ark_ff::Field;
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use ark_std::{ops::BitXor, ops::BitXorAssign};
|
|||
|
|||
use super::*;
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> UInt<N, T, F> {
|
|||
fn _xor(&self, other: &Self) -> Result<Self, SynthesisError> {
|
|||
let mut result = self.clone();
|
|||
for (a, b) in result.bits.iter_mut().zip(&other.bits) {
|
|||
*a ^= b;
|
|||
}
|
|||
result.value = self.value.and_then(|a| Some(a ^ other.value?));
|
|||
Ok(result)
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitXor<Self> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
/// Outputs `self ^ other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(1))?;
|
|||
///
|
|||
/// (a ^ &b).enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: Self) -> Self::Output {
|
|||
self._xor(other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitXor<&'a Self> for UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: &Self) -> Self::Output {
|
|||
self._xor(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitXor<UInt<N, T, F>> for &'a UInt<N, T, F> {
|
|||
type Output = UInt<N, T, F>;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: UInt<N, T, F>) -> Self::Output {
|
|||
self._xor(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> BitXor<Self> for UInt<N, T, F> {
|
|||
type Output = Self;
|
|||
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor(self, other: Self) -> Self::Output {
|
|||
self._xor(&other).unwrap()
|
|||
}
|
|||
}
|
|||
|
|||
impl<const N: usize, T: PrimUInt, F: Field> BitXorAssign<Self> for UInt<N, T, F> {
|
|||
/// Sets `self = self ^ other`.
|
|||
///
|
|||
/// If at least one of `self` and `other` are constants, then this method
|
|||
/// *does not* create any constraints or variables.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let mut a = UInt8::new_witness(cs.clone(), || Ok(16))?;
|
|||
/// let b = UInt8::new_witness(cs.clone(), || Ok(17))?;
|
|||
/// let c = UInt8::new_witness(cs.clone(), || Ok(1))?;
|
|||
///
|
|||
/// a ^= b;
|
|||
/// a.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor_assign(&mut self, other: Self) {
|
|||
let result = self._xor(&other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
impl<'a, const N: usize, T: PrimUInt, F: Field> BitXorAssign<&'a Self> for UInt<N, T, F> {
|
|||
#[tracing::instrument(target = "r1cs", skip(self, other))]
|
|||
fn bitxor_assign(&mut self, other: &'a Self) {
|
|||
let result = self._xor(other).unwrap();
|
|||
*self = result;
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::*;
|
|||
use crate::{
|
|||
alloc::{AllocVar, AllocationMode},
|
|||
prelude::EqGadget,
|
|||
uint::test_utils::{run_binary_exhaustive, run_binary_random},
|
|||
R1CSVar,
|
|||
};
|
|||
use ark_ff::PrimeField;
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
fn uint_xor<T: PrimUInt, const N: usize, F: PrimeField>(
|
|||
a: UInt<N, T, F>,
|
|||
b: UInt<N, T, F>,
|
|||
) -> Result<(), SynthesisError> {
|
|||
let cs = a.cs().or(b.cs());
|
|||
let both_constant = a.is_constant() && b.is_constant();
|
|||
let computed = &a ^ &b;
|
|||
let expected_mode = if both_constant {
|
|||
AllocationMode::Constant
|
|||
} else {
|
|||
AllocationMode::Witness
|
|||
};
|
|||
let expected = UInt::<N, T, F>::new_variable(
|
|||
cs.clone(),
|
|||
|| Ok(a.value()? ^ b.value()?),
|
|||
expected_mode,
|
|||
)?;
|
|||
assert_eq!(expected.value(), computed.value());
|
|||
expected.enforce_equal(&computed)?;
|
|||
if !both_constant {
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u8_xor() {
|
|||
run_binary_exhaustive(uint_xor::<u8, 8, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u16_xor() {
|
|||
run_binary_random::<1000, 16, _, _>(uint_xor::<u16, 16, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u32_xor() {
|
|||
run_binary_random::<1000, 32, _, _>(uint_xor::<u32, 32, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u64_xor() {
|
|||
run_binary_random::<1000, 64, _, _>(uint_xor::<u64, 64, Fr>).unwrap()
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn u128_xor() {
|
|||
run_binary_random::<1000, 128, _, _>(uint_xor::<u128, 128, Fr>).unwrap()
|
|||
}
|
|||
}
|
@ -0,0 +1,283 @@ |
|||
use ark_ff::{Field, PrimeField, ToConstraintField};
|
|||
|
|||
use ark_relations::r1cs::{Namespace, SynthesisError};
|
|||
|
|||
use crate::{
|
|||
convert::{ToBitsGadget, ToConstraintFieldGadget},
|
|||
fields::fp::{AllocatedFp, FpVar},
|
|||
prelude::*,
|
|||
Vec,
|
|||
};
|
|||
|
|||
pub type UInt8<F> = super::uint::UInt<8, u8, F>;
|
|||
|
|||
impl<F: Field> UInt8<F> {
|
|||
/// Allocates a slice of `u8`'s as public inputs by first packing them into
|
|||
/// elements of `F`, (thus reducing the number of input allocations),
|
|||
/// allocating these elements as public inputs, and then converting
|
|||
/// these field variables `FpVar<F>` variables back into bytes.
|
|||
///
|
|||
/// From a user perspective, this trade-off adds constraints, but improves
|
|||
/// verifier time and verification key size.
|
|||
///
|
|||
/// ```
|
|||
/// # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
/// // We'll use the BLS12-381 scalar field for our constraints.
|
|||
/// use ark_test_curves::bls12_381::Fr;
|
|||
/// use ark_relations::r1cs::*;
|
|||
/// use ark_r1cs_std::prelude::*;
|
|||
///
|
|||
/// let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
/// let two = UInt8::new_witness(cs.clone(), || Ok(2))?;
|
|||
/// let var = vec![two.clone(); 32];
|
|||
///
|
|||
/// let c = UInt8::new_input_vec(cs.clone(), &[2; 32])?;
|
|||
/// var.enforce_equal(&c)?;
|
|||
/// assert!(cs.is_satisfied().unwrap());
|
|||
/// # Ok(())
|
|||
/// # }
|
|||
/// ```
|
|||
pub fn new_input_vec(
|
|||
cs: impl Into<Namespace<F>>,
|
|||
values: &[u8],
|
|||
) -> Result<Vec<Self>, SynthesisError>
|
|||
where
|
|||
F: PrimeField,
|
|||
{
|
|||
let ns = cs.into();
|
|||
let cs = ns.cs();
|
|||
let values_len = values.len();
|
|||
let field_elements: Vec<F> = ToConstraintField::<F>::to_field_elements(values).unwrap();
|
|||
|
|||
let max_size = 8 * ((F::MODULUS_BIT_SIZE - 1) / 8) as usize;
|
|||
let mut allocated_bits = Vec::new();
|
|||
for field_element in field_elements.into_iter() {
|
|||
let fe = AllocatedFp::new_input(cs.clone(), || Ok(field_element))?;
|
|||
let fe_bits = fe.to_bits_le()?;
|
|||
|
|||
// Remove the most significant bit, because we know it should be zero
|
|||
// because `values.to_field_elements()` only
|
|||
// packs field elements up to the penultimate bit.
|
|||
// That is, the most significant bit (`ConstraintF::NUM_BITS`-th bit) is
|
|||
// unset, so we can just pop it off.
|
|||
allocated_bits.extend_from_slice(&fe_bits[0..max_size]);
|
|||
}
|
|||
|
|||
// Chunk up slices of 8 bit into bytes.
|
|||
Ok(allocated_bits[0..(8 * values_len)]
|
|||
.chunks(8)
|
|||
.map(Self::from_bits_le)
|
|||
.collect())
|
|||
}
|
|||
}
|
|||
|
|||
/// Parses the `Vec<UInt8<ConstraintF>>` in fixed-sized
|
|||
/// `ConstraintF::MODULUS_BIT_SIZE - 1` chunks and converts each chunk, which is
|
|||
/// assumed to be little-endian, to its `FpVar<ConstraintF>` representation.
|
|||
/// This is the gadget counterpart to the `[u8]` implementation of
|
|||
/// [`ToConstraintField``].
|
|||
impl<ConstraintF: PrimeField> ToConstraintFieldGadget<ConstraintF> for [UInt8<ConstraintF>] {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn to_constraint_field(&self) -> Result<Vec<FpVar<ConstraintF>>, SynthesisError> {
|
|||
let max_size = ((ConstraintF::MODULUS_BIT_SIZE - 1) / 8) as usize;
|
|||
self.chunks(max_size)
|
|||
.map(|chunk| Boolean::le_bits_to_fp(chunk.to_bits_le()?.as_slice()))
|
|||
.collect::<Result<Vec<_>, SynthesisError>>()
|
|||
}
|
|||
}
|
|||
|
|||
impl<ConstraintF: PrimeField> ToConstraintFieldGadget<ConstraintF> for Vec<UInt8<ConstraintF>> {
|
|||
#[tracing::instrument(target = "r1cs")]
|
|||
fn to_constraint_field(&self) -> Result<Vec<FpVar<ConstraintF>>, SynthesisError> {
|
|||
self.as_slice().to_constraint_field()
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod test {
|
|||
use super::UInt8;
|
|||
use crate::{
|
|||
convert::{ToBitsGadget, ToConstraintFieldGadget},
|
|||
fields::fp::FpVar,
|
|||
prelude::{
|
|||
AllocationMode::{Constant, Input, Witness},
|
|||
*,
|
|||
},
|
|||
Vec,
|
|||
};
|
|||
use ark_ff::{PrimeField, ToConstraintField};
|
|||
use ark_relations::r1cs::{ConstraintSystem, SynthesisError};
|
|||
use ark_std::rand::{distributions::Uniform, Rng};
|
|||
use ark_test_curves::bls12_381::Fr;
|
|||
|
|||
#[test]
|
|||
fn test_uint8_from_bits_to_bits() -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let byte_val = 0b01110001;
|
|||
let byte =
|
|||
UInt8::new_witness(ark_relations::ns!(cs, "alloc value"), || Ok(byte_val)).unwrap();
|
|||
let bits = byte.to_bits_le()?;
|
|||
for (i, bit) in bits.iter().enumerate() {
|
|||
assert_eq!(bit.value()?, (byte_val >> i) & 1 == 1)
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_new_input_vec() -> Result<(), SynthesisError> {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let byte_vals = (64u8..128u8).collect::<Vec<_>>();
|
|||
let bytes =
|
|||
UInt8::new_input_vec(ark_relations::ns!(cs, "alloc value"), &byte_vals).unwrap();
|
|||
for (native, variable) in byte_vals.into_iter().zip(bytes) {
|
|||
let bits = variable.to_bits_le()?;
|
|||
for (i, bit) in bits.iter().enumerate() {
|
|||
assert_eq!(
|
|||
bit.value()?,
|
|||
(native >> i) & 1 == 1,
|
|||
"native value {}: bit {:?}",
|
|||
native,
|
|||
i
|
|||
)
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_from_bits() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let v = (0..8)
|
|||
.map(|_| Boolean::<Fr>::Constant(rng.gen()))
|
|||
.collect::<Vec<_>>();
|
|||
|
|||
let val = UInt8::from_bits_le(&v);
|
|||
|
|||
let value = val.value()?;
|
|||
for (i, bit) in val.bits.iter().enumerate() {
|
|||
match bit {
|
|||
Boolean::Constant(b) => assert_eq!(*b, ((value >> i) & 1 == 1)),
|
|||
_ => unreachable!(),
|
|||
}
|
|||
}
|
|||
|
|||
let expected_to_be_same = val.to_bits_le()?;
|
|||
|
|||
for x in v.iter().zip(expected_to_be_same.iter()) {
|
|||
match x {
|
|||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
|||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
|||
_ => unreachable!(),
|
|||
}
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_xor() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let a: u8 = rng.gen();
|
|||
let b: u8 = rng.gen();
|
|||
let c: u8 = rng.gen();
|
|||
|
|||
let mut expected = a ^ b ^ c;
|
|||
|
|||
let a_bit = UInt8::new_witness(ark_relations::ns!(cs, "a_bit"), || Ok(a)).unwrap();
|
|||
let b_bit = UInt8::constant(b);
|
|||
let c_bit = UInt8::new_witness(ark_relations::ns!(cs, "c_bit"), || Ok(c)).unwrap();
|
|||
|
|||
let mut r = a_bit ^ b_bit;
|
|||
r ^= &c_bit;
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
|
|||
assert_eq!(r.value, Some(expected));
|
|||
|
|||
for b in r.bits.iter() {
|
|||
match b {
|
|||
Boolean::Var(b) => assert!(b.value()? == (expected & 1 == 1)),
|
|||
Boolean::Constant(b) => assert!(*b == (expected & 1 == 1)),
|
|||
}
|
|||
|
|||
expected >>= 1;
|
|||
}
|
|||
}
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_to_constraint_field() -> Result<(), SynthesisError> {
|
|||
let mut rng = ark_std::test_rng();
|
|||
let max_size = ((<Fr as PrimeField>::MODULUS_BIT_SIZE - 1) / 8) as usize;
|
|||
|
|||
let modes = [Input, Witness, Constant];
|
|||
for mode in &modes {
|
|||
for _ in 0..1000 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
let bytes: Vec<u8> = (&mut rng)
|
|||
.sample_iter(&Uniform::new_inclusive(0, u8::max_value()))
|
|||
.take(max_size * 3 + 5)
|
|||
.collect();
|
|||
|
|||
let bytes_var = bytes
|
|||
.iter()
|
|||
.map(|byte| UInt8::new_variable(cs.clone(), || Ok(*byte), *mode))
|
|||
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
|||
|
|||
let f_vec: Vec<Fr> = bytes.to_field_elements().unwrap();
|
|||
let f_var_vec: Vec<FpVar<Fr>> = bytes_var.to_constraint_field()?;
|
|||
|
|||
assert!(cs.is_satisfied().unwrap());
|
|||
assert_eq!(f_vec, f_var_vec.value()?);
|
|||
}
|
|||
}
|
|||
|
|||
Ok(())
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_uint8_random_access() {
|
|||
let mut rng = ark_std::test_rng();
|
|||
|
|||
for _ in 0..100 {
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
// value array
|
|||
let values: Vec<u8> = (0..128).map(|_| rng.gen()).collect();
|
|||
let values_const: Vec<UInt8<Fr>> = values.iter().map(|x| UInt8::constant(*x)).collect();
|
|||
|
|||
// index array
|
|||
let position: Vec<bool> = (0..7).map(|_| rng.gen()).collect();
|
|||
let position_var: Vec<Boolean<Fr>> = position
|
|||
.iter()
|
|||
.map(|b| {
|
|||
Boolean::new_witness(ark_relations::ns!(cs, "index_arr_element"), || Ok(*b))
|
|||
.unwrap()
|
|||
})
|
|||
.collect();
|
|||
|
|||
// index
|
|||
let mut index = 0;
|
|||
for x in position {
|
|||
index *= 2;
|
|||
index += if x { 1 } else { 0 };
|
|||
}
|
|||
|
|||
assert_eq!(
|
|||
UInt8::conditionally_select_power_of_two_vector(&position_var, &values_const)
|
|||
.unwrap()
|
|||
.value()
|
|||
.unwrap(),
|
|||
values[index]
|
|||
)
|
|||
}
|
|||
}
|
|||
}
|