mirror of
https://github.com/arnaucube/ark-r1cs-std.git
synced 2026-01-10 16:01:28 +01:00
Add UInt64 used for representing Merkle tree node locations
This commit is contained in:
@@ -6,6 +6,7 @@ use algebra::Field;
|
||||
use r1cs_core::{ConstraintSystem, SynthesisError};
|
||||
|
||||
pub mod boolean;
|
||||
pub mod uint64;
|
||||
pub mod uint32;
|
||||
pub mod uint8;
|
||||
|
||||
|
||||
@@ -167,9 +167,14 @@ impl UInt32 {
|
||||
// Make some arbitrary bounds for ourselves to avoid overflows
|
||||
// in the scalar field
|
||||
assert!(ConstraintF::Params::MODULUS_BITS >= 64);
|
||||
assert!(operands.len() >= 2); // Weird trivial cases that should never happen
|
||||
|
||||
assert!(operands.len() >= 1);
|
||||
assert!(operands.len() <= 10);
|
||||
|
||||
if operands.len() == 1 {
|
||||
return Ok(operands[0].clone());
|
||||
}
|
||||
|
||||
// Compute the maximum value of the sum so we allocate enough bits for
|
||||
// the result
|
||||
let mut max_value = (operands.len() as u64) * u64::from(u32::max_value());
|
||||
|
||||
549
r1cs-std/src/bits/uint64.rs
Normal file
549
r1cs-std/src/bits/uint64.rs
Normal file
@@ -0,0 +1,549 @@
|
||||
use algebra::{Field, FpParameters, PrimeField};
|
||||
|
||||
use r1cs_core::{ConstraintSystem, LinearCombination, SynthesisError};
|
||||
|
||||
use crate::{
|
||||
boolean::{AllocatedBit, Boolean},
|
||||
prelude::*,
|
||||
Assignment, Vec,
|
||||
};
|
||||
|
||||
/// Represents an interpretation of 64 `Boolean` objects as an
|
||||
/// unsigned integer.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct UInt64 {
|
||||
// Least significant bit_gadget first
|
||||
bits: Vec<Boolean>,
|
||||
value: Option<u64>,
|
||||
}
|
||||
|
||||
impl UInt64 {
|
||||
/// Construct a constant `UInt64` from a `u64`
|
||||
pub fn constant(value: u64) -> Self {
|
||||
let mut bits = Vec::with_capacity(64);
|
||||
|
||||
let mut tmp = value;
|
||||
for _ in 0..64 {
|
||||
if tmp & 1 == 1 {
|
||||
bits.push(Boolean::constant(true))
|
||||
} else {
|
||||
bits.push(Boolean::constant(false))
|
||||
}
|
||||
|
||||
tmp >>= 1;
|
||||
}
|
||||
|
||||
UInt64 {
|
||||
bits,
|
||||
value: Some(value),
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate a `UInt64` in the constraint system
|
||||
pub fn alloc<ConstraintF, CS>(mut cs: CS, value: Option<u64>) -> Result<Self, SynthesisError>
|
||||
where
|
||||
ConstraintF: Field,
|
||||
CS: ConstraintSystem<ConstraintF>,
|
||||
{
|
||||
let values = match value {
|
||||
Some(mut val) => {
|
||||
let mut v = Vec::with_capacity(64);
|
||||
|
||||
for _ in 0..64 {
|
||||
v.push(Some(val & 1 == 1));
|
||||
val >>= 1;
|
||||
}
|
||||
|
||||
v
|
||||
},
|
||||
None => vec![None; 64],
|
||||
};
|
||||
|
||||
let bits = values
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, v)| {
|
||||
Ok(Boolean::from(AllocatedBit::alloc(
|
||||
cs.ns(|| format!("allocated bit_gadget {}", i)),
|
||||
|| v.get(),
|
||||
)?))
|
||||
})
|
||||
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
||||
|
||||
Ok(UInt64 { bits, value })
|
||||
}
|
||||
|
||||
/// Turns this `UInt64` into its little-endian byte order representation.
|
||||
pub fn to_bits_le(&self) -> Vec<Boolean> {
|
||||
self.bits.clone()
|
||||
}
|
||||
|
||||
/// Converts a little-endian byte order representation of bits into a
|
||||
/// `UInt64`.
|
||||
pub fn from_bits_le(bits: &[Boolean]) -> Self {
|
||||
assert_eq!(bits.len(), 64);
|
||||
|
||||
let bits = bits.to_vec();
|
||||
|
||||
let mut value = Some(0u64);
|
||||
for b in bits.iter().rev() {
|
||||
value.as_mut().map(|v| *v <<= 1);
|
||||
|
||||
match b {
|
||||
&Boolean::Constant(b) => {
|
||||
if b {
|
||||
value.as_mut().map(|v| *v |= 1);
|
||||
}
|
||||
},
|
||||
&Boolean::Is(ref b) => match b.get_value() {
|
||||
Some(true) => {
|
||||
value.as_mut().map(|v| *v |= 1);
|
||||
},
|
||||
Some(false) => {},
|
||||
None => value = None,
|
||||
},
|
||||
&Boolean::Not(ref b) => match b.get_value() {
|
||||
Some(false) => {
|
||||
value.as_mut().map(|v| *v |= 1);
|
||||
},
|
||||
Some(true) => {},
|
||||
None => value = None,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
Self { value, bits }
|
||||
}
|
||||
|
||||
pub fn rotr(&self, by: usize) -> Self {
|
||||
let by = by % 64;
|
||||
|
||||
let new_bits = self
|
||||
.bits
|
||||
.iter()
|
||||
.skip(by)
|
||||
.chain(self.bits.iter())
|
||||
.take(64)
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
UInt64 {
|
||||
bits: new_bits,
|
||||
value: self.value.map(|v| v.rotate_right(by as u32)),
|
||||
}
|
||||
}
|
||||
|
||||
/// XOR this `UInt64` with another `UInt64`
|
||||
pub fn xor<ConstraintF, CS>(&self, mut cs: CS, other: &Self) -> Result<Self, SynthesisError>
|
||||
where
|
||||
ConstraintF: Field,
|
||||
CS: ConstraintSystem<ConstraintF>,
|
||||
{
|
||||
let new_value = match (self.value, other.value) {
|
||||
(Some(a), Some(b)) => Some(a ^ b),
|
||||
_ => None,
|
||||
};
|
||||
|
||||
let bits = self
|
||||
.bits
|
||||
.iter()
|
||||
.zip(other.bits.iter())
|
||||
.enumerate()
|
||||
.map(|(i, (a, b))| Boolean::xor(cs.ns(|| format!("xor of bit_gadget {}", i)), a, b))
|
||||
.collect::<Result<_, _>>()?;
|
||||
|
||||
Ok(UInt64 {
|
||||
bits,
|
||||
value: new_value,
|
||||
})
|
||||
}
|
||||
|
||||
/// Perform modular addition of several `UInt64` objects.
|
||||
pub fn addmany<ConstraintF, CS>(mut cs: CS, operands: &[Self]) -> Result<Self, SynthesisError>
|
||||
where
|
||||
ConstraintF: PrimeField,
|
||||
CS: ConstraintSystem<ConstraintF>,
|
||||
{
|
||||
// Make some arbitrary bounds for ourselves to avoid overflows
|
||||
// in the scalar field
|
||||
assert!(ConstraintF::Params::MODULUS_BITS >= 128);
|
||||
|
||||
assert!(operands.len() >= 1);
|
||||
assert!(operands.len() <= 10);
|
||||
|
||||
if operands.len() == 1 {
|
||||
return Ok(operands[0].clone());
|
||||
}
|
||||
|
||||
// Compute the maximum value of the sum so we allocate enough bits for
|
||||
// the result
|
||||
let mut max_value = (operands.len() as u128) * u128::from(u64::max_value());
|
||||
|
||||
// Keep track of the resulting value
|
||||
let mut result_value = Some(0u64 as u128);
|
||||
|
||||
// This is a linear combination that we will enforce to be "zero"
|
||||
let mut lc = LinearCombination::zero();
|
||||
|
||||
let mut all_constants = true;
|
||||
|
||||
// Iterate over the operands
|
||||
for op in operands {
|
||||
// Accumulate the value
|
||||
match op.value {
|
||||
Some(val) => {
|
||||
result_value.as_mut().map(|v| *v += u128::from(val));
|
||||
},
|
||||
None => {
|
||||
// If any of our operands have unknown value, we won't
|
||||
// know the value of the result
|
||||
result_value = None;
|
||||
},
|
||||
}
|
||||
|
||||
// Iterate over each bit_gadget of the operand and add the operand to
|
||||
// the linear combination
|
||||
let mut coeff = ConstraintF::one();
|
||||
for bit in &op.bits {
|
||||
match *bit {
|
||||
Boolean::Is(ref bit) => {
|
||||
all_constants = false;
|
||||
|
||||
// Add coeff * bit_gadget
|
||||
lc += (coeff, bit.get_variable());
|
||||
},
|
||||
Boolean::Not(ref bit) => {
|
||||
all_constants = false;
|
||||
|
||||
// Add coeff * (1 - bit_gadget) = coeff * ONE - coeff * bit_gadget
|
||||
lc = lc + (coeff, CS::one()) - (coeff, bit.get_variable());
|
||||
},
|
||||
Boolean::Constant(bit) => {
|
||||
if bit {
|
||||
lc += (coeff, CS::one());
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
coeff.double_in_place();
|
||||
}
|
||||
}
|
||||
|
||||
// The value of the actual result is modulo 2^64
|
||||
let modular_value = result_value.map(|v| v as u64);
|
||||
|
||||
if all_constants && modular_value.is_some() {
|
||||
// We can just return a constant, rather than
|
||||
// unpacking the result into allocated bits.
|
||||
|
||||
return Ok(UInt64::constant(modular_value.unwrap()));
|
||||
}
|
||||
|
||||
// Storage area for the resulting bits
|
||||
let mut result_bits = vec![];
|
||||
|
||||
// Allocate each bit_gadget of the result
|
||||
let mut coeff = ConstraintF::one();
|
||||
let mut i = 0;
|
||||
while max_value != 0 {
|
||||
// Allocate the bit_gadget
|
||||
let b = AllocatedBit::alloc(cs.ns(|| format!("result bit_gadget {}", i)), || {
|
||||
result_value.map(|v| (v >> i) & 1 == 1).get()
|
||||
})?;
|
||||
|
||||
// Subtract this bit_gadget from the linear combination to ensure the sums
|
||||
// balance out
|
||||
lc = lc - (coeff, b.get_variable());
|
||||
|
||||
result_bits.push(b.into());
|
||||
|
||||
max_value >>= 1;
|
||||
i += 1;
|
||||
coeff.double_in_place();
|
||||
}
|
||||
|
||||
// Enforce that the linear combination equals zero
|
||||
cs.enforce(|| "modular addition", |lc| lc, |lc| lc, |_| lc);
|
||||
|
||||
// Discard carry bits that we don't care about
|
||||
result_bits.truncate(64);
|
||||
|
||||
Ok(UInt64 {
|
||||
bits: result_bits,
|
||||
value: modular_value,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<ConstraintF: Field> ToBytesGadget<ConstraintF> for UInt64 {
|
||||
#[inline]
|
||||
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
|
||||
&self,
|
||||
_cs: CS,
|
||||
) -> Result<Vec<UInt8>, SynthesisError> {
|
||||
let value_chunks = match self.value.map(|val| {
|
||||
use algebra::bytes::ToBytes;
|
||||
let mut bytes = [0u8; 8];
|
||||
val.write(bytes.as_mut()).unwrap();
|
||||
bytes
|
||||
}) {
|
||||
Some(chunks) => [
|
||||
Some(chunks[0]),
|
||||
Some(chunks[1]),
|
||||
Some(chunks[2]),
|
||||
Some(chunks[3]),
|
||||
Some(chunks[4]),
|
||||
Some(chunks[5]),
|
||||
Some(chunks[6]),
|
||||
Some(chunks[7]),
|
||||
],
|
||||
None => [None, None, None, None, None, None, None, None],
|
||||
};
|
||||
let mut bytes = Vec::new();
|
||||
for (i, chunk8) in self.to_bits_le().chunks(8).enumerate() {
|
||||
let byte = UInt8 {
|
||||
bits: chunk8.to_vec(),
|
||||
value: value_chunks[i],
|
||||
};
|
||||
bytes.push(byte);
|
||||
}
|
||||
|
||||
Ok(bytes)
|
||||
}
|
||||
|
||||
fn to_bytes_strict<CS: ConstraintSystem<ConstraintF>>(
|
||||
&self,
|
||||
cs: CS,
|
||||
) -> Result<Vec<UInt8>, SynthesisError> {
|
||||
self.to_bytes(cs)
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for UInt64 {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.value.is_some() && other.value.is_some() && self.value == other.value
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for UInt64 {}
|
||||
|
||||
impl<ConstraintF: Field> ConditionalEqGadget<ConstraintF> for UInt64 {
|
||||
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self,
|
||||
condition: &Boolean,
|
||||
) -> Result<(), SynthesisError> {
|
||||
for (i, (a, b)) in self.bits.iter().zip(&other.bits).enumerate() {
|
||||
a.conditional_enforce_equal(
|
||||
&mut cs.ns(|| format!("uint64_equal_{}", i)),
|
||||
b,
|
||||
condition,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn cost() -> usize {
|
||||
64 * <Boolean as ConditionalEqGadget<ConstraintF>>::cost()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::UInt64;
|
||||
use crate::{bits::boolean::Boolean, test_constraint_system::TestConstraintSystem, Vec};
|
||||
use algebra::{bls12_381::Fr, One, Zero};
|
||||
use r1cs_core::ConstraintSystem;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use rand_xorshift::XorShiftRng;
|
||||
|
||||
#[test]
|
||||
fn test_uint64_from_bits() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let v = (0..64)
|
||||
.map(|_| Boolean::constant(rng.gen()))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let b = UInt64::from_bits_le(&v);
|
||||
|
||||
for (i, bit_gadget) in b.bits.iter().enumerate() {
|
||||
match bit_gadget {
|
||||
&Boolean::Constant(bit_gadget) => {
|
||||
assert!(bit_gadget == ((b.value.unwrap() >> i) & 1 == 1));
|
||||
},
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
let expected_to_be_same = b.to_bits_le();
|
||||
|
||||
for x in v.iter().zip(expected_to_be_same.iter()) {
|
||||
match x {
|
||||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
||||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint64_xor() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Fr>::new();
|
||||
|
||||
let a: u64 = rng.gen();
|
||||
let b: u64 = rng.gen();
|
||||
let c: u64 = rng.gen();
|
||||
|
||||
let mut expected = a ^ b ^ c;
|
||||
|
||||
let a_bit = UInt64::alloc(cs.ns(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt64::constant(b);
|
||||
let c_bit = UInt64::alloc(cs.ns(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = a_bit.xor(cs.ns(|| "first xor"), &b_bit).unwrap();
|
||||
let r = r.xor(cs.ns(|| "second xor"), &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
},
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint64_addmany_constants() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Fr>::new();
|
||||
|
||||
let a: u64 = rng.gen();
|
||||
let b: u64 = rng.gen();
|
||||
let c: u64 = rng.gen();
|
||||
|
||||
let a_bit = UInt64::constant(a);
|
||||
let b_bit = UInt64::constant(b);
|
||||
let c_bit = UInt64::constant(c);
|
||||
|
||||
let mut expected = a.wrapping_add(b).wrapping_add(c);
|
||||
|
||||
let r = UInt64::addmany(cs.ns(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap();
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(_) => panic!(),
|
||||
&Boolean::Not(_) => panic!(),
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
},
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint64_addmany() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Fr>::new();
|
||||
|
||||
let a: u64 = rng.gen();
|
||||
let b: u64 = rng.gen();
|
||||
let c: u64 = rng.gen();
|
||||
let d: u64 = rng.gen();
|
||||
|
||||
let mut expected = (a ^ b).wrapping_add(c).wrapping_add(d);
|
||||
|
||||
let a_bit = UInt64::alloc(cs.ns(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt64::constant(b);
|
||||
let c_bit = UInt64::constant(c);
|
||||
let d_bit = UInt64::alloc(cs.ns(|| "d_bit"), Some(d)).unwrap();
|
||||
|
||||
let r = a_bit.xor(cs.ns(|| "xor"), &b_bit).unwrap();
|
||||
let r = UInt64::addmany(cs.ns(|| "addition"), &[r, c_bit, d_bit]).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(_) => unreachable!(),
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
|
||||
// Flip a bit_gadget and see if the addition constraint still works
|
||||
if cs.get("addition/result bit_gadget 0/boolean").is_zero() {
|
||||
cs.set("addition/result bit_gadget 0/boolean", Fr::one());
|
||||
} else {
|
||||
cs.set("addition/result bit_gadget 0/boolean", Fr::zero());
|
||||
}
|
||||
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint64_rotr() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
let mut num = rng.gen();
|
||||
|
||||
let a = UInt64::constant(num);
|
||||
|
||||
for i in 0..64 {
|
||||
let b = a.rotr(i);
|
||||
|
||||
assert!(b.value.unwrap() == num);
|
||||
|
||||
let mut tmp = num;
|
||||
for b in &b.bits {
|
||||
match b {
|
||||
&Boolean::Constant(b) => {
|
||||
assert_eq!(b, tmp & 1 == 1);
|
||||
},
|
||||
_ => unreachable!(),
|
||||
}
|
||||
|
||||
tmp >>= 1;
|
||||
}
|
||||
|
||||
num = num.rotate_right(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user