use crate::fields::{fp2::Fp2Var, fp6_3over2::Fp6Var, quadratic_extension::*, FieldVar};
use algebra::fields::{fp12_2over3over2::*, fp6_3over2::Fp6Parameters, Field, QuadExtParameters};
use r1cs_core::SynthesisError;
/// A degree-12 extension field constructed as the tower of a
/// quadratic extension over a cubic extension over a quadratic extension field.
/// This is the R1CS equivalent of `algebra_core::fp12_2over3over2::Fp12
`.
pub type Fp12Var
= QuadExtVar::Fp6Params>, Fp12ParamsWrapper>;
type Fp2Params
= <
::Fp6Params as Fp6Parameters>::Fp2Params;
impl QuadExtVarParams> for Fp12ParamsWrapper {
fn mul_base_field_var_by_frob_coeff(fe: &mut Fp6Var, power: usize) {
fe.c0 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
fe.c1 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
fe.c2 *= Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
}
}
impl Fp12Var {
/// Multiplies by a sparse element of the form `(c0 = (c0, c1, 0), c1 = (0, d1, 0))`.
#[inline]
pub fn mul_by_014(
&self,
c0: &Fp2Var>,
c1: &Fp2Var>,
d1: &Fp2Var>,
) -> Result {
let v0 = self.c0.mul_by_c0_c1_0(&c0, &c1)?;
let v1 = self.c1.mul_by_0_c1_0(&d1)?;
let new_c0 = Self::mul_base_field_by_nonresidue(&v1)? + &v0;
let new_c1 = (&self.c0 + &self.c1).mul_by_c0_c1_0(&c0, &(c1 + d1))? - &v0 - &v1;
Ok(Self::new(new_c0, new_c1))
}
/// Multiplies by a sparse element of the form `(c0 = (c0, 0, 0), c1 = (d0, d1, 0))`.
#[inline]
pub fn mul_by_034(
&self,
c0: &Fp2Var>,
d0: &Fp2Var>,
d1: &Fp2Var>,
) -> Result {
let a0 = &self.c0.c0 * c0;
let a1 = &self.c0.c1 * c0;
let a2 = &self.c0.c2 * c0;
let a = Fp6Var::new(a0, a1, a2);
let b = self.c1.mul_by_c0_c1_0(&d0, &d1)?;
let c0 = c0 + d0;
let c1 = d1;
let e = (&self.c0 + &self.c1).mul_by_c0_c1_0(&c0, &c1)?;
let new_c1 = e - (&a + &b);
let new_c0 = Self::mul_base_field_by_nonresidue(&b)? + &a;
Ok(Self::new(new_c0, new_c1))
}
/// Squares `self` when `self` is in the cyclotomic subgroup.
pub fn cyclotomic_square(&self) -> Result {
if characteristic_square_mod_6_is_one(Fp12::::characteristic()) {
let fp2_nr = ::NONRESIDUE;
let z0 = &self.c0.c0;
let z4 = &self.c0.c1;
let z3 = &self.c0.c2;
let z2 = &self.c1.c0;
let z1 = &self.c1.c1;
let z5 = &self.c1.c2;
// t0 + t1*y = (z0 + z1*y)^2 = a^2
let tmp = z0 * z1;
let t0 = {
let tmp1 = z0 + z1;
let tmp2 = z1 * fp2_nr + z0;
let tmp4 = &tmp * fp2_nr + &tmp;
tmp1 * tmp2 - tmp4
};
let t1 = tmp.double()?;
// t2 + t3*y = (z2 + z3*y)^2 = b^2
let tmp = z2 * z3;
let t2 = {
// (z2 + &z3) * &(z2 + &(fp2_nr * &z3)) - &tmp - &(tmp * &fp2_nr);
let tmp1 = z2 + z3;
let tmp2 = z3 * fp2_nr + z2;
let tmp4 = &tmp * fp2_nr + &tmp;
tmp1 * tmp2 - tmp4
};
let t3 = tmp.double()?;
// t4 + t5*y = (z4 + z5*y)^2 = c^2
let tmp = z4 * z5;
let t4 = {
// (z4 + &z5) * &(z4 + &(fp2_nr * &z5)) - &tmp - &(tmp * &fp2_nr);
let tmp1 = z4 + z5;
let tmp2 = (z5 * fp2_nr) + z4;
let tmp4 = (&tmp * fp2_nr) + &tmp;
(tmp1 * tmp2) - tmp4
};
let t5 = tmp.double()?;
// for A
// z0 = 3 * t0 - 2 * z0
let c0_c0 = (&t0 - z0).double()? + &t0;
// z1 = 3 * t1 + 2 * z1
let c1_c1 = (&t1 + z1).double()? + &t1;
// for B
// z2 = 3 * (xi * t5) + 2 * z2
let c1_c0 = {
let tmp = &t5 * fp2_nr;
(z2 + &tmp).double()? + &tmp
};
// z3 = 3 * t4 - 2 * z3
let c0_c2 = (&t4 - z3).double()? + &t4;
// for C
// z4 = 3 * t2 - 2 * z4
let c0_c1 = (&t2 - z4).double()? + &t2;
// z5 = 3 * t3 + 2 * z5
let c1_c2 = (&t3 + z5).double()? + &t3;
let c0 = Fp6Var::new(c0_c0, c0_c1, c0_c2);
let c1 = Fp6Var::new(c1_c0, c1_c1, c1_c2);
Ok(Self::new(c0, c1))
} else {
self.square()
}
}
/// Like `Self::cyclotomic_exp`, but additionally uses cyclotomic squaring.
pub fn optimized_cyclotomic_exp(
&self,
exponent: impl AsRef<[u64]>,
) -> Result {
use algebra::biginteger::arithmetic::find_wnaf;
let mut res = Self::one();
let self_inverse = self.unitary_inverse()?;
let mut found_nonzero = false;
let naf = find_wnaf(exponent.as_ref());
for &value in naf.iter().rev() {
if found_nonzero {
res = res.cyclotomic_square()?;
}
if value != 0 {
found_nonzero = true;
if value > 0 {
res *= self;
} else {
res *= &self_inverse;
}
}
}
Ok(res)
}
}