use crate::{prelude::*, Vec}; use ark_ff::{Field, PrimeField}; use ark_relations::r1cs::SynthesisError; /// Specifies how to generate constraints that check for equality for two /// variables of type `Self`. pub trait EqGadget { /// Output a `Boolean` value representing whether `self.value() == /// other.value()`. fn is_eq(&self, other: &Self) -> Result, SynthesisError>; /// Output a `Boolean` value representing whether `self.value() != /// other.value()`. /// /// By default, this is defined as `self.is_eq(other)?.not()`. fn is_neq(&self, other: &Self) -> Result, SynthesisError> { Ok(!self.is_eq(other)?) } /// If `should_enforce == true`, enforce that `self` and `other` are equal; /// else, enforce a vacuously true statement. /// /// A safe default implementation is provided that generates the following /// constraints: `self.is_eq(other)?.conditional_enforce_equal(&Boolean: /// :TRUE, should_enforce)`. /// /// More efficient specialized implementation may be possible; implementors /// are encouraged to carefully analyze the efficiency and safety of these. #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_equal( &self, other: &Self, should_enforce: &Boolean, ) -> Result<(), SynthesisError> { self.is_eq(&other)? .conditional_enforce_equal(&Boolean::TRUE, should_enforce) } /// Enforce that `self` and `other` are equal. /// /// A safe default implementation is provided that generates the following /// constraints: `self.conditional_enforce_equal(other, /// &Boolean::TRUE)`. /// /// More efficient specialized implementation may be possible; implementors /// are encouraged to carefully analyze the efficiency and safety of these. #[tracing::instrument(target = "r1cs", skip(self, other))] fn enforce_equal(&self, other: &Self) -> Result<(), SynthesisError> { self.conditional_enforce_equal(other, &Boolean::TRUE) } /// If `should_enforce == true`, enforce that `self` and `other` are *not* /// equal; else, enforce a vacuously true statement. /// /// A safe default implementation is provided that generates the following /// constraints: `self.is_neq(other)?.conditional_enforce_equal(& /// Boolean::TRUE, should_enforce)`. /// /// More efficient specialized implementation may be possible; implementors /// are encouraged to carefully analyze the efficiency and safety of these. #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_not_equal( &self, other: &Self, should_enforce: &Boolean, ) -> Result<(), SynthesisError> { self.is_neq(&other)? .conditional_enforce_equal(&Boolean::TRUE, should_enforce) } /// Enforce that `self` and `other` are *not* equal. /// /// A safe default implementation is provided that generates the following /// constraints: `self.conditional_enforce_not_equal(other, /// &Boolean::TRUE)`. /// /// More efficient specialized implementation may be possible; implementors /// are encouraged to carefully analyze the efficiency and safety of these. #[tracing::instrument(target = "r1cs", skip(self, other))] fn enforce_not_equal(&self, other: &Self) -> Result<(), SynthesisError> { self.conditional_enforce_not_equal(other, &Boolean::TRUE) } } impl + R1CSVar, F: PrimeField> EqGadget for [T] { #[tracing::instrument(target = "r1cs", skip(self, other))] fn is_eq(&self, other: &Self) -> Result, SynthesisError> { assert_eq!(self.len(), other.len()); if self.is_empty() & other.is_empty() { Ok(Boolean::TRUE) } else { let mut results = Vec::with_capacity(self.len()); for (a, b) in self.iter().zip(other) { results.push(a.is_eq(b)?); } Boolean::kary_and(&results) } } #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_equal( &self, other: &Self, condition: &Boolean, ) -> Result<(), SynthesisError> { assert_eq!(self.len(), other.len()); for (a, b) in self.iter().zip(other) { a.conditional_enforce_equal(b, condition)?; } Ok(()) } #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_not_equal( &self, other: &Self, should_enforce: &Boolean, ) -> Result<(), SynthesisError> { assert_eq!(self.len(), other.len()); let some_are_different = self.is_neq(other)?; if [&some_are_different, should_enforce].is_constant() { assert!(some_are_different.value()?); Ok(()) } else { let cs = [&some_are_different, should_enforce].cs(); if cs.should_construct_matrices() { cs.enforce_constraint( some_are_different.lc(), should_enforce.lc(), should_enforce.lc(), )?; } else { cs.borrow_mut().unwrap().num_constraints += 1; } Ok(()) } } } /// This blanket implementation just forwards to the impl on [`[T]`]. impl + R1CSVar, F: PrimeField> EqGadget for Vec { #[tracing::instrument(target = "r1cs", skip(self, other))] fn is_eq(&self, other: &Self) -> Result, SynthesisError> { self.as_slice().is_eq(other.as_slice()) } #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_equal( &self, other: &Self, condition: &Boolean, ) -> Result<(), SynthesisError> { self.as_slice() .conditional_enforce_equal(other.as_slice(), condition) } #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_not_equal( &self, other: &Self, should_enforce: &Boolean, ) -> Result<(), SynthesisError> { self.as_slice() .conditional_enforce_not_equal(other.as_slice(), should_enforce) } } /// Dummy impl for `()`. impl EqGadget for () { /// Output a `Boolean` value representing whether `self.value() == /// other.value()`. #[inline] fn is_eq(&self, _other: &Self) -> Result, SynthesisError> { Ok(Boolean::TRUE) } /// If `should_enforce == true`, enforce that `self` and `other` are equal; /// else, enforce a vacuously true statement. /// /// This is a no-op as `self.is_eq(other)?` is always `true`. #[tracing::instrument(target = "r1cs", skip(self, _other))] fn conditional_enforce_equal( &self, _other: &Self, _should_enforce: &Boolean, ) -> Result<(), SynthesisError> { Ok(()) } /// Enforce that `self` and `other` are equal. /// /// This does not generate any constraints as `self.is_eq(other)?` is always /// `true`. #[tracing::instrument(target = "r1cs", skip(self, _other))] fn enforce_equal(&self, _other: &Self) -> Result<(), SynthesisError> { Ok(()) } } /// This blanket implementation just forwards to the impl on [`[T]`]. impl + R1CSVar, F: PrimeField, const N: usize> EqGadget for [T; N] { #[tracing::instrument(target = "r1cs", skip(self, other))] fn is_eq(&self, other: &Self) -> Result, SynthesisError> { self.as_slice().is_eq(other.as_slice()) } #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_equal( &self, other: &Self, condition: &Boolean, ) -> Result<(), SynthesisError> { self.as_slice() .conditional_enforce_equal(other.as_slice(), condition) } #[tracing::instrument(target = "r1cs", skip(self, other))] fn conditional_enforce_not_equal( &self, other: &Self, should_enforce: &Boolean, ) -> Result<(), SynthesisError> { self.as_slice() .conditional_enforce_not_equal(other.as_slice(), should_enforce) } }