use crate::prelude::*;
|
|
use ark_ff::Field;
|
|
use ark_relations::r1cs::{Namespace, SynthesisError};
|
|
use core::ops::{Add, AddAssign, Sub, SubAssign};
|
|
|
|
use ark_ec::CurveGroup;
|
|
use core::{borrow::Borrow, fmt::Debug};
|
|
|
|
/// This module contains implementations of arithmetic for various curve models.
|
|
pub mod curves;
|
|
|
|
pub use self::curves::short_weierstrass::{bls12, mnt4, mnt6};
|
|
|
|
/// A hack used to work around the lack of implied bounds.
|
|
pub trait GroupOpsBounds<'a, F, T: 'a>:
|
|
Sized
|
|
+ Add<&'a T, Output = T>
|
|
+ Sub<&'a T, Output = T>
|
|
+ Add<T, Output = T>
|
|
+ Sub<T, Output = T>
|
|
+ Add<F, Output = T>
|
|
+ Sub<F, Output = T>
|
|
{
|
|
}
|
|
|
|
/// A variable that represents a curve point for
|
|
/// the curve `C`.
|
|
pub trait CurveVar<C: CurveGroup, ConstraintF: Field>:
|
|
'static
|
|
+ Sized
|
|
+ Clone
|
|
+ Debug
|
|
+ R1CSVar<ConstraintF, Value = C>
|
|
+ ToBitsGadget<ConstraintF>
|
|
+ ToBytesGadget<ConstraintF>
|
|
+ EqGadget<ConstraintF>
|
|
+ CondSelectGadget<ConstraintF>
|
|
+ AllocVar<C, ConstraintF>
|
|
+ AllocVar<C::Affine, ConstraintF>
|
|
+ for<'a> GroupOpsBounds<'a, C, Self>
|
|
+ for<'a> AddAssign<&'a Self>
|
|
+ for<'a> SubAssign<&'a Self>
|
|
+ AddAssign<C>
|
|
+ SubAssign<C>
|
|
+ AddAssign<Self>
|
|
+ SubAssign<Self>
|
|
{
|
|
/// Returns the constant `F::zero()`. This is the identity
|
|
/// of the group.
|
|
fn zero() -> Self;
|
|
|
|
/// Returns a `Boolean` representing whether `self == Self::zero()`.
|
|
#[tracing::instrument(target = "r1cs")]
|
|
fn is_zero(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
|
|
self.is_eq(&Self::zero())
|
|
}
|
|
|
|
/// Returns a constant with value `v`.
|
|
///
|
|
/// This *should not* allocate any variables.
|
|
fn constant(other: C) -> Self;
|
|
|
|
/// Allocates a variable in the subgroup without checking if it's in the
|
|
/// prime-order subgroup.
|
|
fn new_variable_omit_prime_order_check(
|
|
cs: impl Into<Namespace<ConstraintF>>,
|
|
f: impl FnOnce() -> Result<C, SynthesisError>,
|
|
mode: AllocationMode,
|
|
) -> Result<Self, SynthesisError>;
|
|
|
|
/// Enforce that `self` is in the prime-order subgroup.
|
|
fn enforce_prime_order(&self) -> Result<(), SynthesisError>;
|
|
|
|
/// Computes `self + self`.
|
|
#[tracing::instrument(target = "r1cs")]
|
|
fn double(&self) -> Result<Self, SynthesisError> {
|
|
let mut result = self.clone();
|
|
result.double_in_place()?;
|
|
Ok(result)
|
|
}
|
|
|
|
/// Sets `self = self + self`.
|
|
fn double_in_place(&mut self) -> Result<(), SynthesisError>;
|
|
|
|
/// Coputes `-self`.
|
|
fn negate(&self) -> Result<Self, SynthesisError>;
|
|
|
|
/// Computes `bits * self`, where `bits` is a little-endian
|
|
/// `Boolean` representation of a scalar.
|
|
#[tracing::instrument(target = "r1cs", skip(bits))]
|
|
fn scalar_mul_le<'a>(
|
|
&self,
|
|
bits: impl Iterator<Item = &'a Boolean<ConstraintF>>,
|
|
) -> Result<Self, SynthesisError> {
|
|
// TODO: in the constant case we should call precomputed_scalar_mul_le,
|
|
// but rn there's a bug when doing this with TE curves.
|
|
|
|
// Computes the standard little-endian double-and-add algorithm
|
|
// (Algorithm 3.26, Guide to Elliptic Curve Cryptography)
|
|
let mut res = Self::zero();
|
|
let mut multiple = self.clone();
|
|
for bit in bits {
|
|
let tmp = res.clone() + &multiple;
|
|
res = bit.select(&tmp, &res)?;
|
|
multiple.double_in_place()?;
|
|
}
|
|
Ok(res)
|
|
}
|
|
|
|
/// Computes `bits * self`, where `bits` is a little-endian
|
|
/// `Boolean` representation of a scalar.
|
|
///
|
|
/// [Joye07](<https://www.iacr.org/archive/ches2007/47270135/47270135.pdf>), Alg.1.
|
|
#[tracing::instrument(target = "r1cs", skip(bits))]
|
|
fn scalar_mul_joye_le<'a>(
|
|
&self,
|
|
bits: impl Iterator<Item = &'a Boolean<ConstraintF>>,
|
|
) -> Result<Self, SynthesisError> {
|
|
// TODO: in the constant case we should call precomputed_scalar_mul_le,
|
|
// but rn there's a bug when doing this with TE curves.
|
|
|
|
// Computes the standard little-endian double-and-add algorithm
|
|
// (Algorithm 3.26, Guide to Elliptic Curve Cryptography)
|
|
let mut res = Self::zero();
|
|
let mut multiple = self.clone();
|
|
for bit in bits {
|
|
let tmp = res.clone() + &multiple;
|
|
res = bit.select(&tmp, &res)?;
|
|
multiple.double_in_place()?;
|
|
}
|
|
Ok(res)
|
|
}
|
|
|
|
/// Computes a `I1 * self + I2 * p` in place, where `I1` and `I2` are `Boolean` *big-endian*
|
|
/// representation of the scalars.
|
|
#[tracing::instrument(target = "r1cs", skip(bits1, bits2))]
|
|
fn joint_scalar_mul_be<'a>(
|
|
&self,
|
|
p: &Self,
|
|
bits1: impl Iterator<Item = &'a Boolean<ConstraintF>>,
|
|
bits2: impl Iterator<Item = &'a Boolean<ConstraintF>>,
|
|
) -> Result<Self, SynthesisError> {
|
|
let res1 = self.scalar_mul_le(bits1)?;
|
|
let res2 = p.scalar_mul_le(bits2)?;
|
|
Ok(res1+res2)
|
|
}
|
|
|
|
/// Computes a `I * self` in place, where `I` is a `Boolean` *little-endian*
|
|
/// representation of the scalar.
|
|
///
|
|
/// The bases are precomputed power-of-two multiples of a single
|
|
/// base.
|
|
#[tracing::instrument(target = "r1cs", skip(scalar_bits_with_bases))]
|
|
fn precomputed_base_scalar_mul_le<'a, I, B>(
|
|
&mut self,
|
|
scalar_bits_with_bases: I,
|
|
) -> Result<(), SynthesisError>
|
|
where
|
|
I: Iterator<Item = (B, &'a C)>,
|
|
B: Borrow<Boolean<ConstraintF>>,
|
|
C: 'a,
|
|
{
|
|
// Computes the standard little-endian double-and-add algorithm
|
|
// (Algorithm 3.26, Guide to Elliptic Curve Cryptography)
|
|
|
|
// Let `original` be the initial value of `self`.
|
|
let mut result = Self::zero();
|
|
for (bit, base) in scalar_bits_with_bases {
|
|
// Compute `self + 2^i * original`
|
|
let self_plus_base = result.clone() + *base;
|
|
// If `bit == 1`, set self = self + 2^i * original;
|
|
// else, set self = self;
|
|
result = bit.borrow().select(&self_plus_base, &result)?;
|
|
}
|
|
*self += result;
|
|
Ok(())
|
|
}
|
|
|
|
/// Computes `Σⱼ(scalarⱼ * baseⱼ)` for all j,
|
|
/// where `scalarⱼ` is a `Boolean` *little-endian*
|
|
/// representation of the j-th scalar.
|
|
#[tracing::instrument(target = "r1cs", skip(bases, scalars))]
|
|
fn precomputed_base_multiscalar_mul_le<'a, T, I, B>(
|
|
bases: &[B],
|
|
scalars: I,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
T: 'a + ToBitsGadget<ConstraintF> + ?Sized,
|
|
I: Iterator<Item = &'a T>,
|
|
B: Borrow<[C]>,
|
|
{
|
|
let mut result = Self::zero();
|
|
// Compute Σᵢ(bitᵢ * baseᵢ) for all i.
|
|
for (bits, bases) in scalars.zip(bases) {
|
|
let bases = bases.borrow();
|
|
let bits = bits.to_bits_le()?;
|
|
result.precomputed_base_scalar_mul_le(bits.iter().zip(bases))?;
|
|
}
|
|
Ok(result)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test_sw_arithmetic {
|
|
use crate::{
|
|
alloc::AllocVar,
|
|
eq::EqGadget,
|
|
fields::{fp::FpVar, nonnative::NonNativeFieldVar},
|
|
groups::{curves::short_weierstrass::ProjectiveVar, CurveVar},
|
|
ToBitsGadget,
|
|
};
|
|
use ark_ec::{
|
|
short_weierstrass::{Projective, SWCurveConfig},
|
|
CurveGroup,
|
|
};
|
|
use ark_ff::PrimeField;
|
|
use ark_relations::r1cs::{ConstraintSystem, Result};
|
|
use ark_std::UniformRand;
|
|
|
|
fn point_scalar_mul_joye_satisfied<G>() -> Result<bool>
|
|
where
|
|
G: CurveGroup,
|
|
G::BaseField: PrimeField,
|
|
G::Config: SWCurveConfig,
|
|
{
|
|
let mut rng = ark_std::test_rng();
|
|
|
|
let cs = ConstraintSystem::new_ref();
|
|
let point_in = Projective::<G::Config>::rand(&mut rng);
|
|
let scalar = G::ScalarField::rand(&mut rng);
|
|
let point_out = point_in * scalar;
|
|
|
|
let point_in =
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_witness(cs.clone(), || {
|
|
Ok(point_in)
|
|
})?;
|
|
let point_out =
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_input(cs.clone(), || {
|
|
Ok(point_out)
|
|
})?;
|
|
let scalar = NonNativeFieldVar::new_input(cs.clone(), || Ok(scalar))?;
|
|
|
|
let mul = point_in.scalar_mul_joye_le(scalar.to_bits_le().unwrap().iter())?;
|
|
|
|
point_out.enforce_equal(&mul)?;
|
|
|
|
println!(
|
|
"#r1cs for scalar_mul_joye_le: {}",
|
|
cs.num_constraints()
|
|
);
|
|
|
|
|
|
cs.is_satisfied()
|
|
}
|
|
|
|
fn point_joint_scalar_mul_satisfied<G>() -> Result<bool>
|
|
where
|
|
G: CurveGroup,
|
|
G::BaseField: PrimeField,
|
|
G::Config: SWCurveConfig,
|
|
{
|
|
let mut rng = ark_std::test_rng();
|
|
|
|
let cs = ConstraintSystem::new_ref();
|
|
let point_in1 = Projective::<G::Config>::rand(&mut rng);
|
|
let point_in2 = Projective::<G::Config>::rand(&mut rng);
|
|
let scalar1 = G::ScalarField::rand(&mut rng);
|
|
let scalar2 = G::ScalarField::rand(&mut rng);
|
|
let point_out = point_in1 * scalar1 + point_in2 * scalar2;
|
|
|
|
let point_in1 =
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_witness(cs.clone(), || {
|
|
Ok(point_in1)
|
|
})?;
|
|
let point_in2 =
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_witness(cs.clone(), || {
|
|
Ok(point_in2)
|
|
})?;
|
|
let point_out =
|
|
ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_input(cs.clone(), || {
|
|
Ok(point_out)
|
|
})?;
|
|
let scalar1 = NonNativeFieldVar::new_input(cs.clone(), || Ok(scalar1))?;
|
|
let scalar2 = NonNativeFieldVar::new_input(cs.clone(), || Ok(scalar2))?;
|
|
|
|
let res = point_in1.joint_scalar_mul_be(&point_in2, scalar1.to_bits_le().unwrap().iter(), scalar2.to_bits_le().unwrap().iter())?;
|
|
|
|
point_out.enforce_equal(&res)?;
|
|
|
|
println!(
|
|
"#r1cs for joint_scalar_mul: {}",
|
|
cs.num_constraints()
|
|
);
|
|
|
|
|
|
cs.is_satisfied()
|
|
}
|
|
|
|
#[test]
|
|
fn test_point_scalar_mul() {
|
|
assert!(point_scalar_mul_joye_satisfied::<ark_bn254::G1Projective>().unwrap());
|
|
}
|
|
#[test]
|
|
fn test_point_joint_scalar_mul() {
|
|
assert!(point_joint_scalar_mul_satisfied::<ark_bn254::G1Projective>().unwrap());
|
|
}
|
|
|
|
}
|