You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

162 lines
4.9 KiB

use r1cs_core::SynthesisError;
use super::PairingVar as PG;
use crate::{
fields::{fp::FpVar, fp12::Fp12Var, fp2::Fp2Var, FieldVar},
groups::bls12::{G1AffineVar, G1PreparedVar, G1Var, G2PreparedVar, G2Var},
};
use algebra::{
curves::bls12::{Bls12, Bls12Parameters, TwistType},
fields::BitIterator,
};
use core::marker::PhantomData;
pub struct PairingVar<P: Bls12Parameters>(PhantomData<P>);
type Fp2V<P> = Fp2Var<<P as Bls12Parameters>::Fp2Params>;
impl<P: Bls12Parameters> PairingVar<P> {
// Evaluate the line function at point p.
fn ell(
f: &mut Fp12Var<P::Fp12Params>,
coeffs: &(Fp2V<P>, Fp2V<P>),
p: &G1AffineVar<P>,
) -> Result<(), SynthesisError> {
let zero = FpVar::<P::Fp>::zero();
match P::TWIST_TYPE {
TwistType::M => {
let c0 = coeffs.0.clone();
let mut c1 = coeffs.1.clone();
let c2 = Fp2V::<P>::new(p.y.clone(), zero);
c1.c0 = c1.c0 * &p.x;
c1.c1 = c1.c1 * &p.x;
*f = f.mul_by_014(&c0, &c1, &c2)?;
Ok(())
}
TwistType::D => {
let c0 = Fp2V::<P>::new(p.y.clone(), zero);
let mut c1 = coeffs.0.clone();
let c2 = coeffs.1.clone();
c1.c0 = c1.c0 * &p.x;
c1.c1 = c1.c1 * &p.x;
*f = f.mul_by_034(&c0, &c1, &c2)?;
Ok(())
}
}
}
fn exp_by_x(f: &Fp12Var<P::Fp12Params>) -> Result<Fp12Var<P::Fp12Params>, SynthesisError> {
let mut result = f.optimized_cyclotomic_exp(P::X)?;
if P::X_IS_NEGATIVE {
result = result.unitary_inverse()?;
}
Ok(result)
}
}
impl<P: Bls12Parameters> PG<Bls12<P>, P::Fp> for PairingVar<P> {
type G1Var = G1Var<P>;
type G2Var = G2Var<P>;
type G1PreparedVar = G1PreparedVar<P>;
type G2PreparedVar = G2PreparedVar<P>;
type GTVar = Fp12Var<P::Fp12Params>;
fn miller_loop(
ps: &[Self::G1PreparedVar],
qs: &[Self::G2PreparedVar],
) -> Result<Self::GTVar, SynthesisError> {
let mut pairs = vec![];
for (p, q) in ps.iter().zip(qs.iter()) {
pairs.push((p, q.ell_coeffs.iter()));
}
let mut f = Self::GTVar::one();
for i in BitIterator::new(P::X).skip(1) {
f.square_in_place()?;
for &mut (p, ref mut coeffs) in pairs.iter_mut() {
Self::ell(&mut f, coeffs.next().unwrap(), &p.0)?;
}
if i {
for &mut (p, ref mut coeffs) in pairs.iter_mut() {
Self::ell(&mut f, &coeffs.next().unwrap(), &p.0)?;
}
}
}
if P::X_IS_NEGATIVE {
f = f.unitary_inverse()?;
}
Ok(f)
}
fn final_exponentiation(f: &Self::GTVar) -> Result<Self::GTVar, SynthesisError> {
// Computing the final exponentation following
// https://eprint.iacr.org/2016/130.pdf.
// We don't use their "faster" formula because it is difficult to make
// it work for curves with odd `P::X`.
// Hence we implement the slower algorithm from Table 1 below.
let f1 = f.frobenius_map(6)?;
f.inverse().and_then(|mut f2| {
// f2 = f^(-1);
// r = f^(p^6 - 1)
let mut r = f1;
r *= &f2;
// f2 = f^(p^6 - 1)
f2 = r.clone();
// r = f^((p^6 - 1)(p^2))
r.frobenius_map_in_place(2)?;
// r = f^((p^6 - 1)(p^2) + (p^6 - 1))
// r = f^((p^6 - 1)(p^2 + 1))
r *= &f2;
// Hard part of the final exponentation is below:
// From https://eprint.iacr.org/2016/130.pdf, Table 1
let mut y0 = r.cyclotomic_square()?;
y0 = y0.unitary_inverse()?;
let mut y5 = Self::exp_by_x(&r)?;
let mut y1 = y5.cyclotomic_square()?;
let mut y3 = y0 * &y5;
y0 = Self::exp_by_x(&y3)?;
let y2 = Self::exp_by_x(&y0)?;
let mut y4 = Self::exp_by_x(&y2)?;
y4 *= &y1;
y1 = Self::exp_by_x(&y4)?;
y3 = y3.unitary_inverse()?;
y1 *= &y3;
y1 *= &r;
y3 = r.clone();
y3 = y3.unitary_inverse()?;
y0 *= &r;
y0.frobenius_map_in_place(3)?;
y4 *= &y3;
y4.frobenius_map_in_place(1)?;
y5 *= &y2;
y5.frobenius_map_in_place(2)?;
y5 *= &y0;
y5 *= &y4;
y5 *= &y1;
Ok(y5)
})
}
fn prepare_g1(p: &Self::G1Var) -> Result<Self::G1PreparedVar, SynthesisError> {
Self::G1PreparedVar::from_group_var(p)
}
fn prepare_g2(q: &Self::G2Var) -> Result<Self::G2PreparedVar, SynthesisError> {
Self::G2PreparedVar::from_group_var(q)
}
}