You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

967 lines
37 KiB

use ark_ec::{
short_weierstrass::{
Affine as SWAffine, Projective as SWProjective, SWCurveConfig as SWModelParameters,
},
AffineRepr, CurveGroup,
};
use ark_ff::{BigInteger, BitIteratorBE, Field, One, PrimeField, Zero};
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError};
use ark_std::{borrow::Borrow, marker::PhantomData, ops::Mul};
use non_zero_affine::NonZeroAffineVar;
use crate::{fields::fp::FpVar, prelude::*, ToConstraintFieldGadget, Vec};
/// This module provides a generic implementation of G1 and G2 for
/// the [\[BLS12]\](<https://eprint.iacr.org/2002/088.pdf>) family of bilinear groups.
pub mod bls12;
/// This module provides a generic implementation of G1 and G2 for
/// the [\[MNT4]\](<https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.8113&rep=rep1&type=pdf>)
/// family of bilinear groups.
pub mod mnt4;
/// This module provides a generic implementation of G1 and G2 for
/// the [\[MNT6]\](<https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.8113&rep=rep1&type=pdf>)
/// family of bilinear groups.
pub mod mnt6;
/// This module provides a generic implementation of elliptic curve operations
/// for points on short-weierstrass curves in affine coordinates that **are
/// not** equal to zero.
///
/// Note: this module is **unsafe** in general: it can synthesize unsatisfiable
/// or underconstrained constraint systems when a represented point _is_ equal
/// to zero. The [ProjectiveVar] gadget is the recommended way of working with
/// elliptic curve points.
pub mod non_zero_affine;
/// An implementation of arithmetic for Short Weierstrass curves that relies on
/// the complete formulae derived in the paper of
/// [[Renes, Costello, Batina 2015]](<https://eprint.iacr.org/2015/1060>).
#[derive(Derivative)]
#[derivative(Debug, Clone)]
#[must_use]
pub struct ProjectiveVar<
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
> where
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
/// The x-coordinate.
pub x: F,
/// The y-coordinate.
pub y: F,
/// The z-coordinate.
pub z: F,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
/// An affine representation of a curve point.
#[derive(Derivative)]
#[derivative(Debug, Clone)]
#[must_use]
pub struct AffineVar<
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
> where
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
/// The x-coordinate.
pub x: F,
/// The y-coordinate.
pub y: F,
/// Is `self` the point at infinity.
pub infinity: Boolean<<P::BaseField as Field>::BasePrimeField>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, F> AffineVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
fn new(x: F, y: F, infinity: Boolean<<P::BaseField as Field>::BasePrimeField>) -> Self {
Self {
x,
y,
infinity,
_params: PhantomData,
}
}
/// Returns the value assigned to `self` in the underlying
/// constraint system.
pub fn value(&self) -> Result<SWAffine<P>, SynthesisError> {
Ok(match self.infinity.value()? {
true => SWAffine::identity(),
false => SWAffine::new(self.x.value()?, self.y.value()?),
})
}
}
impl<P, F> ToConstraintFieldGadget<<P::BaseField as Field>::BasePrimeField> for AffineVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
F: ToConstraintFieldGadget<<P::BaseField as Field>::BasePrimeField>,
{
fn to_constraint_field(
&self,
) -> Result<Vec<FpVar<<P::BaseField as Field>::BasePrimeField>>, SynthesisError> {
let mut res = Vec::<FpVar<<P::BaseField as Field>::BasePrimeField>>::new();
res.extend_from_slice(&self.x.to_constraint_field()?);
res.extend_from_slice(&self.y.to_constraint_field()?);
res.extend_from_slice(&self.infinity.to_constraint_field()?);
Ok(res)
}
}
impl<P, F> R1CSVar<<P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
type Value = SWProjective<P>;
fn cs(&self) -> ConstraintSystemRef<<P::BaseField as Field>::BasePrimeField> {
self.x.cs().or(self.y.cs()).or(self.z.cs())
}
fn value(&self) -> Result<Self::Value, SynthesisError> {
let (x, y, z) = (self.x.value()?, self.y.value()?, self.z.value()?);
let result = if let Some(z_inv) = z.inverse() {
SWAffine::new(x * &z_inv, y * &z_inv)
} else {
SWAffine::identity()
};
Ok(result.into())
}
}
impl<P: SWModelParameters, F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>>
ProjectiveVar<P, F>
where
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
/// Constructs `Self` from an `(x, y, z)` coordinate triple.
pub fn new(x: F, y: F, z: F) -> Self {
Self {
x,
y,
z,
_params: PhantomData,
}
}
/// Convert this point into affine form.
#[tracing::instrument(target = "r1cs")]
pub fn to_affine(&self) -> Result<AffineVar<P, F>, SynthesisError> {
if self.is_constant() {
let point = self.value()?.into_affine();
let x = F::new_constant(ConstraintSystemRef::None, point.x)?;
let y = F::new_constant(ConstraintSystemRef::None, point.y)?;
let infinity = Boolean::constant(point.infinity);
Ok(AffineVar::new(x, y, infinity))
} else {
let cs = self.cs();
let infinity = self.is_zero()?;
let zero_x = F::zero();
let zero_y = F::one();
// Allocate a variable whose value is either `self.z.inverse()` if the inverse
// exists, and is zero otherwise.
let z_inv = F::new_witness(ark_relations::ns!(cs, "z_inverse"), || {
Ok(self.z.value()?.inverse().unwrap_or_else(P::BaseField::zero))
})?;
// The inverse exists if `!self.is_zero()`.
// This means that `z_inv * self.z = 1` if `self.is_not_zero()`, and
// `z_inv * self.z = 0` if `self.is_zero()`.
//
// Thus, `z_inv * self.z = !self.is_zero()`.
z_inv.mul_equals(&self.z, &F::from(infinity.not()))?;
let non_zero_x = &self.x * &z_inv;
let non_zero_y = &self.y * &z_inv;
let x = infinity.select(&zero_x, &non_zero_x)?;
let y = infinity.select(&zero_y, &non_zero_y)?;
Ok(AffineVar::new(x, y, infinity))
}
}
/// Allocates a new variable without performing an on-curve check, which is
/// useful if the variable is known to be on the curve (eg., if the point
/// is a constant or is a public input).
#[tracing::instrument(target = "r1cs", skip(cs, f))]
pub fn new_variable_omit_on_curve_check(
cs: impl Into<Namespace<<P::BaseField as Field>::BasePrimeField>>,
f: impl FnOnce() -> Result<SWProjective<P>, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
let ns = cs.into();
let cs = ns.cs();
let (x, y, z) = match f() {
Ok(ge) => {
let ge = ge.into_affine();
if ge.is_zero() {
(
Ok(P::BaseField::zero()),
Ok(P::BaseField::one()),
Ok(P::BaseField::zero()),
)
} else {
(Ok(ge.x), Ok(ge.y), Ok(P::BaseField::one()))
}
},
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let x = F::new_variable(ark_relations::ns!(cs, "x"), || x, mode)?;
let y = F::new_variable(ark_relations::ns!(cs, "y"), || y, mode)?;
let z = F::new_variable(ark_relations::ns!(cs, "z"), || z, mode)?;
Ok(Self::new(x, y, z))
}
/// Mixed addition, which is useful when `other = (x2, y2)` is known to have
/// z = 1.
#[tracing::instrument(target = "r1cs", skip(self, other))]
pub(crate) fn add_mixed(&self, other: &NonZeroAffineVar<P, F>) -> Result<Self, SynthesisError> {
// Complete mixed addition formula from Renes-Costello-Batina 2015
// Algorithm 2
// (https://eprint.iacr.org/2015/1060).
// Below, comments at the end of a line denote the corresponding
// step(s) of the algorithm
//
// Adapted from code in
// https://github.com/RustCrypto/elliptic-curves/blob/master/p256/src/arithmetic/projective.rs
let three_b = P::COEFF_B.double() + &P::COEFF_B;
let (x1, y1, z1) = (&self.x, &self.y, &self.z);
let (x2, y2) = (&other.x, &other.y);
let xx = x1 * x2; // 1
let yy = y1 * y2; // 2
let xy_pairs = ((x1 + y1) * &(x2 + y2)) - (&xx + &yy); // 4, 5, 6, 7, 8
let xz_pairs = (x2 * z1) + x1; // 8, 9
let yz_pairs = (y2 * z1) + y1; // 10, 11
let axz = mul_by_coeff_a::<P, F>(&xz_pairs); // 12
let bz3_part = &axz + z1 * three_b; // 13, 14
let yy_m_bz3 = &yy - &bz3_part; // 15
let yy_p_bz3 = &yy + &bz3_part; // 16
let azz = mul_by_coeff_a::<P, F>(z1); // 20
let xx3_p_azz = xx.double().unwrap() + &xx + &azz; // 18, 19, 22
let bxz3 = &xz_pairs * three_b; // 21
let b3_xz_pairs = mul_by_coeff_a::<P, F>(&(&xx - &azz)) + &bxz3; // 23, 24, 25
let x = (&yy_m_bz3 * &xy_pairs) - &yz_pairs * &b3_xz_pairs; // 28,29, 30
let y = (&yy_p_bz3 * &yy_m_bz3) + &xx3_p_azz * b3_xz_pairs; // 17, 26, 27
let z = (&yy_p_bz3 * &yz_pairs) + xy_pairs * xx3_p_azz; // 31, 32, 33
Ok(ProjectiveVar::new(x, y, z))
}
/// Computes a scalar multiplication with a little-endian scalar of size
/// `P::ScalarField::MODULUS_BITS`.
#[tracing::instrument(
target = "r1cs",
skip(self, mul_result, multiple_of_power_of_two, bits)
)]
fn fixed_scalar_mul_le(
&self,
mul_result: &mut Self,
multiple_of_power_of_two: &mut NonZeroAffineVar<P, F>,
bits: &[&Boolean<<P::BaseField as Field>::BasePrimeField>],
) -> Result<(), SynthesisError> {
let scalar_modulus_bits = <P::ScalarField as PrimeField>::MODULUS_BIT_SIZE as usize;
assert!(scalar_modulus_bits >= bits.len());
let split_len = ark_std::cmp::min(scalar_modulus_bits - 2, bits.len());
let (affine_bits, proj_bits) = bits.split_at(split_len);
// Computes the standard little-endian double-and-add algorithm
// (Algorithm 3.26, Guide to Elliptic Curve Cryptography)
//
// We rely on *incomplete* affine formulae for partially computing this.
// However, we avoid exceptional edge cases because we partition the scalar
// into two chunks: one guaranteed to be less than p - 2, and the rest.
// We only use incomplete formulae for the first chunk, which means we avoid
// exceptions:
//
// `add_unchecked(a, b)` is incomplete when either `b.is_zero()`, or when
// `b = ±a`. During scalar multiplication, we don't hit either case:
// * `b = ±a`: `b = accumulator = k * a`, where `2 <= k < p - 1`. This implies
// that `k != p ± 1`, and so `b != (p ± 1) * a`. Because the group is finite,
// this in turn means that `b != ±a`, as required.
// * `a` or `b` is zero: for `a`, we handle the zero case after the loop; for
// `b`, notice that it is monotonically increasing, and furthermore, equals `k
// * a`, where `k != p = 0 mod p`.
// Unlike normal double-and-add, here we start off with a non-zero
// `accumulator`, because `NonZeroAffineVar::add_unchecked` doesn't
// support addition with `zero`. In more detail, we initialize
// `accumulator` to be the initial value of `multiple_of_power_of_two`.
// This ensures that all unchecked additions of `accumulator` with later
// values of `multiple_of_power_of_two` are safe. However, to do this
// correctly, we need to perform two steps:
// * We must skip the LSB, and instead proceed assuming that it was 1. Later, we
// will conditionally subtract the initial value of `accumulator`: if LSB ==
// 0: subtract initial_acc_value; else, subtract 0.
// * Because we are assuming the first bit, we must double
// `multiple_of_power_of_two`.
let mut accumulator = multiple_of_power_of_two.clone();
let initial_acc_value = accumulator.into_projective();
// The powers start at 2 (instead of 1) because we're skipping the first bit.
multiple_of_power_of_two.double_in_place()?;
// As mentioned, we will skip the LSB, and will later handle it via a
// conditional subtraction.
for bit in affine_bits.iter().skip(1) {
if bit.is_constant() {
if *bit == &Boolean::TRUE {
accumulator = accumulator.add_unchecked(&multiple_of_power_of_two)?;
}
} else {
let temp = accumulator.add_unchecked(&multiple_of_power_of_two)?;
accumulator = bit.select(&temp, &accumulator)?;
}
multiple_of_power_of_two.double_in_place()?;
}
// Perform conditional subtraction:
// We can convert to projective safely because the result is guaranteed to be
// non-zero by the condition on `affine_bits.len()`, and by the fact
// that `accumulator` is non-zero
let result = accumulator.into_projective();
// If bits[0] is 0, then we have to subtract `self`; else, we subtract zero.
let subtrahend = bits[0].select(&Self::zero(), &initial_acc_value)?;
*mul_result += result - subtrahend;
// Now, let's finish off the rest of the bits using our complete formulae
for bit in proj_bits {
if bit.is_constant() {
if *bit == &Boolean::TRUE {
*mul_result += &multiple_of_power_of_two.into_projective();
}
} else {
let temp = &*mul_result + &multiple_of_power_of_two.into_projective();
*mul_result = bit.select(&temp, &mul_result)?;
}
multiple_of_power_of_two.double_in_place()?;
}
Ok(())
}
}
impl<P, F> CurveVar<SWProjective<P>, <P::BaseField as Field>::BasePrimeField>
for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
fn constant(g: SWProjective<P>) -> Self {
let cs = ConstraintSystemRef::None;
Self::new_variable_omit_on_curve_check(cs, || Ok(g), AllocationMode::Constant).unwrap()
}
fn zero() -> Self {
Self::new(F::zero(), F::one(), F::zero())
}
fn is_zero(&self) -> Result<Boolean<<P::BaseField as Field>::BasePrimeField>, SynthesisError> {
self.z.is_zero()
}
#[tracing::instrument(target = "r1cs", skip(cs, f))]
fn new_variable_omit_prime_order_check(
cs: impl Into<Namespace<<P::BaseField as Field>::BasePrimeField>>,
f: impl FnOnce() -> Result<SWProjective<P>, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
let ns = cs.into();
let cs = ns.cs();
// Curve equation in projective form:
// E: Y² * Z = X³ + aX * Z² + bZ³
//
// This can be re-written as
// E: Y² * Z - bZ³ = X³ + aX * Z²
// E: Z * (Y² - bZ²) = X * (X² + aZ²)
// so, compute X², Y², Z²,
// compute temp = X * (X² + aZ²)
// check Z.mul_equals((Y² - bZ²), temp)
//
// A total of 5 multiplications
let g = Self::new_variable_omit_on_curve_check(cs, f, mode)?;
if mode != AllocationMode::Constant {
// Perform on-curve check.
let b = P::COEFF_B;
let a = P::COEFF_A;
let x2 = g.x.square()?;
let y2 = g.y.square()?;
let z2 = g.z.square()?;
let t = &g.x * (x2 + &z2 * a);
g.z.mul_equals(&(y2 - z2 * b), &t)?;
}
Ok(g)
}
/// Enforce that `self` is in the prime-order subgroup.
///
/// Does so by multiplying by the prime order, and checking that the result
/// is unchanged.
// TODO: at the moment this doesn't work, because the addition and doubling
// formulae are incomplete for even-order points.
#[tracing::instrument(target = "r1cs")]
fn enforce_prime_order(&self) -> Result<(), SynthesisError> {
unimplemented!("cannot enforce prime order");
// let r_minus_1 = (-P::ScalarField::one()).into_bigint();
// let mut result = Self::zero();
// for b in BitIteratorBE::without_leading_zeros(r_minus_1) {
// result.double_in_place()?;
// if b {
// result += self;
// }
// }
// self.negate()?.enforce_equal(&result)?;
// Ok(())
}
#[inline]
#[tracing::instrument(target = "r1cs")]
fn double_in_place(&mut self) -> Result<(), SynthesisError> {
// Complete doubling formula from Renes-Costello-Batina 2015
// Algorithm 3
// (https://eprint.iacr.org/2015/1060).
// Below, comments at the end of a line denote the corresponding
// step(s) of the algorithm
//
// Adapted from code in
// https://github.com/RustCrypto/elliptic-curves/blob/master/p256/src/arithmetic/projective.rs
let three_b = P::COEFF_B.double() + &P::COEFF_B;
let xx = self.x.square()?; // 1
let yy = self.y.square()?; // 2
let zz = self.z.square()?; // 3
let xy2 = (&self.x * &self.y).double()?; // 4, 5
let xz2 = (&self.x * &self.z).double()?; // 6, 7
let axz2 = mul_by_coeff_a::<P, F>(&xz2); // 8
let bzz3_part = &axz2 + &zz * three_b; // 9, 10
let yy_m_bzz3 = &yy - &bzz3_part; // 11
let yy_p_bzz3 = &yy + &bzz3_part; // 12
let y_frag = yy_p_bzz3 * &yy_m_bzz3; // 13
let x_frag = yy_m_bzz3 * &xy2; // 14
let bxz3 = xz2 * three_b; // 15
let azz = mul_by_coeff_a::<P, F>(&zz); // 16
let b3_xz_pairs = mul_by_coeff_a::<P, F>(&(&xx - &azz)) + &bxz3; // 15, 16, 17, 18, 19
let xx3_p_azz = (xx.double()? + &xx + &azz) * &b3_xz_pairs; // 23, 24, 25
let y = y_frag + &xx3_p_azz; // 26, 27
let yz2 = (&self.y * &self.z).double()?; // 28, 29
let x = x_frag - &(b3_xz_pairs * &yz2); // 30, 31
let z = (yz2 * &yy).double()?.double()?; // 32, 33, 34
self.x = x;
self.y = y;
self.z = z;
Ok(())
}
#[tracing::instrument(target = "r1cs")]
fn negate(&self) -> Result<Self, SynthesisError> {
Ok(Self::new(self.x.clone(), self.y.negate()?, self.z.clone()))
}
/// Computes `bits * self`, where `bits` is a little-endian
/// `Boolean` representation of a scalar.
#[tracing::instrument(target = "r1cs", skip(bits))]
fn scalar_mul_le<'a>(
&self,
bits: impl Iterator<Item = &'a Boolean<<P::BaseField as Field>::BasePrimeField>>,
) -> Result<Self, SynthesisError> {
if self.is_constant() {
if self.value().unwrap().is_zero() {
return Ok(self.clone());
}
}
let self_affine = self.to_affine()?;
let (x, y, infinity) = (self_affine.x, self_affine.y, self_affine.infinity);
// We first handle the non-zero case, and then later
// will conditionally select zero if `self` was zero.
let non_zero_self = NonZeroAffineVar::new(x, y);
let mut bits = bits.collect::<Vec<_>>();
if bits.len() == 0 {
return Ok(Self::zero());
}
// Remove unnecessary constant zeros in the most-significant positions.
bits = bits
.into_iter()
// We iterate from the MSB down.
.rev()
// Skip leading zeros, if they are constants.
.skip_while(|b| b.is_constant() && (b.value().unwrap() == false))
.collect();
// After collecting we are in big-endian form; we have to reverse to get back to
// little-endian.
bits.reverse();
let scalar_modulus_bits = <P::ScalarField as PrimeField>::MODULUS_BIT_SIZE;
let mut mul_result = Self::zero();
let mut power_of_two_times_self = non_zero_self;
// We chunk up `bits` into `p`-sized chunks.
for bits in bits.chunks(scalar_modulus_bits as usize) {
self.fixed_scalar_mul_le(&mut mul_result, &mut power_of_two_times_self, bits)?;
}
// The foregoing algorithm relies on incomplete addition, and so does not
// work when the input (`self`) is zero. We hence have to perform
// a check to ensure that if the input is zero, then so is the output.
// The cost of this check should be less than the benefit of using
// mixed addition in almost all cases.
infinity.select(&Self::zero(), &mul_result)
}
#[tracing::instrument(target = "r1cs", skip(scalar_bits_with_bases))]
fn precomputed_base_scalar_mul_le<'a, I, B>(
&mut self,
scalar_bits_with_bases: I,
) -> Result<(), SynthesisError>
where
I: Iterator<Item = (B, &'a SWProjective<P>)>,
B: Borrow<Boolean<<P::BaseField as Field>::BasePrimeField>>,
{
// We just ignore the provided bases and use the faster scalar multiplication.
let (bits, bases): (Vec<_>, Vec<_>) = scalar_bits_with_bases
.map(|(b, c)| (b.borrow().clone(), *c))
.unzip();
let base = bases[0];
*self = Self::constant(base).scalar_mul_le(bits.iter())?;
Ok(())
}
}
impl<P, F> ToConstraintFieldGadget<<P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
F: ToConstraintFieldGadget<<P::BaseField as Field>::BasePrimeField>,
{
fn to_constraint_field(
&self,
) -> Result<Vec<FpVar<<P::BaseField as Field>::BasePrimeField>>, SynthesisError> {
self.to_affine()?.to_constraint_field()
}
}
fn mul_by_coeff_a<
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
>(
f: &F,
) -> F
where
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
if !P::COEFF_A.is_zero() {
f * P::COEFF_A
} else {
F::zero()
}
}
impl_bounded_ops!(
ProjectiveVar<P, F>,
SWProjective<P>,
Add,
add,
AddAssign,
add_assign,
|mut this: &'a ProjectiveVar<P, F>, mut other: &'a ProjectiveVar<P, F>| {
// Implement complete addition for Short Weierstrass curves, following
// the complete addition formula from Renes-Costello-Batina 2015
// (https://eprint.iacr.org/2015/1060).
//
// We special case handling of constants to get better constraint weight.
if this.is_constant() {
// we'll just act like `other` is constant.
core::mem::swap(&mut this, &mut other);
}
if other.is_constant() {
// The value should exist because `other` is a constant.
let other = other.value().unwrap();
if other.is_zero() {
// this + 0 = this
this.clone()
} else {
// We'll use mixed addition to add non-zero constants.
let x = F::constant(other.x);
let y = F::constant(other.y);
this.add_mixed(&NonZeroAffineVar::new(x, y)).unwrap()
}
} else {
// Complete addition formula from Renes-Costello-Batina 2015
// Algorithm 1
// (https://eprint.iacr.org/2015/1060).
// Below, comments at the end of a line denote the corresponding
// step(s) of the algorithm
//
// Adapted from code in
// https://github.com/RustCrypto/elliptic-curves/blob/master/p256/src/arithmetic/projective.rs
let three_b = P::COEFF_B.double() + &P::COEFF_B;
let (x1, y1, z1) = (&this.x, &this.y, &this.z);
let (x2, y2, z2) = (&other.x, &other.y, &other.z);
let xx = x1 * x2; // 1
let yy = y1 * y2; // 2
let zz = z1 * z2; // 3
let xy_pairs = ((x1 + y1) * &(x2 + y2)) - (&xx + &yy); // 4, 5, 6, 7, 8
let xz_pairs = ((x1 + z1) * &(x2 + z2)) - (&xx + &zz); // 9, 10, 11, 12, 13
let yz_pairs = ((y1 + z1) * &(y2 + z2)) - (&yy + &zz); // 14, 15, 16, 17, 18
let axz = mul_by_coeff_a::<P, F>(&xz_pairs); // 19
let bzz3_part = &axz + &zz * three_b; // 20, 21
let yy_m_bzz3 = &yy - &bzz3_part; // 22
let yy_p_bzz3 = &yy + &bzz3_part; // 23
let azz = mul_by_coeff_a::<P, F>(&zz);
let xx3_p_azz = xx.double().unwrap() + &xx + &azz; // 25, 26, 27, 29
let bxz3 = &xz_pairs * three_b; // 28
let b3_xz_pairs = mul_by_coeff_a::<P, F>(&(&xx - &azz)) + &bxz3; // 30, 31, 32
let x = (&yy_m_bzz3 * &xy_pairs) - &yz_pairs * &b3_xz_pairs; // 35, 39, 40
let y = (&yy_p_bzz3 * &yy_m_bzz3) + &xx3_p_azz * b3_xz_pairs; // 24, 36, 37, 38
let z = (&yy_p_bzz3 * &yz_pairs) + xy_pairs * xx3_p_azz; // 41, 42, 43
ProjectiveVar::new(x, y, z)
}
},
|this: &'a ProjectiveVar<P, F>, other: SWProjective<P>| {
this + ProjectiveVar::constant(other)
},
(F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>, P: SWModelParameters),
for <'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
);
impl_bounded_ops!(
ProjectiveVar<P, F>,
SWProjective<P>,
Sub,
sub,
SubAssign,
sub_assign,
|this: &'a ProjectiveVar<P, F>, other: &'a ProjectiveVar<P, F>| this + other.negate().unwrap(),
|this: &'a ProjectiveVar<P, F>, other: SWProjective<P>| this - ProjectiveVar::constant(other),
(F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>, P: SWModelParameters),
for <'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>
);
impl<'a, P, F> GroupOpsBounds<'a, SWProjective<P>, ProjectiveVar<P, F>> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
{
}
impl<'a, P, F> GroupOpsBounds<'a, SWProjective<P>, ProjectiveVar<P, F>> for &'a ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
{
}
impl<P, F> CondSelectGadget<<P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
#[inline]
#[tracing::instrument(target = "r1cs")]
fn conditionally_select(
cond: &Boolean<<P::BaseField as Field>::BasePrimeField>,
true_value: &Self,
false_value: &Self,
) -> Result<Self, SynthesisError> {
let x = cond.select(&true_value.x, &false_value.x)?;
let y = cond.select(&true_value.y, &false_value.y)?;
let z = cond.select(&true_value.z, &false_value.z)?;
Ok(Self::new(x, y, z))
}
}
impl<P, F> EqGadget<<P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
#[tracing::instrument(target = "r1cs")]
fn is_eq(
&self,
other: &Self,
) -> Result<Boolean<<P::BaseField as Field>::BasePrimeField>, SynthesisError> {
let x_equal = (&self.x * &other.z).is_eq(&(&other.x * &self.z))?;
let y_equal = (&self.y * &other.z).is_eq(&(&other.y * &self.z))?;
let coordinates_equal = x_equal.and(&y_equal)?;
let both_are_zero = self.is_zero()?.and(&other.is_zero()?)?;
both_are_zero.or(&coordinates_equal)
}
#[inline]
#[tracing::instrument(target = "r1cs")]
fn conditional_enforce_equal(
&self,
other: &Self,
condition: &Boolean<<P::BaseField as Field>::BasePrimeField>,
) -> Result<(), SynthesisError> {
let x_equal = (&self.x * &other.z).is_eq(&(&other.x * &self.z))?;
let y_equal = (&self.y * &other.z).is_eq(&(&other.y * &self.z))?;
let coordinates_equal = x_equal.and(&y_equal)?;
let both_are_zero = self.is_zero()?.and(&other.is_zero()?)?;
both_are_zero
.or(&coordinates_equal)?
.conditional_enforce_equal(&Boolean::Constant(true), condition)?;
Ok(())
}
#[inline]
#[tracing::instrument(target = "r1cs")]
fn conditional_enforce_not_equal(
&self,
other: &Self,
condition: &Boolean<<P::BaseField as Field>::BasePrimeField>,
) -> Result<(), SynthesisError> {
let is_equal = self.is_eq(other)?;
is_equal
.and(condition)?
.enforce_equal(&Boolean::Constant(false))
}
}
impl<P, F> AllocVar<SWAffine<P>, <P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
fn new_variable<T: Borrow<SWAffine<P>>>(
cs: impl Into<Namespace<<P::BaseField as Field>::BasePrimeField>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
Self::new_variable(
cs,
|| f().map(|b| SWProjective::from((*b.borrow()).clone())),
mode,
)
}
}
impl<P, F> AllocVar<SWProjective<P>, <P::BaseField as Field>::BasePrimeField>
for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
fn new_variable<T: Borrow<SWProjective<P>>>(
cs: impl Into<Namespace<<P::BaseField as Field>::BasePrimeField>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
let ns = cs.into();
let cs = ns.cs();
let f = || Ok(*f()?.borrow());
match mode {
AllocationMode::Constant => Self::new_variable_omit_prime_order_check(cs, f, mode),
AllocationMode::Input => Self::new_variable_omit_prime_order_check(cs, f, mode),
AllocationMode::Witness => {
// if cofactor.is_even():
// divide until you've removed all even factors
// else:
// just directly use double and add.
let mut power_of_2: u32 = 0;
let mut cofactor = P::COFACTOR.to_vec();
while cofactor[0] % 2 == 0 {
div2(&mut cofactor);
power_of_2 += 1;
}
let cofactor_weight = BitIteratorBE::new(cofactor.as_slice())
.filter(|b| *b)
.count();
let modulus_minus_1 = (-P::ScalarField::one()).into_bigint(); // r - 1
let modulus_minus_1_weight =
BitIteratorBE::new(modulus_minus_1).filter(|b| *b).count();
// We pick the most efficient method of performing the prime order check:
// If the cofactor has lower hamming weight than the scalar field's modulus,
// we first multiply by the inverse of the cofactor, and then, after allocating,
// multiply by the cofactor. This ensures the resulting point has no cofactors
//
// Else, we multiply by the scalar field's modulus and ensure that the result
// equals the identity.
let (mut ge, iter) = if cofactor_weight < modulus_minus_1_weight {
let ge = Self::new_variable_omit_prime_order_check(
ark_relations::ns!(cs, "Witness without subgroup check with cofactor mul"),
|| f().map(|g| g.borrow().into_affine().mul_by_cofactor_inv().into()),
mode,
)?;
(
ge,
BitIteratorBE::without_leading_zeros(cofactor.as_slice()),
)
} else {
let ge = Self::new_variable_omit_prime_order_check(
ark_relations::ns!(cs, "Witness without subgroup check with `r` check"),
|| {
f().map(|g| {
let g = g.into_affine();
let mut power_of_two = P::ScalarField::one().into_bigint();
power_of_two.muln(power_of_2);
let power_of_two_inv = P::ScalarField::from_bigint(power_of_two)
.and_then(|n| n.inverse())
.unwrap();
g.mul(power_of_two_inv)
})
},
mode,
)?;
(
ge,
BitIteratorBE::without_leading_zeros(modulus_minus_1.as_ref()),
)
};
// Remove the even part of the cofactor
for _ in 0..power_of_2 {
ge.double_in_place()?;
}
let mut result = Self::zero();
for b in iter {
result.double_in_place()?;
if b {
result += &ge
}
}
if cofactor_weight < modulus_minus_1_weight {
Ok(result)
} else {
ge.enforce_equal(&ge)?;
Ok(ge)
}
},
}
}
}
#[inline]
fn div2(limbs: &mut [u64]) {
let mut t = 0;
for i in limbs.iter_mut().rev() {
let t2 = *i << 63;
*i >>= 1;
*i |= t;
t = t2;
}
}
impl<P, F> ToBitsGadget<<P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
#[tracing::instrument(target = "r1cs")]
fn to_bits_le(
&self,
) -> Result<Vec<Boolean<<P::BaseField as Field>::BasePrimeField>>, SynthesisError> {
let g = self.to_affine()?;
let mut bits = g.x.to_bits_le()?;
let y_bits = g.y.to_bits_le()?;
bits.extend_from_slice(&y_bits);
bits.push(g.infinity);
Ok(bits)
}
#[tracing::instrument(target = "r1cs")]
fn to_non_unique_bits_le(
&self,
) -> Result<Vec<Boolean<<P::BaseField as Field>::BasePrimeField>>, SynthesisError> {
let g = self.to_affine()?;
let mut bits = g.x.to_non_unique_bits_le()?;
let y_bits = g.y.to_non_unique_bits_le()?;
bits.extend_from_slice(&y_bits);
bits.push(g.infinity);
Ok(bits)
}
}
impl<P, F> ToBytesGadget<<P::BaseField as Field>::BasePrimeField> for ProjectiveVar<P, F>
where
P: SWModelParameters,
F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
#[tracing::instrument(target = "r1cs")]
fn to_bytes(
&self,
) -> Result<Vec<UInt8<<P::BaseField as Field>::BasePrimeField>>, SynthesisError> {
let g = self.to_affine()?;
let mut bytes = g.x.to_bytes()?;
let y_bytes = g.y.to_bytes()?;
let inf_bytes = g.infinity.to_bytes()?;
bytes.extend_from_slice(&y_bytes);
bytes.extend_from_slice(&inf_bytes);
Ok(bytes)
}
#[tracing::instrument(target = "r1cs")]
fn to_non_unique_bytes(
&self,
) -> Result<Vec<UInt8<<P::BaseField as Field>::BasePrimeField>>, SynthesisError> {
let g = self.to_affine()?;
let mut bytes = g.x.to_non_unique_bytes()?;
let y_bytes = g.y.to_non_unique_bytes()?;
let inf_bytes = g.infinity.to_non_unique_bytes()?;
bytes.extend_from_slice(&y_bytes);
bytes.extend_from_slice(&inf_bytes);
Ok(bytes)
}
}