You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

247 lines
9.6 KiB

use crate::{
boolean::Boolean,
fields::{fp::FpVar, FieldVar},
prelude::*,
ToBitsGadget,
};
use ark_ff::PrimeField;
use ark_relations::r1cs::{SynthesisError, Variable};
use core::cmp::Ordering;
impl<F: PrimeField> FpVar<F> {
/// This function enforces the ordering between `self` and `other`. The
/// constraint system will not be satisfied otherwise. If `self` should
/// also be checked for equality, e.g. `self <= other` instead of `self <
/// other`, set `should_also_check_quality` to `true`. This variant
/// verifies `self` and `other` are `<= (p-1)/2`.
#[tracing::instrument(target = "r1cs")]
pub fn enforce_cmp(
&self,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<(), SynthesisError> {
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.enforce_smaller_than(&right)
}
/// This function enforces the ordering between `self` and `other`. The
/// constraint system will not be satisfied otherwise. If `self` should
/// also be checked for equality, e.g. `self <= other` instead of `self <
/// other`, set `should_also_check_quality` to `true`. This variant
/// assumes `self` and `other` are `<= (p-1)/2` and does not generate
/// constraints to verify that.
#[tracing::instrument(target = "r1cs")]
pub fn enforce_cmp_unchecked(
&self,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<(), SynthesisError> {
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.enforce_smaller_than_unchecked(&right)
}
/// This function checks the ordering between `self` and `other`. It outputs
/// self `Boolean` that contains the result - `1` if true, `0`
/// otherwise. The constraint system will be satisfied in any case. If
/// `self` should also be checked for equality, e.g. `self <= other`
/// instead of `self < other`, set `should_also_check_quality` to
/// `true`. This variant verifies `self` and `other` are `<= (p-1)/2`.
#[tracing::instrument(target = "r1cs")]
pub fn is_cmp(
&self,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<Boolean<F>, SynthesisError> {
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.is_smaller_than(&right)
}
/// This function checks the ordering between `self` and `other`. It outputs
/// a `Boolean` that contains the result - `1` if true, `0` otherwise.
/// The constraint system will be satisfied in any case. If `self`
/// should also be checked for equality, e.g. `self <= other` instead of
/// `self < other`, set `should_also_check_quality` to `true`. This
/// variant assumes `self` and `other` are `<= (p-1)/2` and does not
/// generate constraints to verify that.
#[tracing::instrument(target = "r1cs")]
pub fn is_cmp_unchecked(
&self,
other: &FpVar<F>,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<Boolean<F>, SynthesisError> {
let (left, right) = self.process_cmp_inputs(other, ordering, should_also_check_equality)?;
left.is_smaller_than_unchecked(&right)
}
fn process_cmp_inputs(
&self,
other: &Self,
ordering: Ordering,
should_also_check_equality: bool,
) -> Result<(Self, Self), SynthesisError> {
let (left, right) = match ordering {
Ordering::Less => (self, other),
Ordering::Greater => (other, self),
Ordering::Equal => Err(SynthesisError::Unsatisfiable)?,
};
let right_for_check = if should_also_check_equality {
right + F::one()
} else {
right.clone()
};
Ok((left.clone(), right_for_check))
}
/// Helper function to enforce that `self <= (p-1)/2`.
#[tracing::instrument(target = "r1cs")]
pub fn enforce_smaller_or_equal_than_mod_minus_one_div_two(
&self,
) -> Result<(), SynthesisError> {
// It's okay to use `to_non_unique_bits` bits here because we're enforcing
// self <= (p-1)/2, which implies self < p.
let _ = Boolean::enforce_smaller_or_equal_than_le(
&self.to_non_unique_bits_le()?,
F::modulus_minus_one_div_two(),
)?;
Ok(())
}
/// Helper function to check `self < other` and output a result bit. This
/// function verifies `self` and `other` are `<= (p-1)/2`.
fn is_smaller_than(&self, other: &FpVar<F>) -> Result<Boolean<F>, SynthesisError> {
self.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
other.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
self.is_smaller_than_unchecked(other)
}
/// Helper function to check `self < other` and output a result bit. This
/// function assumes `self` and `other` are `<= (p-1)/2` and does not
/// generate constraints to verify that.
fn is_smaller_than_unchecked(&self, other: &FpVar<F>) -> Result<Boolean<F>, SynthesisError> {
Ok((self - other)
.double()?
.to_bits_le()?
.first()
.unwrap()
.clone())
}
/// Helper function to enforce `self < other`. This function verifies `self`
/// and `other` are `<= (p-1)/2`.
fn enforce_smaller_than(&self, other: &FpVar<F>) -> Result<(), SynthesisError> {
self.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
other.enforce_smaller_or_equal_than_mod_minus_one_div_two()?;
self.enforce_smaller_than_unchecked(other)
}
/// Helper function to enforce `self < other`. This function assumes `self`
/// and `other` are `<= (p-1)/2` and does not generate constraints to
/// verify that.
fn enforce_smaller_than_unchecked(&self, other: &FpVar<F>) -> Result<(), SynthesisError> {
let is_smaller_than = self.is_smaller_than_unchecked(other)?;
let lc_one = lc!() + Variable::One;
[self, other]
.cs()
.enforce_constraint(is_smaller_than.lc(), lc_one.clone(), lc_one)
}
}
#[cfg(test)]
mod test {
use rand::{Rng, SeedableRng};
use rand_xorshift::XorShiftRng;
use std::cmp::Ordering;
use crate::{alloc::AllocVar, fields::fp::FpVar};
use ark_ff::{PrimeField, UniformRand};
use ark_relations::r1cs::ConstraintSystem;
use ark_test_curves::bls12_381::Fr;
#[test]
fn test_cmp() {
let mut rng = &mut XorShiftRng::from_seed([
0x5d, 0xbe, 0x62, 0x59, 0x8d, 0x31, 0x3d, 0x76, 0x32, 0x37, 0xdb, 0x17, 0xe5, 0xbc,
0x06, 0x54,
]);
fn rand_in_range<R: Rng>(rng: &mut R) -> Fr {
let pminusonedivtwo: Fr = Fr::modulus_minus_one_div_two().into();
let mut r;
loop {
r = Fr::rand(rng);
if r <= pminusonedivtwo {
break;
}
}
r
}
for i in 0..10 {
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(a)).unwrap();
let b = rand_in_range(&mut rng);
let b_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(b)).unwrap();
match a.cmp(&b) {
Ordering::Less => {
a_var.enforce_cmp(&b_var, Ordering::Less, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Less, true).unwrap();
}
Ordering::Greater => {
a_var.enforce_cmp(&b_var, Ordering::Greater, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Greater, true).unwrap();
}
_ => {}
}
if i == 0 {
println!("number of constraints: {}", cs.num_constraints());
}
assert!(cs.is_satisfied().unwrap());
}
println!("Finished with satisfaction tests");
for _i in 0..10 {
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(a)).unwrap();
let b = rand_in_range(&mut rng);
let b_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(b)).unwrap();
match b.cmp(&a) {
Ordering::Less => {
a_var.enforce_cmp(&b_var, Ordering::Less, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Less, true).unwrap();
}
Ordering::Greater => {
a_var.enforce_cmp(&b_var, Ordering::Greater, false).unwrap();
a_var.enforce_cmp(&b_var, Ordering::Greater, true).unwrap();
}
_ => {}
}
assert!(!cs.is_satisfied().unwrap());
}
for _i in 0..10 {
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(a)).unwrap();
a_var.enforce_cmp(&a_var, Ordering::Less, false).unwrap();
assert!(!cs.is_satisfied().unwrap());
}
for _i in 0..10 {
let cs = ConstraintSystem::<Fr>::new_ref();
let a = rand_in_range(&mut rng);
let a_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(a)).unwrap();
a_var.enforce_cmp(&a_var, Ordering::Less, true).unwrap();
assert!(cs.is_satisfied().unwrap());
}
}
}