You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

928 lines
30 KiB

use r1cs_core::{ConstraintSystem, SynthesisError};
use algebra::{
fields::{
fp12_2over3over2::{Fp12, Fp12Parameters},
fp6_3over2::{Fp6, Fp6Parameters},
Fp2Parameters,
},
BitIterator, Field, PrimeField,
};
use num_traits::One;
use std::{borrow::Borrow, marker::PhantomData};
use crate::{prelude::*, Assignment};
type Fp2Gadget<P, ConstraintF> = super::fp2::Fp2Gadget<
<<P as Fp12Parameters>::Fp6Params as Fp6Parameters>::Fp2Params,
ConstraintF,
>;
type Fp6Gadget<P, ConstraintF> =
super::fp6_3over2::Fp6Gadget<<P as Fp12Parameters>::Fp6Params, ConstraintF>;
type Fp6GadgetVariable<P, ConstraintF> = <Fp6Gadget<P, ConstraintF> as FieldGadget<
Fp6<<P as Fp12Parameters>::Fp6Params>,
ConstraintF,
>>::Variable;
#[derive(Derivative)]
#[derivative(Debug(bound = "ConstraintF: PrimeField"))]
#[must_use]
pub struct Fp12Gadget<P, ConstraintF: PrimeField>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
pub c0: Fp6Gadget<P, ConstraintF>,
pub c1: Fp6Gadget<P, ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, ConstraintF: PrimeField> Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
pub fn new(c0: Fp6Gadget<P, ConstraintF>, c1: Fp6Gadget<P, ConstraintF>) -> Self {
Self {
c0,
c1,
_params: PhantomData,
}
}
/// Multiply by quadratic nonresidue v.
#[inline]
pub(crate) fn mul_fp6_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &Fp6Gadget<P, ConstraintF>,
) -> Result<Fp6Gadget<P, ConstraintF>, SynthesisError> {
let new_c0 = Fp6Gadget::<P, ConstraintF>::mul_fp2_gadget_by_nonresidue(cs, &fe.c2)?;
let new_c1 = fe.c0.clone();
let new_c2 = fe.c1.clone();
Ok(Fp6Gadget::<P, ConstraintF>::new(new_c0, new_c1, new_c2))
}
#[inline]
pub fn conjugate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c1.negate_in_place(cs)?;
Ok(self)
}
/// Multiplies by an element of the form (c0 = (c0, c1, 0), c1 = (0, d1, 0))
#[inline]
pub fn mul_by_014<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
c0: &Fp2Gadget<P, ConstraintF>,
c1: &Fp2Gadget<P, ConstraintF>,
d1: &Fp2Gadget<P, ConstraintF>,
) -> Result<Self, SynthesisError> {
let v0 = self.c0.mul_by_c0_c1_0(cs.ns(|| "v0"), &c0, &c1)?;
let v1 = self.c1.mul_by_0_c1_0(cs.ns(|| "v1"), &d1)?;
let new_c0 = Self::mul_fp6_by_nonresidue(cs.ns(|| "first mul_by_nr"), &v1)?
.add(cs.ns(|| "v0 + nonresidue * v1"), &v0)?;
let c1 = {
let tmp = c1.add(cs.ns(|| "c1 + d1"), &d1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
a0_plus_a1
.mul_by_c0_c1_0(cs.ns(|| "(a0 + a1) * (b0 + b1)"), &c0, &tmp)?
.sub(cs.ns(|| "sub v0"), &v0)?
.sub(cs.ns(|| "sub v1"), &v1)?
};
Ok(Self::new(new_c0, c1))
}
/// Multiplies by an element of the form (c0 = (c0, 0, 0), c1 = (d0, d1, 0))
#[inline]
pub fn mul_by_034<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
c0: &Fp2Gadget<P, ConstraintF>,
d0: &Fp2Gadget<P, ConstraintF>,
d1: &Fp2Gadget<P, ConstraintF>,
) -> Result<Self, SynthesisError> {
let a0 = self.c0.c0.mul(cs.ns(|| "a0"), &c0)?;
let a1 = self.c0.c1.mul(cs.ns(|| "a1"), &c0)?;
let a2 = self.c0.c2.mul(cs.ns(|| "a2"), &c0)?;
let a = Fp6Gadget::<P, ConstraintF>::new(a0, a1, a2);
let b = self.c1.mul_by_c0_c1_0(cs.ns(|| "b"), &d0, &d1)?;
let c0 = c0.add(cs.ns(|| "c0 + d0"), &d0)?;
let c1 = d1;
let e = self
.c0
.add(cs.ns(|| "self.c0 + self.c1"), &self.c1)?
.mul_by_c0_c1_0(cs.ns(|| "compute e"), &c0, &c1)?;
let a_plus_b = a.add(cs.ns(|| "a + b"), &b)?;
let c1 = e.sub(cs.ns(|| "e - (a + b)"), &a_plus_b)?;
let c0 = Self::mul_fp6_by_nonresidue(cs.ns(|| "b *nr"), &b)?.add(cs.ns(|| "plus a"), &a)?;
Ok(Self::new(c0, c1))
}
pub fn cyclotomic_square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let mut result = Self::zero(cs.ns(|| "alloc result"))?;
let fp2_nr = <P::Fp6Params as Fp6Parameters>::NONRESIDUE;
let z0 = &self.c0.c0;
let z4 = &self.c0.c1;
let z3 = &self.c0.c2;
let z2 = &self.c1.c0;
let z1 = &self.c1.c1;
let z5 = &self.c1.c2;
// t0 + t1*y = (z0 + z1*y)^2 = a^2
let tmp = z0.mul(cs.ns(|| "first mul"), &z1)?;
let t0 = {
// (z0 + &z1) * &(z0 + &(fp2_nr * &z1)) - &tmp - &(tmp * &fp2_nr);
let mut cs = cs.ns(|| "t0");
let tmp1 = z0.add(cs.ns(|| "tmp1"), &z1)?;
let tmp2 = z1
.mul_by_constant(cs.ns(|| "tmp2.1"), &fp2_nr)?
.add(cs.ns(|| "tmp2.2"), &z0)?;
let tmp4 = tmp
.mul_by_constant(cs.ns(|| "tmp4.1"), &fp2_nr)?
.add(cs.ns(|| "tmp4.2"), &tmp)?;
tmp1.mul(cs.ns(|| "tmp3.1"), &tmp2)?
.sub(cs.ns(|| "tmp3.2"), &tmp4)?
};
let t1 = tmp.double(cs.ns(|| "t1"))?;
// t2 + t3*y = (z2 + z3*y)^2 = b^2
let tmp = z2.mul(cs.ns(|| "second mul"), &z3)?;
let t2 = {
// (z2 + &z3) * &(z2 + &(fp2_nr * &z3)) - &tmp - &(tmp * &fp2_nr);
let mut cs = cs.ns(|| "t2");
let tmp1 = z2.add(cs.ns(|| "tmp1"), &z3)?;
let tmp2 = z3
.mul_by_constant(cs.ns(|| "tmp2.1"), &fp2_nr)?
.add(cs.ns(|| "tmp2.2"), &z2)?;
let tmp4 = tmp
.mul_by_constant(cs.ns(|| "tmp4.1"), &fp2_nr)?
.add(cs.ns(|| "tmp4.2"), &tmp)?;
tmp1.mul(cs.ns(|| "tmp3.1"), &tmp2)?
.sub(cs.ns(|| "tmp3.2"), &tmp4)?
};
let t3 = tmp.double(cs.ns(|| "t3"))?;
// t4 + t5*y = (z4 + z5*y)^2 = c^2
let tmp = z4.mul(cs.ns(|| "third mul"), &z5)?;
let t4 = {
// (z4 + &z5) * &(z4 + &(fp2_nr * &z5)) - &tmp - &(tmp * &fp2_nr);
let mut cs = cs.ns(|| "t4");
let tmp1 = z4.add(cs.ns(|| "tmp1"), &z5)?;
let tmp2 = z5
.mul_by_constant(cs.ns(|| "tmp2.1"), &fp2_nr)?
.add(cs.ns(|| "tmp2.2"), &z4)?;
let tmp4 = tmp
.mul_by_constant(cs.ns(|| "tmp4.1"), &fp2_nr)?
.add(cs.ns(|| "tmp4.2"), &tmp)?;
tmp1.mul(cs.ns(|| "tmp3.1"), &tmp2)?
.sub(cs.ns(|| "tmp3.2"), &tmp4)?
};
let t5 = tmp.double(cs.ns(|| "t5"))?;
// for A
// z0 = 3 * t0 - 2 * z0
result.c0.c0 = {
let mut cs = cs.ns(|| "result.c0.c0");
t0.sub(cs.ns(|| "1"), &z0)?
.double(cs.ns(|| "2"))?
.add(cs.ns(|| "3"), &t0)?
};
// z1 = 3 * t1 + 2 * z1
result.c1.c1 = {
let mut cs = cs.ns(|| "result.c1.c1");
t1.add(cs.ns(|| "1"), &z1)?
.double(cs.ns(|| "2"))?
.add(cs.ns(|| "3"), &t1)?
};
// for B
// z2 = 3 * (xi * t5) + 2 * z2
result.c1.c0 = {
let mut cs = cs.ns(|| "result.c1.c0");
let tmp = t5.mul_by_constant(cs.ns(|| "1"), &fp2_nr)?;
z2.add(cs.ns(|| "2"), &tmp)?
.double(cs.ns(|| "3"))?
.add(cs.ns(|| "4"), &tmp)?
};
// z3 = 3 * t4 - 2 * z3
result.c0.c2 = {
let mut cs = cs.ns(|| "result.c0.c2");
t4.sub(cs.ns(|| "1"), &z3)?
.double(cs.ns(|| "2"))?
.add(cs.ns(|| "3"), &t4)?
};
// for C
// z4 = 3 * t2 - 2 * z4
result.c0.c1 = {
let mut cs = cs.ns(|| "result.c0.c1");
t2.sub(cs.ns(|| "1"), &z4)?
.double(cs.ns(|| "2"))?
.add(cs.ns(|| "3"), &t2)?
};
// z5 = 3 * t3 + 2 * z5
result.c1.c2 = {
let mut cs = cs.ns(|| "result.c1.c2");
t3.add(cs.ns(|| "1"), &z5)?
.double(cs.ns(|| "2"))?
.add(cs.ns(|| "3"), &t3)?
};
Ok(result)
}
#[inline]
pub fn cyclotomic_exp<CS: ConstraintSystem<ConstraintF>, S: AsRef<[u64]>>(
&self,
mut cs: CS,
exp: S,
) -> Result<Self, SynthesisError> {
let mut res = Self::one(cs.ns(|| "one"))?;
let mut found_one = false;
for (j, i) in BitIterator::new(exp).enumerate() {
if found_one {
res = res.cyclotomic_square(cs.ns(|| format!("res_square_{:?}", j)))?;
} else {
found_one = i;
}
if i {
res.mul_in_place(cs.ns(|| format!("res_mul2_{:?}", j)), self)?;
}
}
Ok(res)
}
}
impl<P, ConstraintF: PrimeField> FieldGadget<Fp12<P>, ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type Variable = (
Fp6GadgetVariable<P, ConstraintF>,
Fp6GadgetVariable<P, ConstraintF>,
);
#[inline]
fn get_value(&self) -> Option<Fp12<P>> {
Some(Fp12::new(self.c0.get_value()?, self.c1.get_value()?))
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(self.c0.get_variable(), self.c1.get_variable())
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp6Gadget::<P, ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = Fp6Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp6Gadget::<P, ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = Fp6Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp12<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(cs.ns(|| "c0"), &other.c0)?;
let c1 = self.c1.add(cs.ns(|| "c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Self,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(cs.ns(|| "c0"), &other.c0)?;
let c1 = self.c1.sub(cs.ns(|| "c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn sub_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Self,
) -> Result<&mut Self, SynthesisError> {
self.c0.sub_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.sub_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.negate(cs.ns(|| "c0"))?;
let c1 = self.c1.negate(cs.ns(|| "c1"))?;
Ok(Self::new(c0, c1))
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(cs.ns(|| "c0"))?;
self.c1.negate_in_place(cs.ns(|| "c1"))?;
Ok(self)
}
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
//
// Enforced with 3 Fp3_mul_gadget's that ensure that:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = v0
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + v0 + v1
let v0 = self.c0.mul(cs.ns(|| "v0"), &other.c0)?;
let v1 = self.c1.mul(cs.ns(|| "v1"), &other.c1)?;
let c0 = {
let non_residue_times_v1 =
Self::mul_fp6_by_nonresidue(cs.ns(|| "first mul_by_nr"), &v1)?;
v0.add(cs.ns(|| "v0 + beta * v1"), &non_residue_times_v1)?
};
let c1 = {
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(cs.ns(|| "b0 + b1"), &other.c1)?;
let a0_plus_a1_times_b0_plus_b1 =
a0_plus_a1.mul(&mut cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?;
a0_plus_a1_times_b0_plus_b1
.sub(cs.ns(|| "res - v0"), &v0)?
.sub(cs.ns(|| "res - v0 - v1"), &v1)?
};
Ok(Self::new(c0, c1))
}
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// From Libsnark/fp2_gadget.tcc
// Complex multiplication for Fp2:
// v0 = A.c0 * A.c1
// result.c0 = (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) - (1 +
// non_residue) * v0 result.c1 = 2 * v0
// Enforced with 2 constraints:
// (2*A.c0) * A.c1 = result.c1
// (A.c0 + A.c1) * (A.c0 + non_residue * A.c1) = result.c0 + result.c1 * (1
// + non_residue)/2 Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mut v0 = self.c0.mul(cs.ns(|| "v0"), &self.c1)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let non_residue_a1 = Self::mul_fp6_by_nonresidue(cs.ns(|| "non_residue * a1"), &self.c1)?;
let a0_plus_non_residue_a1 = self
.c0
.add(cs.ns(|| "a0 + non_residue * a1"), &non_residue_a1)?;
let one_plus_non_residue_v0 =
Self::mul_fp6_by_nonresidue(cs.ns(|| "non_residue * v0"), &v0)?
.add(cs.ns(|| "plus v0"), &v0)?;
let c0 = a0_plus_a1
.mul(
cs.ns(|| "(a0 + a1) * (a0 + non_residue * a1)"),
&a0_plus_non_residue_a1,
)?
.sub(cs.ns(|| "- (1 + non_residue) v0"), &one_plus_non_residue_v0)?;
v0.double_in_place(cs.ns(|| "2v0"))?;
let c1 = v0;
Ok(Self {
c0,
c1,
_params: PhantomData,
})
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp12<P>,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add_constant(cs.ns(|| "c0"), &other.c0)?;
let c1 = self.c1.add_constant(cs.ns(|| "c1"), &other.c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp12<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
Ok(self)
}
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp12<P>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication (see mul above).
// Doesn't need any constraints; returns linear combinations of
// `self`'s variables.
//
// (The operations below are guaranteed to return linear combinations)
let (a0, a1) = (&self.c0, &self.c1);
let (b0, b1) = (other.c0, other.c1);
let mut v0 = a0.mul_by_constant(&mut cs.ns(|| "v0"), &b0)?;
let mut v1 = Self::mul_fp6_by_nonresidue(&mut cs.ns(|| "v1"), a1)?;
let beta_v1 = v1.mul_by_constant_in_place(&mut cs.ns(|| "beta * v1"), &b1)?;
v0.add_in_place(&mut cs.ns(|| "c0"), beta_v1)?;
let c0 = v0;
let mut a0b1 = a0.mul_by_constant(&mut cs.ns(|| "a0b1"), &b1)?;
let a1b0 = a1.mul_by_constant(&mut cs.ns(|| "a1b0"), &b0)?;
a0b1.add_in_place(&mut cs.ns(|| "c1"), &a1b0)?;
let c1 = a0b1;
Ok(Self::new(c0, c1))
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut res = self.clone();
res.frobenius_map_in_place(cs, power)?;
Ok(res)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c0
.frobenius_map_in_place(cs.ns(|| "frob_map1"), power)?;
self.c1
.frobenius_map_in_place(cs.ns(|| "frob_map2"), power)?;
self.c1
.c0
.mul_by_constant_in_place(cs.ns(|| "mul1"), &P::FROBENIUS_COEFF_FP12_C1[power % 12])?;
self.c1
.c1
.mul_by_constant_in_place(cs.ns(|| "mul2"), &P::FROBENIUS_COEFF_FP12_C1[power % 12])?;
self.c1
.c2
.mul_by_constant_in_place(cs.ns(|| "mul3"), &P::FROBENIUS_COEFF_FP12_C1[power % 12])?;
Ok(self)
}
fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let inverse = Self::alloc(&mut cs.ns(|| "alloc inverse"), || {
self.get_value().and_then(|val| val.inverse()).get()
})?;
// Karatsuba multiplication for Fp2 with the inverse:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
//
// 1 = v0 + non_residue * v1
// => v0 = 1 - non_residue * v1
//
// 0 = result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// => v0 + v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// => 1 + (1 - non_residue) * v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// Enforced with 2 constraints:
// A.c1 * B.c1 = v1
// => 1 + (1 - non_residue) * v1 = (A.c0 + A.c1) * (B.c0 + B.c1)
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// Constraint 1
let v1 = self.c1.mul(cs.ns(|| "inv_constraint_1"), &inverse.c1)?;
// Constraint 2
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = inverse.c0.add(cs.ns(|| "b0 + b1"), &inverse.c1)?;
let one = Fp6::<P::Fp6Params>::one();
let rhs = Self::mul_fp6_by_nonresidue(cs.ns(|| "nr * v1"), &v1)?
.sub(cs.ns(|| "sub v1"), &v1)?
.negate(cs.ns(|| "negate it"))?
.add_constant(cs.ns(|| "add one"), &one)?;
a0_plus_a1.mul_equals(cs.ns(|| "inv_constraint_2"), &b0_plus_b1, &rhs)?;
Ok(inverse)
}
fn mul_equals<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
result: &Self,
) -> Result<(), SynthesisError> {
// Karatsuba multiplication for Fp2:
// v0 = A.c0 * B.c0
// v1 = A.c1 * B.c1
// result.c0 = v0 + non_residue * v1
// result.c1 = (A.c0 + A.c1) * (B.c0 + B.c1) - v0 - v1
// Enforced with 3 constraints:
// A.c1 * B.c1 = v1
// A.c0 * B.c0 = result.c0 - non_residue * v1
// (A.c0+A.c1)*(B.c0+B.c1) = result.c1 + result.c0 + (1 - non_residue) * v1
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
let mul_cs = &mut cs.ns(|| "mul");
// Compute v1
let v1 = self.c1.mul(mul_cs.ns(|| "v1"), &other.c1)?;
// Perform second check
let non_residue_times_v1 = Self::mul_fp6_by_nonresidue(mul_cs.ns(|| "nr * v1"), &v1)?;
let rhs = result
.c0
.sub(mul_cs.ns(|| "sub from result.c0"), &non_residue_times_v1)?;
self.c0
.mul_equals(mul_cs.ns(|| "second check"), &other.c0, &rhs)?;
// Last check
let a0_plus_a1 = self.c0.add(mul_cs.ns(|| "a0 + a1"), &self.c1)?;
let b0_plus_b1 = other.c0.add(mul_cs.ns(|| "b0 + b1"), &other.c1)?;
let one_minus_non_residue_v1 =
v1.sub(mul_cs.ns(|| "sub from v1"), &non_residue_times_v1)?;
let result_c1_plus_result_c0_plus_one_minus_non_residue_v1 = result
.c1
.add(mul_cs.ns(|| "c1 + c0"), &result.c0)?
.add(mul_cs.ns(|| "rest of stuff"), &one_minus_non_residue_v1)?;
a0_plus_a1.mul_equals(
mul_cs.ns(|| "third check"),
&b0_plus_b1,
&result_c1_plus_result_c0_plus_one_minus_non_residue_v1,
)?;
Ok(())
}
fn cost_of_mul() -> usize {
unimplemented!()
}
fn cost_of_inv() -> usize {
Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> PartialEq for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1
}
}
impl<P, ConstraintF: PrimeField> Eq for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> EqGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> ConditionalEqGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp6Gadget<P, ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> NEqGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
Ok(())
}
fn cost() -> usize {
2 * <Fp6Gadget<P, ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ToBitsGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_bits_strict<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits_strict(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits_strict(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> ToBytesGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
fn to_bytes_strict<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes_strict(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes_strict(cs.ns(|| "c1"))?;
c0.append(&mut c1);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> Clone for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn clone(&self) -> Self {
Self::new(self.c0.clone(), self.c1.clone())
}
}
impl<P, ConstraintF: PrimeField> CondSelectGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
first: &Self,
second: &Self,
) -> Result<Self, SynthesisError> {
let c0 = Fp6Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&first.c0,
&second.c0,
)?;
let c1 = Fp6Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&first.c1,
&second.c1,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp6Gadget<P, ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> TwoBitLookupGadget<ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp12<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp6Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = Fp6Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp6Gadget<P, ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ThreeBitCondNegLookupGadget<ConstraintF>
for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp12<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c0 = Fp6Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = Fp6Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
Ok(Self::new(c0, c1))
}
fn cost() -> usize {
2 * <Fp6Gadget<P, ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> AllocGadget<Fp12<P>, ConstraintF> for Fp12Gadget<P, ConstraintF>
where
P: Fp12Parameters,
<P::Fp6Params as Fp6Parameters>::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp12<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
},
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp6Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp6Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp12<P>>,
{
let (c0, c1) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1))
},
Err(_) => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp6Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp6Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
Ok(Self::new(c0, c1))
}
}