You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

179 lines
6.6 KiB

use r1cs_core::{ConstraintSystem, SynthesisError};
use super::PairingGadget as PG;
use crate::{
fields::{fp::FpGadget, fp12::Fp12Gadget, fp2::Fp2Gadget, FieldGadget},
groups::bls12::{G1Gadget, G1PreparedGadget, G2Gadget, G2PreparedGadget},
};
use algebra::{
curves::bls12::{Bls12, Bls12Parameters, TwistType},
fields::BitIterator,
};
use core::marker::PhantomData;
pub struct PairingGadget<P: Bls12Parameters>(PhantomData<P>);
type Fp2G<P> = Fp2Gadget<<P as Bls12Parameters>::Fp2Params, <P as Bls12Parameters>::Fp>;
impl<P: Bls12Parameters> PairingGadget<P> {
// Evaluate the line function at point p.
fn ell<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
f: &mut Fp12Gadget<P::Fp12Params, P::Fp>,
coeffs: &(Fp2G<P>, Fp2G<P>),
p: &G1Gadget<P>,
) -> Result<(), SynthesisError> {
let zero = FpGadget::<P::Fp>::zero(cs.ns(|| "fpg zero"))?;
match P::TWIST_TYPE {
TwistType::M => {
let c0 = coeffs.0.clone();
let mut c1 = coeffs.1.clone();
let c2 = Fp2G::<P>::new(p.y.clone(), zero);
c1.c0 = c1.c0.mul(cs.ns(|| "mul c1.c0"), &p.x)?;
c1.c1 = c1.c1.mul(cs.ns(|| "mul c1.c1"), &p.x)?;
*f = f.mul_by_014(cs.ns(|| "sparse mul f"), &c0, &c1, &c2)?;
Ok(())
},
TwistType::D => {
let c0 = Fp2G::<P>::new(p.y.clone(), zero);
let mut c1 = coeffs.0.clone();
let c2 = coeffs.1.clone();
c1.c0 = c1.c0.mul(cs.ns(|| "mul c1.c0"), &p.x)?;
c1.c1 = c1.c1.mul(cs.ns(|| "mul c1.c1"), &p.x)?;
*f = f.mul_by_034(cs.ns(|| "sparse mul f"), &c0, &c1, &c2)?;
Ok(())
},
}
}
fn exp_by_x<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
f: &Fp12Gadget<P::Fp12Params, P::Fp>,
) -> Result<Fp12Gadget<P::Fp12Params, P::Fp>, SynthesisError> {
let mut result = f.cyclotomic_exp(cs.ns(|| "exp_by_x"), P::X)?;
if P::X_IS_NEGATIVE {
result.conjugate_in_place(cs.ns(|| "conjugate"))?;
}
Ok(result)
}
}
impl<P: Bls12Parameters> PG<Bls12<P>, P::Fp> for PairingGadget<P> {
type G1Gadget = G1Gadget<P>;
type G2Gadget = G2Gadget<P>;
type G1PreparedGadget = G1PreparedGadget<P>;
type G2PreparedGadget = G2PreparedGadget<P>;
type GTGadget = Fp12Gadget<P::Fp12Params, P::Fp>;
fn miller_loop<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
ps: &[Self::G1PreparedGadget],
qs: &[Self::G2PreparedGadget],
) -> Result<Self::GTGadget, SynthesisError> {
let mut pairs = vec![];
for (p, q) in ps.iter().zip(qs.iter()) {
pairs.push((p, q.ell_coeffs.iter()));
}
let mut f = Self::GTGadget::one(cs.ns(|| "one"))?;
for (j, i) in BitIterator::new(P::X).skip(1).enumerate() {
let mut cs = cs.ns(|| format!("Iteration {}", j));
f.square_in_place(cs.ns(|| "square"))?;
for (k, &mut (p, ref mut coeffs)) in pairs.iter_mut().enumerate() {
let cs = cs.ns(|| format!("Double input {}", k));
Self::ell(cs, &mut f, coeffs.next().unwrap(), &p.0)?;
}
if i {
for (k, &mut (p, ref mut coeffs)) in pairs.iter_mut().enumerate() {
let cs = cs.ns(|| format!("Addition input {}", k));
Self::ell(cs, &mut f, &coeffs.next().unwrap(), &p.0)?;
}
}
}
if P::X_IS_NEGATIVE {
f.conjugate_in_place(cs.ns(|| "f conjugate"))?;
}
Ok(f)
}
fn final_exponentiation<CS: ConstraintSystem<P::Fp>>(
mut cs: CS,
f: &Self::GTGadget,
) -> Result<Self::GTGadget, SynthesisError> {
// Computing the final exponentation following
// https://eprint.iacr.org/2016/130.pdf.
// We don't use their "faster" formula because it is difficult to make
// it work for curves with odd `P::X`.
// Hence we implement the slower algorithm from Table 1 below.
let f1 = f.frobenius_map(cs.ns(|| "frobmap 1"), 6)?;
f.inverse(cs.ns(|| "inverse 1")).and_then(|mut f2| {
// f2 = f^(-1);
// r = f^(p^6 - 1)
let mut r = f1;
r.mul_in_place(cs.ns(|| "r = f1 * f2"), &f2)?;
// f2 = f^(p^6 - 1)
f2 = r.clone();
// r = f^((p^6 - 1)(p^2))
r.frobenius_map_in_place(cs.ns(|| "frobenius map 2"), 2)?;
// r = f^((p^6 - 1)(p^2) + (p^6 - 1))
// r = f^((p^6 - 1)(p^2 + 1))
r.mul_in_place(cs.ns(|| "mul 0"), &f2)?;
// Hard part of the final exponentation is below:
// From https://eprint.iacr.org/2016/130.pdf, Table 1
let mut y0 = r.cyclotomic_square(cs.ns(|| "cyclotomic_sq 1"))?;
y0.conjugate_in_place(&mut cs.ns(|| "conjugate 2"))?;
let mut y5 = Self::exp_by_x(&mut cs.ns(|| "exp_by_x 1"), &r)?;
let mut y1 = y5.cyclotomic_square(&mut cs.ns(|| "square 1"))?;
let mut y3 = y0.mul(&mut cs.ns(|| "mul 1"), &y5)?;
y0 = Self::exp_by_x(cs.ns(|| "exp_by_x 2"), &y3)?;
let y2 = Self::exp_by_x(cs.ns(|| "exp_by_x 3"), &y0)?;
let mut y4 = Self::exp_by_x(cs.ns(|| "exp_by_x 4"), &y2)?;
y4.mul_in_place(cs.ns(|| "mul 2"), &y1)?;
y1 = Self::exp_by_x(cs.ns(|| "exp_by_x 5"), &y4)?;
y3.conjugate_in_place(cs.ns(|| "conjugate 3"))?;
y1.mul_in_place(cs.ns(|| "mul 3"), &y3)?;
y1.mul_in_place(cs.ns(|| "mul 4"), &r)?;
y3 = r.clone();
y3.conjugate_in_place(cs.ns(|| "conjugate 4"))?;
y0.mul_in_place(cs.ns(|| "mul 5"), &r)?;
y0.frobenius_map_in_place(cs.ns(|| "frobmap 3"), 3)?;
y4.mul_in_place(cs.ns(|| "mul 6"), &y3)?;
y4.frobenius_map_in_place(cs.ns(|| "frobmap 4"), 1)?;
y5.mul_in_place(cs.ns(|| "mul 7"), &y2)?;
y5.frobenius_map_in_place(cs.ns(|| "frobmap 5"), 2)?;
y5.mul_in_place(cs.ns(|| "mul 8"), &y0)?;
y5.mul_in_place(cs.ns(|| "mul 9"), &y4)?;
y5.mul_in_place(cs.ns(|| "mul 10"), &y1)?;
Ok(y5)
})
}
fn prepare_g1<CS: ConstraintSystem<P::Fp>>(
cs: CS,
p: &Self::G1Gadget,
) -> Result<Self::G1PreparedGadget, SynthesisError> {
Self::G1PreparedGadget::from_affine(cs, p)
}
fn prepare_g2<CS: ConstraintSystem<P::Fp>>(
cs: CS,
q: &Self::G2Gadget,
) -> Result<Self::G2PreparedGadget, SynthesisError> {
Self::G2PreparedGadget::from_affine(cs, q)
}
}