Files
ark-r1cs-std/r1cs-std/src/fields/fp6_3over2.rs

1028 lines
34 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
use algebra::{
fields::{
fp6_3over2::{Fp6, Fp6Parameters},
Field, Fp2Parameters,
},
PrimeField,
};
use core::{borrow::Borrow, marker::PhantomData};
use r1cs_core::{ConstraintSystem, ConstraintVar, SynthesisError};
use crate::{prelude::*, Assignment, Vec};
type Fp2Gadget<P, ConstraintF> =
super::fp2::Fp2Gadget<<P as Fp6Parameters>::Fp2Params, ConstraintF>;
#[derive(Derivative)]
#[derivative(Debug(bound = "ConstraintF: PrimeField"))]
#[must_use]
pub struct Fp6Gadget<P, ConstraintF: PrimeField>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
pub c0: Fp2Gadget<P, ConstraintF>,
pub c1: Fp2Gadget<P, ConstraintF>,
pub c2: Fp2Gadget<P, ConstraintF>,
#[derivative(Debug = "ignore")]
_params: PhantomData<P>,
}
impl<P, ConstraintF: PrimeField> Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
pub fn new(
c0: Fp2Gadget<P, ConstraintF>,
c1: Fp2Gadget<P, ConstraintF>,
c2: Fp2Gadget<P, ConstraintF>,
) -> Self {
Self {
c0,
c1,
c2,
_params: PhantomData,
}
}
/// Multiply a Fp2Gadget by cubic nonresidue P::NONRESIDUE.
#[inline]
pub fn mul_fp2_gadget_by_nonresidue<CS: ConstraintSystem<ConstraintF>>(
cs: CS,
fe: &Fp2Gadget<P, ConstraintF>,
) -> Result<Fp2Gadget<P, ConstraintF>, SynthesisError> {
fe.mul_by_constant(cs, &P::NONRESIDUE)
}
#[inline]
pub fn mul_by_0_c1_0<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
c1: &Fp2Gadget<P, ConstraintF>,
) -> Result<Self, SynthesisError> {
// Karatsuba multiplication
// v0 = a0 * b0 = 0
// v1 = a1 * b1
let v1 = self.c1.mul(cs.ns(|| "first mul"), c1)?;
// v2 = a2 * b2 = 0
let a1_plus_a2 = self.c1.add(cs.ns(|| "a1 + a2"), &self.c2)?;
let b1_plus_b2 = c1.clone();
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
// c0 = (NONRESIDUE * ((a1 + a2)*(b1 + b2) - v1 - v2)) + v0
// = NONRESIDUE * ((a1 + a2) * b1 - v1)
let c0 = a1_plus_a2
.mul(cs.ns(|| "second mul"), &b1_plus_b2)?
.sub(cs.ns(|| "first sub"), &v1)?
.mul_by_constant(cs.ns(|| "mul_by_nonresidue"), &P::NONRESIDUE)?;
// c1 = (a0 + a1) * (b0 + b1) - v0 - v1 + NONRESIDUE * v2
// = (a0 + a1) * b1 - v1
let c1 = a0_plus_a1
.mul(cs.ns(|| "third mul"), &c1)?
.sub(cs.ns(|| "second sub"), &v1)?;
// c2 = (a0 + a2) * (b0 + b2) - v0 - v2 + v1
// = v1
let c2 = v1;
Ok(Self::new(c0, c1, c2))
}
// #[inline]
pub fn mul_by_c0_c1_0<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
c0: &Fp2Gadget<P, ConstraintF>,
c1: &Fp2Gadget<P, ConstraintF>,
) -> Result<Self, SynthesisError> {
let v0 = self.c0.mul(cs.ns(|| "v0"), c0)?;
let v1 = self.c1.mul(cs.ns(|| "v1"), c1)?;
// v2 = 0.
let a1_plus_a2 = self.c1.add(cs.ns(|| "a1 + a2"), &self.c2)?;
let a0_plus_a1 = self.c0.add(cs.ns(|| "a0 + a1"), &self.c1)?;
let a0_plus_a2 = self.c0.add(cs.ns(|| "a0 + a2"), &self.c2)?;
let b1_plus_b2 = c1.clone();
let b0_plus_b1 = c0.add(cs.ns(|| "b0 + b1"), &c1)?;
let b0_plus_b2 = c0.clone();
let c0 = {
let cs = &mut cs.ns(|| "c0");
a1_plus_a2
.mul(cs.ns(|| "(a1 + a2) * (b1 + b2)"), &b1_plus_b2)?
.sub(cs.ns(|| "sub v1"), &v1)?
.mul_by_constant(cs.ns(|| "First mul_by_nonresidue"), &P::NONRESIDUE)?
.add(cs.ns(|| "add v0"), &v0)?
};
let c1 = {
let cs = &mut cs.ns(|| "c1");
a0_plus_a1
.mul(cs.ns(|| "(a0 + a1) * (b0 + b1)"), &b0_plus_b1)?
.sub(cs.ns(|| "sub v0"), &v0)?
.sub(cs.ns(|| "sub v1"), &v1)?
};
let c2 = {
a0_plus_a2
.mul(cs.ns(|| "(a0 + a2) * (b0 + b2)"), &b0_plus_b2)?
.sub(cs.ns(|| "sub v0"), &v0)?
.add(cs.ns(|| "add v1"), &v1)?
};
Ok(Self::new(c0, c1, c2))
}
}
impl<P, ConstraintF: PrimeField> FieldGadget<Fp6<P>, ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type Variable = (
(ConstraintVar<ConstraintF>, ConstraintVar<ConstraintF>),
(ConstraintVar<ConstraintF>, ConstraintVar<ConstraintF>),
(ConstraintVar<ConstraintF>, ConstraintVar<ConstraintF>),
);
#[inline]
fn get_value(&self) -> Option<Fp6<P>> {
match (
self.c0.get_value(),
self.c1.get_value(),
self.c2.get_value(),
) {
(Some(c0), Some(c1), Some(c2)) => Some(Fp6::new(c0, c1, c2)),
(..) => None,
}
}
#[inline]
fn get_variable(&self) -> Self::Variable {
(
self.c0.get_variable(),
self.c1.get_variable(),
self.c2.get_variable(),
)
}
#[inline]
fn zero<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c0"))?;
let c1 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
let c2 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn one<CS: ConstraintSystem<ConstraintF>>(mut cs: CS) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::one(cs.ns(|| "c0"))?;
let c1 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c1"))?;
let c2 = Fp2Gadget::<P, ConstraintF>::zero(cs.ns(|| "c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn conditionally_add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
bit: &Boolean,
coeff: Fp6<P>,
) -> Result<Self, SynthesisError> {
let c0 = self
.c0
.conditionally_add_constant(cs.ns(|| "c0"), bit, coeff.c0)?;
let c1 = self
.c1
.conditionally_add_constant(cs.ns(|| "c1"), bit, coeff.c1)?;
let c2 = self
.c2
.conditionally_add_constant(cs.ns(|| "c2"), bit, coeff.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add(&mut cs.ns(|| "add c0"), &other.c0)?;
let c1 = self.c1.add(&mut cs.ns(|| "add c1"), &other.c1)?;
let c2 = self.c2.add(&mut cs.ns(|| "add c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn sub<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.sub(&mut cs.ns(|| "sub c0"), &other.c0)?;
let c1 = self.c1.sub(&mut cs.ns(|| "sub c1"), &other.c1)?;
let c2 = self.c2.sub(&mut cs.ns(|| "sub c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.negate(&mut cs.ns(|| "negate c0"))?;
let c1 = self.c1.negate(&mut cs.ns(|| "negate c1"))?;
let c2 = self.c2.negate(&mut cs.ns(|| "negate c2"))?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn negate_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
) -> Result<&mut Self, SynthesisError> {
self.c0.negate_in_place(&mut cs.ns(|| "negate c0"))?;
self.c1.negate_in_place(&mut cs.ns(|| "negate c1"))?;
self.c2.negate_in_place(&mut cs.ns(|| "negate c2"))?;
Ok(self)
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn mul<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cool-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)b(0) = a0 * b0
let v0 = self.c0.mul(&mut cs.ns(|| "Calc v0"), &other.c0)?;
// v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
let v1 = {
let mut v1_cs = cs.ns(|| "compute v1");
let a0_plus_a1_plus_a2 = self
.c0
.add(v1_cs.ns(|| "a0 + a1"), &self.c1)?
.add(v1_cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
let b0_plus_b1_plus_b2 = other
.c0
.add(v1_cs.ns(|| "b0 + b1"), &other.c1)?
.add(v1_cs.ns(|| "b0 + b1 + b2"), &other.c2)?;
a0_plus_a1_plus_a2.mul(
v1_cs.ns(|| "(a0 + a1 + a2)(b0 + b1 + b2)"),
&b0_plus_b1_plus_b2,
)?
};
// v2 = a(1)b(1) = (a0 a1 + a2)(b0 b1 + b2)
let v2 = {
let mut v2_cs = cs.ns(|| "compute v2");
let a0_minus_a1_plus_a2 = self
.c0
.sub(v2_cs.ns(|| "a0 - a1"), &self.c1)?
.add(v2_cs.ns(|| "a0 - a1 + a2"), &self.c2)?;
let b0_minus_b1_plus_b2 = other
.c0
.sub(v2_cs.ns(|| "b0 - b1"), &other.c1)?
.add(v2_cs.ns(|| "b0 - b1 + b2"), &other.c2)?;
a0_minus_a1_plus_a2.mul(
v2_cs.ns(|| "(a0 - a1 + a2)(b0 - b1 + b2)"),
&b0_minus_b1_plus_b2,
)?
};
// v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
let v3 = {
let v3_cs = &mut cs.ns(|| "compute v3");
let a1_double = self.c1.double(v3_cs.ns(|| "2 * a1"))?;
let a2_quad = self
.c2
.double(v3_cs.ns(|| "2 * a2"))?
.double(v3_cs.ns(|| "4 * a2"))?;
let a0_plus_2_a1_plus_4_a2 = self
.c0
.add(v3_cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(v3_cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
let b1_double = other.c1.double(v3_cs.ns(|| "2 * b1"))?;
let b2_quad = other
.c2
.double(v3_cs.ns(|| "2 * b2"))?
.double(v3_cs.ns(|| "4 * b2"))?;
let b0_plus_2_b1_plus_4_b2 = other
.c0
.add(v3_cs.ns(|| "b0 + 2b1"), &b1_double)?
.add(v3_cs.ns(|| "b0 + 2b1 + 4b2"), &b2_quad)?;
a0_plus_2_a1_plus_4_a2.mul(
v3_cs.ns(|| "(a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)"),
&b0_plus_2_b1_plus_4_b2,
)?
};
// v4 = a(∞)b(∞) = a2 * b2
let v4 = self.c2.mul(cs.ns(|| "v2: a2 * b2"), &other.c2)?;
let two = <P::Fp2Params as Fp2Parameters>::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let half_v0 = v0.mul_by_fp_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_fp_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let one_sixth_v2 = v2.mul_by_fp_constant(cs.ns(|| "v2_by_six"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_fp_constant(cs.ns(|| "v3_by_six"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "2 * v4"))?;
// c0 = v0 + β((1/2)v0 (1/2)v1 (1/6)v2 + (1/6)v3 2v4)
let c0 = {
let c0_cs = &mut cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let temp = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
temp.mul_by_constant(&mut c0_cs.ns(|| "mul5"), &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add6"), &non_residue_times_inner)?
};
// (1/2)v0 + v1 (1/3)v2 (1/6)v3 + 2v4 + βv4
let c1 = {
let c1_cs = &mut cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double(&mut c1_cs.ns(|| "v2_by_3"))?;
let non_residue_v4 =
v4.mul_by_constant(&mut c1_cs.ns(|| "mul_by_beta"), &P::NONRESIDUE)?;
let result = half_v0
.negate(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add2"), &v1)?
.sub(c1_cs.ns(|| "sub3"), &one_third_v2)?
.sub(c1_cs.ns(|| "sub4"), &one_sixth_v3)?
.add(c1_cs.ns(|| "sub5"), &two_v4)?
.add(c1_cs.ns(|| "sub6"), &non_residue_v4)?;
result
};
// -v0 + (1/2)v1 + (1/2)v2 v4
let c2 = {
let c2_cs = &mut cs.ns(|| "c2");
let half_v2 = v2.mul_by_fp_constant(&mut c2_cs.ns(|| "mul1"), &two_inverse)?;
let result = half_v1
.add(c2_cs.ns(|| "add1"), &half_v2)?
.sub(c2_cs.ns(|| "sub1"), &v4)?
.sub(c2_cs.ns(|| "sub2"), &v0)?;
result
};
Ok(Self::new(c0, c1, c2))
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn square<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cool-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)^2 = a0^2
let v0 = self.c0.square(&mut cs.ns(|| "Calc v0"))?;
// v1 = a(1)^2 = (a0 + a1 + a2)^2
let v1 = {
let a0_plus_a1_plus_a2 = self
.c0
.add(cs.ns(|| "a0 + a1"), &self.c1)?
.add(cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
a0_plus_a1_plus_a2.square(&mut cs.ns(|| "(a0 + a1 + a2)^2"))?
};
// v2 = a(1)^2 = (a0 a1 + a2)^2
let v2 = {
let a0_minus_a1_plus_a2 = self
.c0
.sub(cs.ns(|| "a0 - a1"), &self.c1)?
.add(cs.ns(|| "a0 - a2 + a2"), &self.c2)?;
a0_minus_a1_plus_a2.square(&mut cs.ns(|| "(a0 - a1 + a2)^2"))?
};
// v3 = a(2)^2 = (a0 + 2a1 + 4a2)^2
let v3 = {
let a1_double = self.c1.double(cs.ns(|| "2a1"))?;
let a2_quad = self.c2.double(cs.ns(|| "2a2"))?.double(cs.ns(|| "4a2"))?;
let a0_plus_2_a1_plus_4_a2 = self
.c0
.add(cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
a0_plus_2_a1_plus_4_a2.square(&mut cs.ns(|| "(a0 + 2a1 + 4a2)^2"))?
};
// v4 = a(∞)^2 = a2^2
let v4 = self.c2.square(&mut cs.ns(|| "a2^2"))?;
let two = <P::Fp2Params as Fp2Parameters>::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let half_v0 = v0.mul_by_fp_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_fp_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let one_sixth_v2 = v2.mul_by_fp_constant(cs.ns(|| "one_sixth_v2"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_fp_constant(cs.ns(|| "one_sixth_v3"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "double_v4"))?;
// c0 = v0 + β((1/2)v0 (1/2)v1 (1/6)v2 + (1/6)v3 2v4)
let c0 = {
let mut c0_cs = cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let inner = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
inner.mul_by_constant(c0_cs.ns(|| "mul_by_res"), &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add5"), &non_residue_times_inner)?
};
// (1/2)v0 + v1 (1/3)v2 (1/6)v3 + 2v4 + βv4
let c1 = {
let mut c1_cs = cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double(c1_cs.ns(|| "v2_by_3"))?;
let non_residue_v4 = v4.mul_by_constant(c1_cs.ns(|| "mul_by_res"), &P::NONRESIDUE)?;
half_v0
.negate(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add1"), &v1)?
.sub(c1_cs.ns(|| "sub2"), &one_third_v2)?
.sub(c1_cs.ns(|| "sub3"), &one_sixth_v3)?
.add(c1_cs.ns(|| "add4"), &two_v4)?
.add(c1_cs.ns(|| "add5"), &non_residue_v4)?
};
// -v0 + (1/2)v1 + (1/2)v2 v4
let c2 = {
let mut c2_cs = cs.ns(|| "c2");
let half_v2 = v2.mul_by_fp_constant(c2_cs.ns(|| "half_v2"), &two_inverse)?;
half_v1
.add(c2_cs.ns(|| "add1"), &half_v2)?
.sub(c2_cs.ns(|| "sub1"), &v4)?
.sub(c2_cs.ns(|| "sub2"), &v0)?
};
Ok(Self::new(c0, c1, c2))
}
// 18 constaints, we can probably do better but not sure it's worth it.
#[inline]
fn inverse<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Self, SynthesisError> {
let inverse = Self::alloc(&mut cs.ns(|| "alloc inverse"), || {
self.get_value().and_then(|val| val.inverse()).get()
})?;
let one = Self::one(cs.ns(|| "one"))?;
inverse.mul_equals(cs.ns(|| "check inverse"), &self, &one)?;
Ok(inverse)
}
#[inline]
fn add_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp6<P>,
) -> Result<Self, SynthesisError> {
let c0 = self.c0.add_constant(cs.ns(|| "c0"), &other.c0)?;
let c1 = self.c1.add_constant(cs.ns(|| "c1"), &other.c1)?;
let c2 = self.c2.add_constant(cs.ns(|| "c2"), &other.c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn add_constant_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
other: &Fp6<P>,
) -> Result<&mut Self, SynthesisError> {
self.c0.add_constant_in_place(cs.ns(|| "c0"), &other.c0)?;
self.c1.add_constant_in_place(cs.ns(|| "c1"), &other.c1)?;
self.c2.add_constant_in_place(cs.ns(|| "c2"), &other.c2)?;
Ok(self)
}
/// Use the Toom-Cook-3x method to compute multiplication.
#[inline]
fn mul_by_constant<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Fp6<P>,
) -> Result<Self, SynthesisError> {
// Uses Toom-Cook-3x multiplication from
//
// Reference:
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Devegili, OhEigeartaigh, Scott, Dahab
// v0 = a(0)b(0) = a0 * b0
let v0 = self.c0.mul_by_constant(cs.ns(|| "v0"), &other.c0)?;
// v1 = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)
let v1 = {
let mut v1_cs = cs.ns(|| "v1");
let mut a0_plus_a1_plus_a2 = self
.c0
.add(v1_cs.ns(|| "a0 + a1"), &self.c1)?
.add(v1_cs.ns(|| "a0 + a1 + a2"), &self.c2)?;
let b0_plus_b1_plus_b2 = other.c0 + &other.c1 + &other.c2;
a0_plus_a1_plus_a2.mul_by_constant_in_place(
v1_cs.ns(|| "(a0 + a1 + a2)*(b0 + b1 + b2)"),
&b0_plus_b1_plus_b2,
)?;
a0_plus_a1_plus_a2
};
// v2 = a(1)b(1) = (a0 a1 + a2)(b0 b1 + b2)
let mut v2 = {
let mut v2_cs = cs.ns(|| "v2");
let mut a0_minus_a1_plus_a2 = self
.c0
.sub(v2_cs.ns(|| "sub1"), &self.c1)?
.add(v2_cs.ns(|| "add2"), &self.c2)?;
let b0_minus_b1_plus_b2 = other.c0 - &other.c1 + &other.c2;
a0_minus_a1_plus_a2.mul_by_constant_in_place(
v2_cs.ns(|| "(a0 - a1 + a2)*(b0 - b1 + b2)"),
&b0_minus_b1_plus_b2,
)?;
a0_minus_a1_plus_a2
};
// v3 = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)
let mut v3 = {
let mut v3_cs = cs.ns(|| "v3");
let a1_double = self.c1.double(v3_cs.ns(|| "2a1"))?;
let a2_quad = self
.c2
.double(v3_cs.ns(|| "2a2"))?
.double(v3_cs.ns(|| "4a2"))?;
let mut a0_plus_2_a1_plus_4_a2 = self
.c0
.add(v3_cs.ns(|| "a0 + 2a1"), &a1_double)?
.add(v3_cs.ns(|| "a0 + 2a1 + 4a2"), &a2_quad)?;
let b1_double = other.c1.double();
let b2_quad = other.c2.double().double();
let b0_plus_2_b1_plus_4_b2 = other.c0 + &b1_double + &b2_quad;
a0_plus_2_a1_plus_4_a2.mul_by_constant_in_place(
v3_cs.ns(|| "(a0 + 2a1 + 4a2)*(b0 + 2b1 + 4b2)"),
&b0_plus_2_b1_plus_4_b2,
)?;
a0_plus_2_a1_plus_4_a2
};
// v4 = a(∞)b(∞) = a2 * b2
let v4 = self.c2.mul_by_constant(cs.ns(|| "v4"), &other.c2)?;
let two = <P::Fp2Params as Fp2Parameters>::Fp::one().double();
let six = two.double() + &two;
let mut two_and_six = [two, six];
algebra::fields::batch_inversion(&mut two_and_six);
let (two_inverse, six_inverse) = (two_and_six[0], two_and_six[1]);
let mut half_v0 = v0.mul_by_fp_constant(cs.ns(|| "half_v0"), &two_inverse)?;
let half_v1 = v1.mul_by_fp_constant(cs.ns(|| "half_v1"), &two_inverse)?;
let mut one_sixth_v2 = v2.mul_by_fp_constant(cs.ns(|| "v2_by_6"), &six_inverse)?;
let one_sixth_v3 = v3.mul_by_fp_constant_in_place(cs.ns(|| "v3_by_6"), &six_inverse)?;
let two_v4 = v4.double(cs.ns(|| "2v4"))?;
// c0 = v0 + β((1/2)v0 (1/2)v1 (1/6)v2 + (1/6)v3 2v4)
let c0 = {
let mut c0_cs = cs.ns(|| "c0");
// No constraints, only get a linear combination back.
let mut inner = half_v0
.sub(c0_cs.ns(|| "sub1"), &half_v1)?
.sub(c0_cs.ns(|| "sub2"), &one_sixth_v2)?
.add(c0_cs.ns(|| "add3"), &one_sixth_v3)?
.sub(c0_cs.ns(|| "sub4"), &two_v4)?;
let non_residue_times_inner =
inner.mul_by_constant_in_place(&mut c0_cs, &P::NONRESIDUE)?;
v0.add(c0_cs.ns(|| "add5"), non_residue_times_inner)?
};
// (1/2)v0 + v1 (1/3)v2 (1/6)v3 + 2v4 + βv4
let c1 = {
let mut c1_cs = cs.ns(|| "c1");
let one_third_v2 = one_sixth_v2.double_in_place(c1_cs.ns(|| "double1"))?;
let non_residue_v4 =
v4.mul_by_constant(c1_cs.ns(|| "mul_by_const1"), &P::NONRESIDUE)?;
half_v0
.negate_in_place(c1_cs.ns(|| "neg1"))?
.add(c1_cs.ns(|| "add1"), &v1)?
.sub(c1_cs.ns(|| "sub2"), one_third_v2)?
.sub(c1_cs.ns(|| "sub3"), &one_sixth_v3)?
.add(c1_cs.ns(|| "add4"), &two_v4)?
.add(c1_cs.ns(|| "add5"), &non_residue_v4)?
};
// -v0 + (1/2)v1 + (1/2)v2 v4
let c2 = {
let mut c2_cs = cs.ns(|| "c2");
let half_v2 = v2.mul_by_fp_constant_in_place(c2_cs.ns(|| "half_v2"), &two_inverse)?;
half_v1
.add(c2_cs.ns(|| "add1"), half_v2)?
.sub(c2_cs.ns(|| "sub2"), &v4)?
.sub(c2_cs.ns(|| "sub3"), &v0)?
};
Ok(Self::new(c0, c1, c2))
}
fn frobenius_map<CS: ConstraintSystem<ConstraintF>>(
&self,
cs: CS,
power: usize,
) -> Result<Self, SynthesisError> {
let mut result = self.clone();
result.frobenius_map_in_place(cs, power)?;
Ok(result)
}
fn frobenius_map_in_place<CS: ConstraintSystem<ConstraintF>>(
&mut self,
mut cs: CS,
power: usize,
) -> Result<&mut Self, SynthesisError> {
self.c0.frobenius_map_in_place(&mut cs.ns(|| "c0"), power)?;
self.c1.frobenius_map_in_place(&mut cs.ns(|| "c1"), power)?;
self.c2.frobenius_map_in_place(&mut cs.ns(|| "c2"), power)?;
self.c1.mul_by_constant_in_place(
cs.ns(|| "c1_power"),
&P::FROBENIUS_COEFF_FP6_C1[power % 6],
)?;
self.c2.mul_by_constant_in_place(
cs.ns(|| "c2_power"),
&P::FROBENIUS_COEFF_FP6_C2[power % 6],
)?;
Ok(self)
}
fn cost_of_mul() -> usize {
5 * Fp2Gadget::<P, ConstraintF>::cost_of_mul()
}
fn cost_of_inv() -> usize {
Self::cost_of_mul() + <Self as EqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> PartialEq for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn eq(&self, other: &Self) -> bool {
self.c0 == other.c0 && self.c1 == other.c1 && self.c2 == other.c2
}
}
impl<P, ConstraintF: PrimeField> Eq for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> EqGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
}
impl<P, ConstraintF: PrimeField> ConditionalEqGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditional_enforce_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
condition: &Boolean,
) -> Result<(), SynthesisError> {
self.c0
.conditional_enforce_equal(&mut cs.ns(|| "c0"), &other.c0, condition)?;
self.c1
.conditional_enforce_equal(&mut cs.ns(|| "c1"), &other.c1, condition)?;
self.c2
.conditional_enforce_equal(&mut cs.ns(|| "c2"), &other.c2, condition)?;
Ok(())
}
fn cost() -> usize {
3 * <Fp2Gadget<P, ConstraintF> as ConditionalEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> NEqGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn enforce_not_equal<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.c0.enforce_not_equal(&mut cs.ns(|| "c0"), &other.c0)?;
self.c1.enforce_not_equal(&mut cs.ns(|| "c1"), &other.c1)?;
self.c2.enforce_not_equal(&mut cs.ns(|| "c2"), &other.c2)?;
Ok(())
}
fn cost() -> usize {
3 * <Fp2Gadget<P, ConstraintF> as NEqGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ToBitsGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bits(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_bits(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bits<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<Boolean>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bits(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bits(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_non_unique_bits(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> ToBytesGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_bytes(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_bytes(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
fn to_non_unique_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut c0 = self.c0.to_non_unique_bytes(cs.ns(|| "c0"))?;
let mut c1 = self.c1.to_non_unique_bytes(cs.ns(|| "c1"))?;
let mut c2 = self.c2.to_non_unique_bytes(cs.ns(|| "c2"))?;
c0.append(&mut c1);
c0.append(&mut c2);
Ok(c0)
}
}
impl<P, ConstraintF: PrimeField> Clone for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
fn clone(&self) -> Self {
Self::new(self.c0.clone(), self.c1.clone(), self.c2.clone())
}
}
impl<P, ConstraintF: PrimeField> CondSelectGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn conditionally_select<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
cond: &Boolean,
true_value: &Self,
false_value: &Self,
) -> Result<Self, SynthesisError> {
let c0 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c0"),
cond,
&true_value.c0,
&false_value.c0,
)?;
let c1 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c1"),
cond,
&true_value.c1,
&false_value.c1,
)?;
let c2 = Fp2Gadget::<P, ConstraintF>::conditionally_select(
&mut cs.ns(|| "c2"),
cond,
&true_value.c2,
&false_value.c2,
)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <Fp2Gadget<P, ConstraintF> as CondSelectGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> TwoBitLookupGadget<ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp6<P>;
fn two_bit_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c0"), b, &c0s)?;
let c1 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c1"), b, &c1s)?;
let c2 = Fp2Gadget::<P, ConstraintF>::two_bit_lookup(cs.ns(|| "Lookup c2"), b, &c2s)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <Fp2Gadget<P, ConstraintF> as TwoBitLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> ThreeBitCondNegLookupGadget<ConstraintF>
for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
type TableConstant = Fp6<P>;
fn three_bit_cond_neg_lookup<CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
b: &[Boolean],
b0b1: &Boolean,
c: &[Self::TableConstant],
) -> Result<Self, SynthesisError> {
let c0s = c.iter().map(|f| f.c0).collect::<Vec<_>>();
let c1s = c.iter().map(|f| f.c1).collect::<Vec<_>>();
let c2s = c.iter().map(|f| f.c2).collect::<Vec<_>>();
let c0 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c0"),
b,
b0b1,
&c0s,
)?;
let c1 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c1"),
b,
b0b1,
&c1s,
)?;
let c2 = Fp2Gadget::<P, ConstraintF>::three_bit_cond_neg_lookup(
cs.ns(|| "Lookup c2"),
b,
b0b1,
&c2s,
)?;
Ok(Self::new(c0, c1, c2))
}
fn cost() -> usize {
3 * <Fp2Gadget<P, ConstraintF> as ThreeBitCondNegLookupGadget<ConstraintF>>::cost()
}
}
impl<P, ConstraintF: PrimeField> AllocGadget<Fp6<P>, ConstraintF> for Fp6Gadget<P, ConstraintF>
where
P: Fp6Parameters,
P::Fp2Params: Fp2Parameters<Fp = ConstraintF>,
{
#[inline]
fn alloc<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp6<P>>,
{
let (c0, c1, c2) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1), Ok(fe.c2))
},
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c1"), || c1)?;
let c2 = Fp2Gadget::<P, ConstraintF>::alloc(&mut cs.ns(|| "c2"), || c2)?;
Ok(Self::new(c0, c1, c2))
}
#[inline]
fn alloc_input<F, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: F,
) -> Result<Self, SynthesisError>
where
F: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Fp6<P>>,
{
let (c0, c1, c2) = match value_gen() {
Ok(fe) => {
let fe = *fe.borrow();
(Ok(fe.c0), Ok(fe.c1), Ok(fe.c2))
},
_ => (
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
Err(SynthesisError::AssignmentMissing),
),
};
let c0 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c0"), || c0)?;
let c1 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c1"), || c1)?;
let c2 = Fp2Gadget::<P, ConstraintF>::alloc_input(&mut cs.ns(|| "c2"), || c2)?;
Ok(Self::new(c0, c1, c2))
}
}