use crate::{
|
|
nizk::{groth16::Groth16, NIZKVerifierGadget},
|
|
Vec,
|
|
};
|
|
use algebra_core::{AffineCurve, Field, PairingEngine, ToConstraintField};
|
|
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
|
|
use r1cs_std::prelude::*;
|
|
|
|
use core::{borrow::Borrow, marker::PhantomData};
|
|
use groth16::{Proof, VerifyingKey};
|
|
|
|
#[derive(Derivative)]
|
|
#[derivative(Clone(bound = "P::G1Gadget: Clone, P::G2Gadget: Clone"))]
|
|
pub struct ProofGadget<
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
> {
|
|
pub a: P::G1Gadget,
|
|
pub b: P::G2Gadget,
|
|
pub c: P::G1Gadget,
|
|
}
|
|
|
|
#[derive(Derivative)]
|
|
#[derivative(Clone(
|
|
bound = "P::G1Gadget: Clone, P::GTGadget: Clone, P::G1PreparedGadget: Clone, \
|
|
P::G2PreparedGadget: Clone, "
|
|
))]
|
|
pub struct VerifyingKeyGadget<
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
> {
|
|
pub alpha_g1: P::G1Gadget,
|
|
pub beta_g2: P::G2Gadget,
|
|
pub gamma_g2: P::G2Gadget,
|
|
pub delta_g2: P::G2Gadget,
|
|
pub gamma_abc_g1: Vec<P::G1Gadget>,
|
|
}
|
|
|
|
impl<PairingE: PairingEngine, ConstraintF: Field, P: PairingGadget<PairingE, ConstraintF>>
|
|
VerifyingKeyGadget<PairingE, ConstraintF, P>
|
|
{
|
|
pub fn prepare<CS: ConstraintSystem<ConstraintF>>(
|
|
&self,
|
|
mut cs: CS,
|
|
) -> Result<PreparedVerifyingKeyGadget<PairingE, ConstraintF, P>, SynthesisError> {
|
|
let mut cs = cs.ns(|| "Preparing verifying key");
|
|
let alpha_g1_pc = P::prepare_g1(&mut cs.ns(|| "Prepare alpha_g1"), &self.alpha_g1)?;
|
|
let beta_g2_pc = P::prepare_g2(&mut cs.ns(|| "Prepare beta_g2"), &self.beta_g2)?;
|
|
|
|
let alpha_g1_beta_g2 = P::pairing(
|
|
&mut cs.ns(|| "Precompute e(alpha_g1, beta_g2)"),
|
|
alpha_g1_pc,
|
|
beta_g2_pc,
|
|
)?;
|
|
|
|
let gamma_g2_neg = self.gamma_g2.negate(&mut cs.ns(|| "Negate gamma_g2"))?;
|
|
let gamma_g2_neg_pc = P::prepare_g2(&mut cs.ns(|| "Prepare gamma_g2_neg"), &gamma_g2_neg)?;
|
|
|
|
let delta_g2_neg = self.delta_g2.negate(&mut cs.ns(|| "Negate delta_g2"))?;
|
|
let delta_g2_neg_pc = P::prepare_g2(&mut cs.ns(|| "Prepare delta_g2_neg"), &delta_g2_neg)?;
|
|
|
|
Ok(PreparedVerifyingKeyGadget {
|
|
alpha_g1_beta_g2,
|
|
gamma_g2_neg_pc,
|
|
delta_g2_neg_pc,
|
|
gamma_abc_g1: self.gamma_abc_g1.clone(),
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Derivative)]
|
|
#[derivative(Clone(
|
|
bound = "P::G1Gadget: Clone, P::GTGadget: Clone, P::G1PreparedGadget: Clone, \
|
|
P::G2PreparedGadget: Clone, "
|
|
))]
|
|
pub struct PreparedVerifyingKeyGadget<
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
> {
|
|
pub alpha_g1_beta_g2: P::GTGadget,
|
|
pub gamma_g2_neg_pc: P::G2PreparedGadget,
|
|
pub delta_g2_neg_pc: P::G2PreparedGadget,
|
|
pub gamma_abc_g1: Vec<P::G1Gadget>,
|
|
}
|
|
|
|
pub struct Groth16VerifierGadget<PairingE, ConstraintF, P>
|
|
where
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
{
|
|
_pairing_engine: PhantomData<PairingE>,
|
|
_engine: PhantomData<ConstraintF>,
|
|
_pairing_gadget: PhantomData<P>,
|
|
}
|
|
|
|
impl<PairingE, ConstraintF, P, C, V> NIZKVerifierGadget<Groth16<PairingE, C, V>, ConstraintF>
|
|
for Groth16VerifierGadget<PairingE, ConstraintF, P>
|
|
where
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
C: ConstraintSynthesizer<PairingE::Fr>,
|
|
V: ToConstraintField<PairingE::Fr>,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
{
|
|
type VerificationKeyGadget = VerifyingKeyGadget<PairingE, ConstraintF, P>;
|
|
type ProofGadget = ProofGadget<PairingE, ConstraintF, P>;
|
|
|
|
fn check_verify<'a, CS, I, T>(
|
|
cs: CS,
|
|
vk: &Self::VerificationKeyGadget,
|
|
public_inputs: I,
|
|
proof: &Self::ProofGadget,
|
|
) -> Result<(), SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<ConstraintF>,
|
|
I: Iterator<Item = &'a T>,
|
|
T: 'a + ToBitsGadget<ConstraintF> + ?Sized,
|
|
{
|
|
<Self as NIZKVerifierGadget<Groth16<PairingE, C, V>, ConstraintF>>::conditional_check_verify(
|
|
cs,
|
|
vk,
|
|
public_inputs,
|
|
proof,
|
|
&Boolean::constant(true),
|
|
)
|
|
}
|
|
|
|
fn conditional_check_verify<'a, CS, I, T>(
|
|
mut cs: CS,
|
|
vk: &Self::VerificationKeyGadget,
|
|
mut public_inputs: I,
|
|
proof: &Self::ProofGadget,
|
|
condition: &Boolean,
|
|
) -> Result<(), SynthesisError>
|
|
where
|
|
CS: ConstraintSystem<ConstraintF>,
|
|
I: Iterator<Item = &'a T>,
|
|
T: 'a + ToBitsGadget<ConstraintF> + ?Sized,
|
|
{
|
|
let pvk = vk.prepare(&mut cs.ns(|| "Prepare vk"))?;
|
|
|
|
let g_ic = {
|
|
let mut cs = cs.ns(|| "Process input");
|
|
let mut g_ic = pvk.gamma_abc_g1[0].clone();
|
|
let mut input_len = 1;
|
|
for (i, (input, b)) in public_inputs
|
|
.by_ref()
|
|
.zip(pvk.gamma_abc_g1.iter().skip(1))
|
|
.enumerate()
|
|
{
|
|
let input_bits = input.to_bits(cs.ns(|| format!("Input {}", i)))?;
|
|
g_ic = b.mul_bits(cs.ns(|| format!("Mul {}", i)), &g_ic, input_bits.iter())?;
|
|
input_len += 1;
|
|
}
|
|
// Check that the input and the query in the verification are of the
|
|
// same length.
|
|
assert!(input_len == pvk.gamma_abc_g1.len() && public_inputs.next().is_none());
|
|
g_ic
|
|
};
|
|
|
|
let test_exp = {
|
|
let proof_a_prep = P::prepare_g1(cs.ns(|| "Prepare proof a"), &proof.a)?;
|
|
let proof_b_prep = P::prepare_g2(cs.ns(|| "Prepare proof b"), &proof.b)?;
|
|
let proof_c_prep = P::prepare_g1(cs.ns(|| "Prepare proof c"), &proof.c)?;
|
|
|
|
let g_ic_prep = P::prepare_g1(cs.ns(|| "Prepare g_ic"), &g_ic)?;
|
|
|
|
P::miller_loop(
|
|
cs.ns(|| "Miller loop 1"),
|
|
&[proof_a_prep, g_ic_prep, proof_c_prep],
|
|
&[
|
|
proof_b_prep,
|
|
pvk.gamma_g2_neg_pc.clone(),
|
|
pvk.delta_g2_neg_pc.clone(),
|
|
],
|
|
)?
|
|
};
|
|
|
|
let test = P::final_exponentiation(cs.ns(|| "Final Exp"), &test_exp).unwrap();
|
|
|
|
test.conditional_enforce_equal(cs.ns(|| "Test 1"), &pvk.alpha_g1_beta_g2, condition)?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<PairingE, ConstraintF, P> AllocGadget<VerifyingKey<PairingE>, ConstraintF>
|
|
for VerifyingKeyGadget<PairingE, ConstraintF, P>
|
|
where
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
{
|
|
#[inline]
|
|
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
|
|
mut cs: CS,
|
|
val: T,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
T: Borrow<VerifyingKey<PairingE>>,
|
|
{
|
|
let VerifyingKey {
|
|
alpha_g1,
|
|
beta_g2,
|
|
gamma_g2,
|
|
delta_g2,
|
|
gamma_abc_g1,
|
|
} = val.borrow().clone();
|
|
let alpha_g1 =
|
|
P::G1Gadget::alloc_constant(cs.ns(|| "alpha_g1"), alpha_g1.into_projective())?;
|
|
let beta_g2 = P::G2Gadget::alloc_constant(cs.ns(|| "beta_g2"), beta_g2.into_projective())?;
|
|
let gamma_g2 =
|
|
P::G2Gadget::alloc_constant(cs.ns(|| "gamma_g2"), gamma_g2.into_projective())?;
|
|
let delta_g2 =
|
|
P::G2Gadget::alloc_constant(cs.ns(|| "delta_g2"), delta_g2.into_projective())?;
|
|
|
|
let gamma_abc_g1 = gamma_abc_g1
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, gamma_abc_i)| {
|
|
P::G1Gadget::alloc_constant(
|
|
cs.ns(|| format!("gamma_abc_{}", i)),
|
|
gamma_abc_i.into_projective(),
|
|
)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.into_iter()
|
|
.collect::<Result<_, _>>()?;
|
|
Ok(Self {
|
|
alpha_g1,
|
|
beta_g2,
|
|
gamma_g2,
|
|
delta_g2,
|
|
gamma_abc_g1,
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn alloc<FN, T, CS: ConstraintSystem<ConstraintF>>(
|
|
mut cs: CS,
|
|
value_gen: FN,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
FN: FnOnce() -> Result<T, SynthesisError>,
|
|
T: Borrow<VerifyingKey<PairingE>>,
|
|
{
|
|
value_gen().and_then(|vk| {
|
|
let VerifyingKey {
|
|
alpha_g1,
|
|
beta_g2,
|
|
gamma_g2,
|
|
delta_g2,
|
|
gamma_abc_g1,
|
|
} = vk.borrow().clone();
|
|
let alpha_g1 =
|
|
P::G1Gadget::alloc(cs.ns(|| "alpha_g1"), || Ok(alpha_g1.into_projective()))?;
|
|
let beta_g2 =
|
|
P::G2Gadget::alloc(cs.ns(|| "beta_g2"), || Ok(beta_g2.into_projective()))?;
|
|
let gamma_g2 =
|
|
P::G2Gadget::alloc(cs.ns(|| "gamma_g2"), || Ok(gamma_g2.into_projective()))?;
|
|
let delta_g2 =
|
|
P::G2Gadget::alloc(cs.ns(|| "delta_g2"), || Ok(delta_g2.into_projective()))?;
|
|
|
|
let gamma_abc_g1 = gamma_abc_g1
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, gamma_abc_i)| {
|
|
P::G1Gadget::alloc(cs.ns(|| format!("gamma_abc_{}", i)), || {
|
|
Ok(gamma_abc_i.into_projective())
|
|
})
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.into_iter()
|
|
.collect::<Result<_, _>>()?;
|
|
Ok(Self {
|
|
alpha_g1,
|
|
beta_g2,
|
|
gamma_g2,
|
|
delta_g2,
|
|
gamma_abc_g1,
|
|
})
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn alloc_input<FN, T, CS: ConstraintSystem<ConstraintF>>(
|
|
mut cs: CS,
|
|
value_gen: FN,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
FN: FnOnce() -> Result<T, SynthesisError>,
|
|
T: Borrow<VerifyingKey<PairingE>>,
|
|
{
|
|
value_gen().and_then(|vk| {
|
|
let VerifyingKey {
|
|
alpha_g1,
|
|
beta_g2,
|
|
gamma_g2,
|
|
delta_g2,
|
|
gamma_abc_g1,
|
|
} = vk.borrow().clone();
|
|
let alpha_g1 =
|
|
P::G1Gadget::alloc_input(cs.ns(|| "alpha_g1"), || Ok(alpha_g1.into_projective()))?;
|
|
let beta_g2 =
|
|
P::G2Gadget::alloc_input(cs.ns(|| "beta_g2"), || Ok(beta_g2.into_projective()))?;
|
|
let gamma_g2 =
|
|
P::G2Gadget::alloc_input(cs.ns(|| "gamma_g2"), || Ok(gamma_g2.into_projective()))?;
|
|
let delta_g2 =
|
|
P::G2Gadget::alloc_input(cs.ns(|| "delta_g2"), || Ok(delta_g2.into_projective()))?;
|
|
|
|
let gamma_abc_g1 = gamma_abc_g1
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, gamma_abc_i)| {
|
|
P::G1Gadget::alloc_input(cs.ns(|| format!("gamma_abc_{}", i)), || {
|
|
Ok(gamma_abc_i.into_projective())
|
|
})
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.into_iter()
|
|
.collect::<Result<_, _>>()?;
|
|
|
|
Ok(Self {
|
|
alpha_g1,
|
|
beta_g2,
|
|
gamma_g2,
|
|
delta_g2,
|
|
gamma_abc_g1,
|
|
})
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<PairingE, ConstraintF, P> AllocGadget<Proof<PairingE>, ConstraintF>
|
|
for ProofGadget<PairingE, ConstraintF, P>
|
|
where
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
{
|
|
#[inline]
|
|
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
|
|
mut cs: CS,
|
|
val: T,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
T: Borrow<Proof<PairingE>>,
|
|
{
|
|
let Proof { a, b, c } = val.borrow().clone();
|
|
let a = P::G1Gadget::alloc_constant(cs.ns(|| "a"), a.into_projective())?;
|
|
let b = P::G2Gadget::alloc_constant(cs.ns(|| "b"), b.into_projective())?;
|
|
let c = P::G1Gadget::alloc_constant(cs.ns(|| "c"), c.into_projective())?;
|
|
Ok(Self { a, b, c })
|
|
}
|
|
|
|
#[inline]
|
|
fn alloc<FN, T, CS: ConstraintSystem<ConstraintF>>(
|
|
mut cs: CS,
|
|
value_gen: FN,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
FN: FnOnce() -> Result<T, SynthesisError>,
|
|
T: Borrow<Proof<PairingE>>,
|
|
{
|
|
value_gen().and_then(|proof| {
|
|
let Proof { a, b, c } = proof.borrow().clone();
|
|
let a = P::G1Gadget::alloc_checked(cs.ns(|| "a"), || Ok(a.into_projective()))?;
|
|
let b = P::G2Gadget::alloc_checked(cs.ns(|| "b"), || Ok(b.into_projective()))?;
|
|
let c = P::G1Gadget::alloc_checked(cs.ns(|| "c"), || Ok(c.into_projective()))?;
|
|
Ok(Self { a, b, c })
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn alloc_input<FN, T, CS: ConstraintSystem<ConstraintF>>(
|
|
mut cs: CS,
|
|
value_gen: FN,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
FN: FnOnce() -> Result<T, SynthesisError>,
|
|
T: Borrow<Proof<PairingE>>,
|
|
{
|
|
value_gen().and_then(|proof| {
|
|
let Proof { a, b, c } = proof.borrow().clone();
|
|
// We don't need to check here because the prime order check can be performed
|
|
// in plain.
|
|
let a = P::G1Gadget::alloc_input(cs.ns(|| "a"), || Ok(a.into_projective()))?;
|
|
let b = P::G2Gadget::alloc_input(cs.ns(|| "b"), || Ok(b.into_projective()))?;
|
|
let c = P::G1Gadget::alloc_input(cs.ns(|| "c"), || Ok(c.into_projective()))?;
|
|
Ok(Self { a, b, c })
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<PairingE, ConstraintF, P> ToBytesGadget<ConstraintF>
|
|
for VerifyingKeyGadget<PairingE, ConstraintF, P>
|
|
where
|
|
PairingE: PairingEngine,
|
|
ConstraintF: Field,
|
|
P: PairingGadget<PairingE, ConstraintF>,
|
|
{
|
|
#[inline]
|
|
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
|
|
&self,
|
|
mut cs: CS,
|
|
) -> Result<Vec<UInt8>, SynthesisError> {
|
|
let mut bytes = Vec::new();
|
|
bytes.extend_from_slice(&self.alpha_g1.to_bytes(&mut cs.ns(|| "alpha_g1 to bytes"))?);
|
|
bytes.extend_from_slice(&self.beta_g2.to_bytes(&mut cs.ns(|| "beta_g2 to bytes"))?);
|
|
bytes.extend_from_slice(&self.gamma_g2.to_bytes(&mut cs.ns(|| "gamma_g2 to bytes"))?);
|
|
bytes.extend_from_slice(&self.delta_g2.to_bytes(&mut cs.ns(|| "delta_g2 to bytes"))?);
|
|
for (i, g) in self.gamma_abc_g1.iter().enumerate() {
|
|
let mut cs = cs.ns(|| format!("Iteration {}", i));
|
|
bytes.extend_from_slice(&g.to_bytes(&mut cs.ns(|| "g"))?);
|
|
}
|
|
Ok(bytes)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use groth16::*;
|
|
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
|
|
|
|
use super::*;
|
|
use algebra::{
|
|
bls12_377::{Bls12_377, Fq, Fr},
|
|
test_rng, BitIterator, PrimeField,
|
|
};
|
|
use r1cs_std::{
|
|
bls12_377::PairingGadget as Bls12_377PairingGadget, boolean::Boolean,
|
|
test_constraint_system::TestConstraintSystem,
|
|
};
|
|
use rand::Rng;
|
|
|
|
type TestProofSystem = Groth16<Bls12_377, Bench<Fr>, Fr>;
|
|
type TestVerifierGadget = Groth16VerifierGadget<Bls12_377, Fq, Bls12_377PairingGadget>;
|
|
type TestProofGadget = ProofGadget<Bls12_377, Fq, Bls12_377PairingGadget>;
|
|
type TestVkGadget = VerifyingKeyGadget<Bls12_377, Fq, Bls12_377PairingGadget>;
|
|
|
|
struct Bench<F: Field> {
|
|
inputs: Vec<Option<F>>,
|
|
num_constraints: usize,
|
|
}
|
|
|
|
impl<F: Field> ConstraintSynthesizer<F> for Bench<F> {
|
|
fn generate_constraints<CS: ConstraintSystem<F>>(
|
|
self,
|
|
cs: &mut CS,
|
|
) -> Result<(), SynthesisError> {
|
|
assert!(self.inputs.len() >= 2);
|
|
assert!(self.num_constraints >= self.inputs.len());
|
|
|
|
let mut variables: Vec<_> = Vec::with_capacity(self.inputs.len());
|
|
for (i, input) in self.inputs.into_iter().enumerate() {
|
|
let input_var = cs.alloc_input(
|
|
|| format!("Input {}", i),
|
|
|| input.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
variables.push((input, input_var));
|
|
}
|
|
|
|
for i in 0..self.num_constraints {
|
|
let new_entry = {
|
|
let (input_1_val, input_1_var) = variables[i];
|
|
let (input_2_val, input_2_var) = variables[i + 1];
|
|
let result_val = input_1_val
|
|
.and_then(|input_1| input_2_val.map(|input_2| input_1 * &input_2));
|
|
let result_var = cs.alloc(
|
|
|| format!("Result {}", i),
|
|
|| result_val.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
cs.enforce(
|
|
|| format!("Enforce constraint {}", i),
|
|
|lc| lc + input_1_var,
|
|
|lc| lc + input_2_var,
|
|
|lc| lc + result_var,
|
|
);
|
|
(result_val, result_var)
|
|
};
|
|
variables.push(new_entry);
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn groth16_verifier_test() {
|
|
let num_inputs = 100;
|
|
let num_constraints = num_inputs;
|
|
let rng = &mut test_rng();
|
|
let mut inputs: Vec<Option<Fr>> = Vec::with_capacity(num_inputs);
|
|
for _ in 0..num_inputs {
|
|
inputs.push(Some(rng.gen()));
|
|
}
|
|
let params = {
|
|
let c = Bench::<Fr> {
|
|
inputs: vec![None; num_inputs],
|
|
num_constraints,
|
|
};
|
|
|
|
generate_random_parameters(c, rng).unwrap()
|
|
};
|
|
|
|
{
|
|
let proof = {
|
|
// Create an instance of our circuit (with the
|
|
// witness)
|
|
let c = Bench {
|
|
inputs: inputs.clone(),
|
|
num_constraints,
|
|
};
|
|
// Create a groth16 proof with our parameters.
|
|
create_random_proof(c, ¶ms, rng).unwrap()
|
|
};
|
|
|
|
// assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
|
|
let mut cs = TestConstraintSystem::<Fq>::new();
|
|
|
|
let inputs: Vec<_> = inputs.into_iter().map(|input| input.unwrap()).collect();
|
|
let mut input_gadgets = Vec::new();
|
|
|
|
{
|
|
let mut cs = cs.ns(|| "Allocate Input");
|
|
for (i, input) in inputs.into_iter().enumerate() {
|
|
let mut input_bits = BitIterator::new(input.into_repr()).collect::<Vec<_>>();
|
|
// Input must be in little-endian, but BitIterator outputs in big-endian.
|
|
input_bits.reverse();
|
|
|
|
let input_bits =
|
|
Vec::<Boolean>::alloc_input(cs.ns(|| format!("Input {}", i)), || {
|
|
Ok(input_bits)
|
|
})
|
|
.unwrap();
|
|
input_gadgets.push(input_bits);
|
|
}
|
|
}
|
|
|
|
let vk_gadget = TestVkGadget::alloc_input(cs.ns(|| "Vk"), || Ok(¶ms.vk)).unwrap();
|
|
let proof_gadget =
|
|
TestProofGadget::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
|
|
println!("Time to verify!\n\n\n\n");
|
|
<TestVerifierGadget as NIZKVerifierGadget<TestProofSystem, Fq>>::check_verify(
|
|
cs.ns(|| "Verify"),
|
|
&vk_gadget,
|
|
input_gadgets.iter(),
|
|
&proof_gadget,
|
|
)
|
|
.unwrap();
|
|
if !cs.is_satisfied() {
|
|
println!("=========================================================");
|
|
println!("Unsatisfied constraints:");
|
|
println!("{:?}", cs.which_is_unsatisfied().unwrap());
|
|
println!("=========================================================");
|
|
}
|
|
|
|
// cs.print_named_objects();
|
|
assert!(cs.is_satisfied());
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test_recursive {
|
|
use groth16::*;
|
|
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
|
|
|
|
use super::*;
|
|
use algebra::{
|
|
fields::FpParameters,
|
|
mnt4_298::{Fq as MNT4Fq, FqParameters as MNT4FqParameters, Fr as MNT4Fr, MNT4_298},
|
|
mnt6_298::{Fq as MNT6Fq, FqParameters as MNT6FqParameters, Fr as MNT6Fr, MNT6_298},
|
|
test_rng, BigInteger, PrimeField,
|
|
};
|
|
use r1cs_std::{
|
|
fields::fp::FpGadget, mnt4_298::PairingGadget as MNT4_298PairingGadget,
|
|
mnt6_298::PairingGadget as MNT6_298PairingGadget,
|
|
test_constraint_system::TestConstraintSystem, uint8::UInt8,
|
|
};
|
|
use rand::Rng;
|
|
|
|
type TestProofSystem1 = Groth16<MNT6_298, Bench<MNT4Fq>, MNT6Fr>;
|
|
type TestVerifierGadget1 = Groth16VerifierGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
|
|
type TestProofGadget1 = ProofGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
|
|
type TestVkGadget1 = VerifyingKeyGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
|
|
|
|
type TestProofSystem2 = Groth16<MNT4_298, Wrapper, MNT4Fr>;
|
|
type TestVerifierGadget2 = Groth16VerifierGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
|
|
type TestProofGadget2 = ProofGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
|
|
type TestVkGadget2 = VerifyingKeyGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
|
|
|
|
#[derive(Clone)]
|
|
struct Bench<F: Field> {
|
|
inputs: Vec<Option<F>>,
|
|
num_constraints: usize,
|
|
}
|
|
|
|
impl<F: Field> ConstraintSynthesizer<F> for Bench<F> {
|
|
fn generate_constraints<CS: ConstraintSystem<F>>(
|
|
self,
|
|
cs: &mut CS,
|
|
) -> Result<(), SynthesisError> {
|
|
assert!(self.inputs.len() >= 2);
|
|
assert!(self.num_constraints >= self.inputs.len());
|
|
|
|
let mut variables: Vec<_> = Vec::with_capacity(self.inputs.len());
|
|
for (i, input) in self.inputs.into_iter().enumerate() {
|
|
let input_var = cs.alloc_input(
|
|
|| format!("Input {}", i),
|
|
|| input.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
variables.push((input, input_var));
|
|
}
|
|
|
|
for i in 0..self.num_constraints {
|
|
let new_entry = {
|
|
let (input_1_val, input_1_var) = variables[i];
|
|
let (input_2_val, input_2_var) = variables[i + 1];
|
|
let result_val = input_1_val
|
|
.and_then(|input_1| input_2_val.map(|input_2| input_1 * &input_2));
|
|
let result_var = cs.alloc(
|
|
|| format!("Result {}", i),
|
|
|| result_val.ok_or(SynthesisError::AssignmentMissing),
|
|
)?;
|
|
cs.enforce(
|
|
|| format!("Enforce constraint {}", i),
|
|
|lc| lc + input_1_var,
|
|
|lc| lc + input_2_var,
|
|
|lc| lc + result_var,
|
|
);
|
|
(result_val, result_var)
|
|
};
|
|
variables.push(new_entry);
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
struct Wrapper {
|
|
inputs: Vec<Option<MNT4Fq>>,
|
|
params: Parameters<MNT6_298>,
|
|
proof: Proof<MNT6_298>,
|
|
}
|
|
|
|
impl ConstraintSynthesizer<MNT6Fq> for Wrapper {
|
|
fn generate_constraints<CS: ConstraintSystem<MNT6Fq>>(
|
|
self,
|
|
cs: &mut CS,
|
|
) -> Result<(), SynthesisError> {
|
|
let params = self.params;
|
|
let proof = self.proof;
|
|
let inputs: Vec<_> = self
|
|
.inputs
|
|
.into_iter()
|
|
.map(|input| input.unwrap())
|
|
.collect();
|
|
let input_gadgets;
|
|
|
|
{
|
|
let mut cs = cs.ns(|| "Allocate Input");
|
|
// Chain all input values in one large byte array.
|
|
let input_bytes = inputs
|
|
.clone()
|
|
.into_iter()
|
|
.flat_map(|input| {
|
|
input
|
|
.into_repr()
|
|
.as_ref()
|
|
.iter()
|
|
.flat_map(|l| l.to_le_bytes().to_vec())
|
|
.collect::<Vec<_>>()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Allocate this byte array as input packed into field elements.
|
|
let input_bytes = UInt8::alloc_input_vec(cs.ns(|| "Input"), &input_bytes[..])?;
|
|
// 40 byte
|
|
let element_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 8;
|
|
input_gadgets = input_bytes
|
|
.chunks(element_size)
|
|
.map(|chunk| {
|
|
chunk
|
|
.iter()
|
|
.flat_map(|byte| byte.into_bits_le())
|
|
.collect::<Vec<_>>()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
}
|
|
|
|
let vk_gadget = TestVkGadget1::alloc(cs.ns(|| "Vk"), || Ok(¶ms.vk))?;
|
|
let proof_gadget =
|
|
TestProofGadget1::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
|
|
<TestVerifierGadget1 as NIZKVerifierGadget<TestProofSystem1, MNT6Fq>>::check_verify(
|
|
cs.ns(|| "Verify"),
|
|
&vk_gadget,
|
|
input_gadgets.iter(),
|
|
&proof_gadget,
|
|
)?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn groth16_recursive_verifier_test() {
|
|
let num_inputs = 100;
|
|
let num_constraints = num_inputs;
|
|
let rng = &mut test_rng();
|
|
let mut inputs: Vec<Option<MNT4Fq>> = Vec::with_capacity(num_inputs);
|
|
for _ in 0..num_inputs {
|
|
inputs.push(Some(rng.gen()));
|
|
}
|
|
|
|
// Generate inner params and proof.
|
|
let inner_params = {
|
|
let c = Bench::<MNT4Fq> {
|
|
inputs: vec![None; num_inputs],
|
|
num_constraints,
|
|
};
|
|
|
|
generate_random_parameters(c, rng).unwrap()
|
|
};
|
|
|
|
let inner_proof = {
|
|
// Create an instance of our circuit (with the
|
|
// witness)
|
|
let c = Bench {
|
|
inputs: inputs.clone(),
|
|
num_constraints,
|
|
};
|
|
// Create a groth16 proof with our parameters.
|
|
create_random_proof(c, &inner_params, rng).unwrap()
|
|
};
|
|
|
|
// Generate outer params and proof.
|
|
let params = {
|
|
let c = Wrapper {
|
|
inputs: inputs.clone(),
|
|
params: inner_params.clone(),
|
|
proof: inner_proof.clone(),
|
|
};
|
|
|
|
generate_random_parameters(c, rng).unwrap()
|
|
};
|
|
|
|
{
|
|
let proof = {
|
|
// Create an instance of our circuit (with the
|
|
// witness)
|
|
let c = Wrapper {
|
|
inputs: inputs.clone(),
|
|
params: inner_params.clone(),
|
|
proof: inner_proof.clone(),
|
|
};
|
|
// Create a groth16 proof with our parameters.
|
|
create_random_proof(c, ¶ms, rng).unwrap()
|
|
};
|
|
|
|
let mut cs = TestConstraintSystem::<MNT4Fq>::new();
|
|
|
|
let inputs: Vec<_> = inputs.into_iter().map(|input| input.unwrap()).collect();
|
|
let mut input_gadgets = Vec::new();
|
|
|
|
{
|
|
let bigint_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
|
|
let mut input_bits = Vec::new();
|
|
let mut cs = cs.ns(|| "Allocate Input");
|
|
for (i, input) in inputs.into_iter().enumerate() {
|
|
let input_gadget =
|
|
FpGadget::alloc_input(cs.ns(|| format!("Input {}", i)), || Ok(input))
|
|
.unwrap();
|
|
let mut fp_bits = input_gadget
|
|
.to_bits(cs.ns(|| format!("To bits {}", i)))
|
|
.unwrap();
|
|
|
|
// FpGadget::to_bits outputs a big-endian binary representation of
|
|
// fe_gadget's value, so we have to reverse it to get the little-endian
|
|
// form.
|
|
fp_bits.reverse();
|
|
|
|
// Use 320 bits per element.
|
|
for _ in fp_bits.len()..bigint_size {
|
|
fp_bits.push(Boolean::constant(false));
|
|
}
|
|
input_bits.extend_from_slice(&fp_bits);
|
|
}
|
|
|
|
// Pack input bits into field elements of the underlying circuit.
|
|
let max_size = 8 * (<MNT6FqParameters as FpParameters>::CAPACITY / 8) as usize;
|
|
let max_size = max_size as usize;
|
|
let bigint_size = <MNT6FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
|
|
for chunk in input_bits.chunks(max_size) {
|
|
let mut chunk = chunk.to_vec();
|
|
let len = chunk.len();
|
|
for _ in len..bigint_size {
|
|
chunk.push(Boolean::constant(false));
|
|
}
|
|
input_gadgets.push(chunk);
|
|
}
|
|
// assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
|
|
}
|
|
|
|
let vk_gadget = TestVkGadget2::alloc_input(cs.ns(|| "Vk"), || Ok(¶ms.vk)).unwrap();
|
|
let proof_gadget =
|
|
TestProofGadget2::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
|
|
println!("Time to verify!\n\n\n\n");
|
|
<TestVerifierGadget2 as NIZKVerifierGadget<TestProofSystem2, MNT4Fq>>::check_verify(
|
|
cs.ns(|| "Verify"),
|
|
&vk_gadget,
|
|
input_gadgets.iter(),
|
|
&proof_gadget,
|
|
)
|
|
.unwrap();
|
|
if !cs.is_satisfied() {
|
|
println!("=========================================================");
|
|
println!("Unsatisfied constraints:");
|
|
println!("{:?}", cs.which_is_unsatisfied().unwrap());
|
|
println!("=========================================================");
|
|
}
|
|
|
|
// cs.print_named_objects();
|
|
assert!(cs.is_satisfied());
|
|
}
|
|
}
|
|
}
|