You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

827 lines
30 KiB

use crate::{
nizk::{groth16::Groth16, NIZKVerifierGadget},
Vec,
};
use algebra_core::{AffineCurve, Field, PairingEngine, ToConstraintField};
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
use r1cs_std::prelude::*;
use core::{borrow::Borrow, marker::PhantomData};
use groth16::{Proof, VerifyingKey};
#[derive(Derivative)]
#[derivative(Clone(bound = "P::G1Gadget: Clone, P::G2Gadget: Clone"))]
pub struct ProofGadget<
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
> {
pub a: P::G1Gadget,
pub b: P::G2Gadget,
pub c: P::G1Gadget,
}
#[derive(Derivative)]
#[derivative(Clone(
bound = "P::G1Gadget: Clone, P::GTGadget: Clone, P::G1PreparedGadget: Clone, \
P::G2PreparedGadget: Clone, "
))]
pub struct VerifyingKeyGadget<
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
> {
pub alpha_g1: P::G1Gadget,
pub beta_g2: P::G2Gadget,
pub gamma_g2: P::G2Gadget,
pub delta_g2: P::G2Gadget,
pub gamma_abc_g1: Vec<P::G1Gadget>,
}
impl<PairingE: PairingEngine, ConstraintF: Field, P: PairingGadget<PairingE, ConstraintF>>
VerifyingKeyGadget<PairingE, ConstraintF, P>
{
pub fn prepare<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<PreparedVerifyingKeyGadget<PairingE, ConstraintF, P>, SynthesisError> {
let mut cs = cs.ns(|| "Preparing verifying key");
let alpha_g1_pc = P::prepare_g1(&mut cs.ns(|| "Prepare alpha_g1"), &self.alpha_g1)?;
let beta_g2_pc = P::prepare_g2(&mut cs.ns(|| "Prepare beta_g2"), &self.beta_g2)?;
let alpha_g1_beta_g2 = P::pairing(
&mut cs.ns(|| "Precompute e(alpha_g1, beta_g2)"),
alpha_g1_pc,
beta_g2_pc,
)?;
let gamma_g2_neg = self.gamma_g2.negate(&mut cs.ns(|| "Negate gamma_g2"))?;
let gamma_g2_neg_pc = P::prepare_g2(&mut cs.ns(|| "Prepare gamma_g2_neg"), &gamma_g2_neg)?;
let delta_g2_neg = self.delta_g2.negate(&mut cs.ns(|| "Negate delta_g2"))?;
let delta_g2_neg_pc = P::prepare_g2(&mut cs.ns(|| "Prepare delta_g2_neg"), &delta_g2_neg)?;
Ok(PreparedVerifyingKeyGadget {
alpha_g1_beta_g2,
gamma_g2_neg_pc,
delta_g2_neg_pc,
gamma_abc_g1: self.gamma_abc_g1.clone(),
})
}
}
#[derive(Derivative)]
#[derivative(Clone(
bound = "P::G1Gadget: Clone, P::GTGadget: Clone, P::G1PreparedGadget: Clone, \
P::G2PreparedGadget: Clone, "
))]
pub struct PreparedVerifyingKeyGadget<
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
> {
pub alpha_g1_beta_g2: P::GTGadget,
pub gamma_g2_neg_pc: P::G2PreparedGadget,
pub delta_g2_neg_pc: P::G2PreparedGadget,
pub gamma_abc_g1: Vec<P::G1Gadget>,
}
pub struct Groth16VerifierGadget<PairingE, ConstraintF, P>
where
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
{
_pairing_engine: PhantomData<PairingE>,
_engine: PhantomData<ConstraintF>,
_pairing_gadget: PhantomData<P>,
}
impl<PairingE, ConstraintF, P, C, V> NIZKVerifierGadget<Groth16<PairingE, C, V>, ConstraintF>
for Groth16VerifierGadget<PairingE, ConstraintF, P>
where
PairingE: PairingEngine,
ConstraintF: Field,
C: ConstraintSynthesizer<PairingE::Fr>,
V: ToConstraintField<PairingE::Fr>,
P: PairingGadget<PairingE, ConstraintF>,
{
type VerificationKeyGadget = VerifyingKeyGadget<PairingE, ConstraintF, P>;
type ProofGadget = ProofGadget<PairingE, ConstraintF, P>;
fn check_verify<'a, CS, I, T>(
cs: CS,
vk: &Self::VerificationKeyGadget,
public_inputs: I,
proof: &Self::ProofGadget,
) -> Result<(), SynthesisError>
where
CS: ConstraintSystem<ConstraintF>,
I: Iterator<Item = &'a T>,
T: 'a + ToBitsGadget<ConstraintF> + ?Sized,
{
<Self as NIZKVerifierGadget<Groth16<PairingE, C, V>, ConstraintF>>::conditional_check_verify(
cs,
vk,
public_inputs,
proof,
&Boolean::constant(true),
)
}
fn conditional_check_verify<'a, CS, I, T>(
mut cs: CS,
vk: &Self::VerificationKeyGadget,
mut public_inputs: I,
proof: &Self::ProofGadget,
condition: &Boolean,
) -> Result<(), SynthesisError>
where
CS: ConstraintSystem<ConstraintF>,
I: Iterator<Item = &'a T>,
T: 'a + ToBitsGadget<ConstraintF> + ?Sized,
{
let pvk = vk.prepare(&mut cs.ns(|| "Prepare vk"))?;
let g_ic = {
let mut cs = cs.ns(|| "Process input");
let mut g_ic = pvk.gamma_abc_g1[0].clone();
let mut input_len = 1;
for (i, (input, b)) in public_inputs
.by_ref()
.zip(pvk.gamma_abc_g1.iter().skip(1))
.enumerate()
{
let input_bits = input.to_bits(cs.ns(|| format!("Input {}", i)))?;
g_ic = b.mul_bits(cs.ns(|| format!("Mul {}", i)), &g_ic, input_bits.iter())?;
input_len += 1;
}
// Check that the input and the query in the verification are of the
// same length.
assert!(input_len == pvk.gamma_abc_g1.len() && public_inputs.next().is_none());
g_ic
};
let test_exp = {
let proof_a_prep = P::prepare_g1(cs.ns(|| "Prepare proof a"), &proof.a)?;
let proof_b_prep = P::prepare_g2(cs.ns(|| "Prepare proof b"), &proof.b)?;
let proof_c_prep = P::prepare_g1(cs.ns(|| "Prepare proof c"), &proof.c)?;
let g_ic_prep = P::prepare_g1(cs.ns(|| "Prepare g_ic"), &g_ic)?;
P::miller_loop(
cs.ns(|| "Miller loop 1"),
&[proof_a_prep, g_ic_prep, proof_c_prep],
&[
proof_b_prep,
pvk.gamma_g2_neg_pc.clone(),
pvk.delta_g2_neg_pc.clone(),
],
)?
};
let test = P::final_exponentiation(cs.ns(|| "Final Exp"), &test_exp).unwrap();
test.conditional_enforce_equal(cs.ns(|| "Test 1"), &pvk.alpha_g1_beta_g2, condition)?;
Ok(())
}
}
impl<PairingE, ConstraintF, P> AllocGadget<VerifyingKey<PairingE>, ConstraintF>
for VerifyingKeyGadget<PairingE, ConstraintF, P>
where
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
{
#[inline]
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
val: T,
) -> Result<Self, SynthesisError>
where
T: Borrow<VerifyingKey<PairingE>>,
{
let VerifyingKey {
alpha_g1,
beta_g2,
gamma_g2,
delta_g2,
gamma_abc_g1,
} = val.borrow().clone();
let alpha_g1 =
P::G1Gadget::alloc_constant(cs.ns(|| "alpha_g1"), alpha_g1.into_projective())?;
let beta_g2 = P::G2Gadget::alloc_constant(cs.ns(|| "beta_g2"), beta_g2.into_projective())?;
let gamma_g2 =
P::G2Gadget::alloc_constant(cs.ns(|| "gamma_g2"), gamma_g2.into_projective())?;
let delta_g2 =
P::G2Gadget::alloc_constant(cs.ns(|| "delta_g2"), delta_g2.into_projective())?;
let gamma_abc_g1 = gamma_abc_g1
.into_iter()
.enumerate()
.map(|(i, gamma_abc_i)| {
P::G1Gadget::alloc_constant(
cs.ns(|| format!("gamma_abc_{}", i)),
gamma_abc_i.into_projective(),
)
})
.collect::<Vec<_>>()
.into_iter()
.collect::<Result<_, _>>()?;
Ok(Self {
alpha_g1,
beta_g2,
gamma_g2,
delta_g2,
gamma_abc_g1,
})
}
#[inline]
fn alloc<FN, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: FN,
) -> Result<Self, SynthesisError>
where
FN: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<VerifyingKey<PairingE>>,
{
value_gen().and_then(|vk| {
let VerifyingKey {
alpha_g1,
beta_g2,
gamma_g2,
delta_g2,
gamma_abc_g1,
} = vk.borrow().clone();
let alpha_g1 =
P::G1Gadget::alloc(cs.ns(|| "alpha_g1"), || Ok(alpha_g1.into_projective()))?;
let beta_g2 =
P::G2Gadget::alloc(cs.ns(|| "beta_g2"), || Ok(beta_g2.into_projective()))?;
let gamma_g2 =
P::G2Gadget::alloc(cs.ns(|| "gamma_g2"), || Ok(gamma_g2.into_projective()))?;
let delta_g2 =
P::G2Gadget::alloc(cs.ns(|| "delta_g2"), || Ok(delta_g2.into_projective()))?;
let gamma_abc_g1 = gamma_abc_g1
.into_iter()
.enumerate()
.map(|(i, gamma_abc_i)| {
P::G1Gadget::alloc(cs.ns(|| format!("gamma_abc_{}", i)), || {
Ok(gamma_abc_i.into_projective())
})
})
.collect::<Vec<_>>()
.into_iter()
.collect::<Result<_, _>>()?;
Ok(Self {
alpha_g1,
beta_g2,
gamma_g2,
delta_g2,
gamma_abc_g1,
})
})
}
#[inline]
fn alloc_input<FN, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: FN,
) -> Result<Self, SynthesisError>
where
FN: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<VerifyingKey<PairingE>>,
{
value_gen().and_then(|vk| {
let VerifyingKey {
alpha_g1,
beta_g2,
gamma_g2,
delta_g2,
gamma_abc_g1,
} = vk.borrow().clone();
let alpha_g1 =
P::G1Gadget::alloc_input(cs.ns(|| "alpha_g1"), || Ok(alpha_g1.into_projective()))?;
let beta_g2 =
P::G2Gadget::alloc_input(cs.ns(|| "beta_g2"), || Ok(beta_g2.into_projective()))?;
let gamma_g2 =
P::G2Gadget::alloc_input(cs.ns(|| "gamma_g2"), || Ok(gamma_g2.into_projective()))?;
let delta_g2 =
P::G2Gadget::alloc_input(cs.ns(|| "delta_g2"), || Ok(delta_g2.into_projective()))?;
let gamma_abc_g1 = gamma_abc_g1
.into_iter()
.enumerate()
.map(|(i, gamma_abc_i)| {
P::G1Gadget::alloc_input(cs.ns(|| format!("gamma_abc_{}", i)), || {
Ok(gamma_abc_i.into_projective())
})
})
.collect::<Vec<_>>()
.into_iter()
.collect::<Result<_, _>>()?;
Ok(Self {
alpha_g1,
beta_g2,
gamma_g2,
delta_g2,
gamma_abc_g1,
})
})
}
}
impl<PairingE, ConstraintF, P> AllocGadget<Proof<PairingE>, ConstraintF>
for ProofGadget<PairingE, ConstraintF, P>
where
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
{
#[inline]
fn alloc_constant<T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
val: T,
) -> Result<Self, SynthesisError>
where
T: Borrow<Proof<PairingE>>,
{
let Proof { a, b, c } = val.borrow().clone();
let a = P::G1Gadget::alloc_constant(cs.ns(|| "a"), a.into_projective())?;
let b = P::G2Gadget::alloc_constant(cs.ns(|| "b"), b.into_projective())?;
let c = P::G1Gadget::alloc_constant(cs.ns(|| "c"), c.into_projective())?;
Ok(Self { a, b, c })
}
#[inline]
fn alloc<FN, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: FN,
) -> Result<Self, SynthesisError>
where
FN: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Proof<PairingE>>,
{
value_gen().and_then(|proof| {
let Proof { a, b, c } = proof.borrow().clone();
let a = P::G1Gadget::alloc_checked(cs.ns(|| "a"), || Ok(a.into_projective()))?;
let b = P::G2Gadget::alloc_checked(cs.ns(|| "b"), || Ok(b.into_projective()))?;
let c = P::G1Gadget::alloc_checked(cs.ns(|| "c"), || Ok(c.into_projective()))?;
Ok(Self { a, b, c })
})
}
#[inline]
fn alloc_input<FN, T, CS: ConstraintSystem<ConstraintF>>(
mut cs: CS,
value_gen: FN,
) -> Result<Self, SynthesisError>
where
FN: FnOnce() -> Result<T, SynthesisError>,
T: Borrow<Proof<PairingE>>,
{
value_gen().and_then(|proof| {
let Proof { a, b, c } = proof.borrow().clone();
// We don't need to check here because the prime order check can be performed
// in plain.
let a = P::G1Gadget::alloc_input(cs.ns(|| "a"), || Ok(a.into_projective()))?;
let b = P::G2Gadget::alloc_input(cs.ns(|| "b"), || Ok(b.into_projective()))?;
let c = P::G1Gadget::alloc_input(cs.ns(|| "c"), || Ok(c.into_projective()))?;
Ok(Self { a, b, c })
})
}
}
impl<PairingE, ConstraintF, P> ToBytesGadget<ConstraintF>
for VerifyingKeyGadget<PairingE, ConstraintF, P>
where
PairingE: PairingEngine,
ConstraintF: Field,
P: PairingGadget<PairingE, ConstraintF>,
{
#[inline]
fn to_bytes<CS: ConstraintSystem<ConstraintF>>(
&self,
mut cs: CS,
) -> Result<Vec<UInt8>, SynthesisError> {
let mut bytes = Vec::new();
bytes.extend_from_slice(&self.alpha_g1.to_bytes(&mut cs.ns(|| "alpha_g1 to bytes"))?);
bytes.extend_from_slice(&self.beta_g2.to_bytes(&mut cs.ns(|| "beta_g2 to bytes"))?);
bytes.extend_from_slice(&self.gamma_g2.to_bytes(&mut cs.ns(|| "gamma_g2 to bytes"))?);
bytes.extend_from_slice(&self.delta_g2.to_bytes(&mut cs.ns(|| "delta_g2 to bytes"))?);
for (i, g) in self.gamma_abc_g1.iter().enumerate() {
let mut cs = cs.ns(|| format!("Iteration {}", i));
bytes.extend_from_slice(&g.to_bytes(&mut cs.ns(|| "g"))?);
}
Ok(bytes)
}
}
#[cfg(test)]
mod test {
use groth16::*;
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
use super::*;
use algebra::{
bls12_377::{Bls12_377, Fq, Fr},
test_rng, BitIterator, PrimeField,
};
use r1cs_std::{
bls12_377::PairingGadget as Bls12_377PairingGadget, boolean::Boolean,
test_constraint_system::TestConstraintSystem,
};
use rand::Rng;
type TestProofSystem = Groth16<Bls12_377, Bench<Fr>, Fr>;
type TestVerifierGadget = Groth16VerifierGadget<Bls12_377, Fq, Bls12_377PairingGadget>;
type TestProofGadget = ProofGadget<Bls12_377, Fq, Bls12_377PairingGadget>;
type TestVkGadget = VerifyingKeyGadget<Bls12_377, Fq, Bls12_377PairingGadget>;
struct Bench<F: Field> {
inputs: Vec<Option<F>>,
num_constraints: usize,
}
impl<F: Field> ConstraintSynthesizer<F> for Bench<F> {
fn generate_constraints<CS: ConstraintSystem<F>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
assert!(self.inputs.len() >= 2);
assert!(self.num_constraints >= self.inputs.len());
let mut variables: Vec<_> = Vec::with_capacity(self.inputs.len());
for (i, input) in self.inputs.into_iter().enumerate() {
let input_var = cs.alloc_input(
|| format!("Input {}", i),
|| input.ok_or(SynthesisError::AssignmentMissing),
)?;
variables.push((input, input_var));
}
for i in 0..self.num_constraints {
let new_entry = {
let (input_1_val, input_1_var) = variables[i];
let (input_2_val, input_2_var) = variables[i + 1];
let result_val = input_1_val
.and_then(|input_1| input_2_val.map(|input_2| input_1 * &input_2));
let result_var = cs.alloc(
|| format!("Result {}", i),
|| result_val.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce(
|| format!("Enforce constraint {}", i),
|lc| lc + input_1_var,
|lc| lc + input_2_var,
|lc| lc + result_var,
);
(result_val, result_var)
};
variables.push(new_entry);
}
Ok(())
}
}
#[test]
fn groth16_verifier_test() {
let num_inputs = 100;
let num_constraints = num_inputs;
let rng = &mut test_rng();
let mut inputs: Vec<Option<Fr>> = Vec::with_capacity(num_inputs);
for _ in 0..num_inputs {
inputs.push(Some(rng.gen()));
}
let params = {
let c = Bench::<Fr> {
inputs: vec![None; num_inputs],
num_constraints,
};
generate_random_parameters(c, rng).unwrap()
};
{
let proof = {
// Create an instance of our circuit (with the
// witness)
let c = Bench {
inputs: inputs.clone(),
num_constraints,
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &params, rng).unwrap()
};
// assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
let mut cs = TestConstraintSystem::<Fq>::new();
let inputs: Vec<_> = inputs.into_iter().map(|input| input.unwrap()).collect();
let mut input_gadgets = Vec::new();
{
let mut cs = cs.ns(|| "Allocate Input");
for (i, input) in inputs.into_iter().enumerate() {
let mut input_bits = BitIterator::new(input.into_repr()).collect::<Vec<_>>();
// Input must be in little-endian, but BitIterator outputs in big-endian.
input_bits.reverse();
let input_bits =
Vec::<Boolean>::alloc_input(cs.ns(|| format!("Input {}", i)), || {
Ok(input_bits)
})
.unwrap();
input_gadgets.push(input_bits);
}
}
let vk_gadget = TestVkGadget::alloc_input(cs.ns(|| "Vk"), || Ok(&params.vk)).unwrap();
let proof_gadget =
TestProofGadget::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
println!("Time to verify!\n\n\n\n");
<TestVerifierGadget as NIZKVerifierGadget<TestProofSystem, Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)
.unwrap();
if !cs.is_satisfied() {
println!("=========================================================");
println!("Unsatisfied constraints:");
println!("{:?}", cs.which_is_unsatisfied().unwrap());
println!("=========================================================");
}
// cs.print_named_objects();
assert!(cs.is_satisfied());
}
}
}
#[cfg(test)]
mod test_recursive {
use groth16::*;
use r1cs_core::{ConstraintSynthesizer, ConstraintSystem, SynthesisError};
use super::*;
use algebra::{
fields::FpParameters,
mnt4_298::{Fq as MNT4Fq, FqParameters as MNT4FqParameters, Fr as MNT4Fr, MNT4_298},
mnt6_298::{Fq as MNT6Fq, FqParameters as MNT6FqParameters, Fr as MNT6Fr, MNT6_298},
test_rng, BigInteger, PrimeField,
};
use r1cs_std::{
fields::fp::FpGadget, mnt4_298::PairingGadget as MNT4_298PairingGadget,
mnt6_298::PairingGadget as MNT6_298PairingGadget,
test_constraint_system::TestConstraintSystem, uint8::UInt8,
};
use rand::Rng;
type TestProofSystem1 = Groth16<MNT6_298, Bench<MNT4Fq>, MNT6Fr>;
type TestVerifierGadget1 = Groth16VerifierGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestProofGadget1 = ProofGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestVkGadget1 = VerifyingKeyGadget<MNT6_298, MNT6Fq, MNT6_298PairingGadget>;
type TestProofSystem2 = Groth16<MNT4_298, Wrapper, MNT4Fr>;
type TestVerifierGadget2 = Groth16VerifierGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
type TestProofGadget2 = ProofGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
type TestVkGadget2 = VerifyingKeyGadget<MNT4_298, MNT4Fq, MNT4_298PairingGadget>;
#[derive(Clone)]
struct Bench<F: Field> {
inputs: Vec<Option<F>>,
num_constraints: usize,
}
impl<F: Field> ConstraintSynthesizer<F> for Bench<F> {
fn generate_constraints<CS: ConstraintSystem<F>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
assert!(self.inputs.len() >= 2);
assert!(self.num_constraints >= self.inputs.len());
let mut variables: Vec<_> = Vec::with_capacity(self.inputs.len());
for (i, input) in self.inputs.into_iter().enumerate() {
let input_var = cs.alloc_input(
|| format!("Input {}", i),
|| input.ok_or(SynthesisError::AssignmentMissing),
)?;
variables.push((input, input_var));
}
for i in 0..self.num_constraints {
let new_entry = {
let (input_1_val, input_1_var) = variables[i];
let (input_2_val, input_2_var) = variables[i + 1];
let result_val = input_1_val
.and_then(|input_1| input_2_val.map(|input_2| input_1 * &input_2));
let result_var = cs.alloc(
|| format!("Result {}", i),
|| result_val.ok_or(SynthesisError::AssignmentMissing),
)?;
cs.enforce(
|| format!("Enforce constraint {}", i),
|lc| lc + input_1_var,
|lc| lc + input_2_var,
|lc| lc + result_var,
);
(result_val, result_var)
};
variables.push(new_entry);
}
Ok(())
}
}
struct Wrapper {
inputs: Vec<Option<MNT4Fq>>,
params: Parameters<MNT6_298>,
proof: Proof<MNT6_298>,
}
impl ConstraintSynthesizer<MNT6Fq> for Wrapper {
fn generate_constraints<CS: ConstraintSystem<MNT6Fq>>(
self,
cs: &mut CS,
) -> Result<(), SynthesisError> {
let params = self.params;
let proof = self.proof;
let inputs: Vec<_> = self
.inputs
.into_iter()
.map(|input| input.unwrap())
.collect();
let input_gadgets;
{
let mut cs = cs.ns(|| "Allocate Input");
// Chain all input values in one large byte array.
let input_bytes = inputs
.clone()
.into_iter()
.flat_map(|input| {
input
.into_repr()
.as_ref()
.iter()
.flat_map(|l| l.to_le_bytes().to_vec())
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Allocate this byte array as input packed into field elements.
let input_bytes = UInt8::alloc_input_vec(cs.ns(|| "Input"), &input_bytes[..])?;
// 40 byte
let element_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 8;
input_gadgets = input_bytes
.chunks(element_size)
.map(|chunk| {
chunk
.iter()
.flat_map(|byte| byte.into_bits_le())
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
}
let vk_gadget = TestVkGadget1::alloc(cs.ns(|| "Vk"), || Ok(&params.vk))?;
let proof_gadget =
TestProofGadget1::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
<TestVerifierGadget1 as NIZKVerifierGadget<TestProofSystem1, MNT6Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)?;
Ok(())
}
}
#[test]
fn groth16_recursive_verifier_test() {
let num_inputs = 100;
let num_constraints = num_inputs;
let rng = &mut test_rng();
let mut inputs: Vec<Option<MNT4Fq>> = Vec::with_capacity(num_inputs);
for _ in 0..num_inputs {
inputs.push(Some(rng.gen()));
}
// Generate inner params and proof.
let inner_params = {
let c = Bench::<MNT4Fq> {
inputs: vec![None; num_inputs],
num_constraints,
};
generate_random_parameters(c, rng).unwrap()
};
let inner_proof = {
// Create an instance of our circuit (with the
// witness)
let c = Bench {
inputs: inputs.clone(),
num_constraints,
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &inner_params, rng).unwrap()
};
// Generate outer params and proof.
let params = {
let c = Wrapper {
inputs: inputs.clone(),
params: inner_params.clone(),
proof: inner_proof.clone(),
};
generate_random_parameters(c, rng).unwrap()
};
{
let proof = {
// Create an instance of our circuit (with the
// witness)
let c = Wrapper {
inputs: inputs.clone(),
params: inner_params.clone(),
proof: inner_proof.clone(),
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &params, rng).unwrap()
};
let mut cs = TestConstraintSystem::<MNT4Fq>::new();
let inputs: Vec<_> = inputs.into_iter().map(|input| input.unwrap()).collect();
let mut input_gadgets = Vec::new();
{
let bigint_size = <MNT4FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
let mut input_bits = Vec::new();
let mut cs = cs.ns(|| "Allocate Input");
for (i, input) in inputs.into_iter().enumerate() {
let input_gadget =
FpGadget::alloc_input(cs.ns(|| format!("Input {}", i)), || Ok(input))
.unwrap();
let mut fp_bits = input_gadget
.to_bits(cs.ns(|| format!("To bits {}", i)))
.unwrap();
// FpGadget::to_bits outputs a big-endian binary representation of
// fe_gadget's value, so we have to reverse it to get the little-endian
// form.
fp_bits.reverse();
// Use 320 bits per element.
for _ in fp_bits.len()..bigint_size {
fp_bits.push(Boolean::constant(false));
}
input_bits.extend_from_slice(&fp_bits);
}
// Pack input bits into field elements of the underlying circuit.
let max_size = 8 * (<MNT6FqParameters as FpParameters>::CAPACITY / 8) as usize;
let max_size = max_size as usize;
let bigint_size = <MNT6FqParameters as FpParameters>::BigInt::NUM_LIMBS * 64;
for chunk in input_bits.chunks(max_size) {
let mut chunk = chunk.to_vec();
let len = chunk.len();
for _ in len..bigint_size {
chunk.push(Boolean::constant(false));
}
input_gadgets.push(chunk);
}
// assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
}
let vk_gadget = TestVkGadget2::alloc_input(cs.ns(|| "Vk"), || Ok(&params.vk)).unwrap();
let proof_gadget =
TestProofGadget2::alloc(cs.ns(|| "Proof"), || Ok(proof.clone())).unwrap();
println!("Time to verify!\n\n\n\n");
<TestVerifierGadget2 as NIZKVerifierGadget<TestProofSystem2, MNT4Fq>>::check_verify(
cs.ns(|| "Verify"),
&vk_gadget,
input_gadgets.iter(),
&proof_gadget,
)
.unwrap();
if !cs.is_satisfied() {
println!("=========================================================");
println!("Unsatisfied constraints:");
println!("{:?}", cs.which_is_unsatisfied().unwrap());
println!("=========================================================");
}
// cs.print_named_objects();
assert!(cs.is_satisfied());
}
}
}