use ark_relations::r1cs::SynthesisError;
|
|
|
|
use super::PairingVar as PG;
|
|
|
|
use crate::{
|
|
fields::{fp::FpVar, fp2::Fp2Var, fp4::Fp4Var, FieldVar},
|
|
groups::mnt4::{
|
|
AteAdditionCoefficientsVar, AteDoubleCoefficientsVar, G1PreparedVar, G1Var, G2PreparedVar,
|
|
G2ProjectiveExtendedVar, G2Var,
|
|
},
|
|
};
|
|
use ark_ec::mnt4::{MNT4Config, MNT4};
|
|
|
|
use core::marker::PhantomData;
|
|
|
|
/// Specifies the constraints for computing a pairing in a MNT4 bilinear group.
|
|
pub struct PairingVar<P: MNT4Config>(PhantomData<P>);
|
|
|
|
type Fp2G<P> = Fp2Var<<P as MNT4Config>::Fp2Config>;
|
|
type Fp4G<P> = Fp4Var<<P as MNT4Config>::Fp4Config>;
|
|
/// A variable corresponding to `ark_ec::mnt4::GT`.
|
|
pub type GTVar<P> = Fp4G<P>;
|
|
|
|
impl<P: MNT4Config> PairingVar<P> {
|
|
#[tracing::instrument(target = "r1cs", skip(r))]
|
|
pub(crate) fn doubling_step_for_flipped_miller_loop(
|
|
r: &G2ProjectiveExtendedVar<P>,
|
|
) -> Result<(G2ProjectiveExtendedVar<P>, AteDoubleCoefficientsVar<P>), SynthesisError> {
|
|
let a = r.t.square()?;
|
|
let b = r.x.square()?;
|
|
let c = r.y.square()?;
|
|
let d = c.square()?;
|
|
let e = (&r.x + &c).square()? - &b - &d;
|
|
let f = (b.double()? + &b) + &a * P::TWIST_COEFF_A;
|
|
let g = f.square()?;
|
|
|
|
let d_eight = d.double()?.double()?.double()?;
|
|
|
|
let e2 = e.double()?;
|
|
let x = &g - &e2.double()?;
|
|
|
|
let y = &f * (&e2 - &x) - &d_eight;
|
|
let z = (&r.y + &r.z).square()? - &c - &r.z.square()?;
|
|
let t = z.square()?;
|
|
|
|
let r2 = G2ProjectiveExtendedVar { x, y, z, t };
|
|
let c_h = (&r2.z + &r.t).square()? - &r2.t - &a;
|
|
let c_4c = c.double()?.double()?;
|
|
let c_j = (&f + &r.t).square()? - &g - &a;
|
|
let c_l = (&f + &r.x).square()? - &g - &b;
|
|
let coeff = AteDoubleCoefficientsVar {
|
|
c_h,
|
|
c_4c,
|
|
c_j,
|
|
c_l,
|
|
};
|
|
|
|
Ok((r2, coeff))
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs", skip(r))]
|
|
pub(crate) fn mixed_addition_step_for_flipped_miller_loop(
|
|
x: &Fp2G<P>,
|
|
y: &Fp2G<P>,
|
|
r: &G2ProjectiveExtendedVar<P>,
|
|
) -> Result<(G2ProjectiveExtendedVar<P>, AteAdditionCoefficientsVar<P>), SynthesisError> {
|
|
let a = y.square()?;
|
|
let b = &r.t * x;
|
|
let d = ((&r.z + y).square()? - &a - &r.t) * &r.t;
|
|
let h = &b - &r.x;
|
|
let i = h.square()?;
|
|
let e = i.double()?.double()?;
|
|
let j = &h * &e;
|
|
let v = &r.x * &e;
|
|
let ry2 = r.y.double()?;
|
|
let l1 = &d - &ry2;
|
|
|
|
let x = l1.square()? - &j - &v.double()?;
|
|
let y = &l1 * &(&v - &x) - j * &ry2;
|
|
let z = (&r.z + &h).square()? - &r.t - &i;
|
|
let t = z.square()?;
|
|
|
|
let r2 = G2ProjectiveExtendedVar {
|
|
x,
|
|
y,
|
|
z: z.clone(),
|
|
t,
|
|
};
|
|
let coeff = AteAdditionCoefficientsVar { c_l1: l1, c_rz: z };
|
|
|
|
Ok((r2, coeff))
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs", skip(p, q))]
|
|
pub(crate) fn ate_miller_loop(
|
|
p: &G1PreparedVar<P>,
|
|
q: &G2PreparedVar<P>,
|
|
) -> Result<Fp4G<P>, SynthesisError> {
|
|
let l1_coeff = Fp2G::<P>::new(p.x.clone(), FpVar::<P::Fp>::zero()) - &q.x_over_twist;
|
|
|
|
let mut f = Fp4G::<P>::one();
|
|
|
|
let mut add_idx: usize = 0;
|
|
|
|
// code below gets executed for all bits (EXCEPT the MSB itself) of
|
|
// mnt6_param_p (skipping leading zeros) in MSB to LSB order
|
|
let y_over_twist_neg = &q.y_over_twist.negate()?;
|
|
for (dbl_idx, bit) in P::ATE_LOOP_COUNT.iter().skip(1).enumerate() {
|
|
let dc = &q.double_coefficients[dbl_idx];
|
|
|
|
let g_rr_at_p = Fp4G::<P>::new(
|
|
&dc.c_l - &dc.c_4c - &dc.c_j * &p.x_twist,
|
|
&dc.c_h * &p.y_twist,
|
|
);
|
|
|
|
f = f.square()? * &g_rr_at_p;
|
|
|
|
let g_rq_at_p;
|
|
// Compute l_{R,Q}(P) if bit == 1, and l_{R,-Q}(P) if bit == -1
|
|
if *bit == 1 {
|
|
let ac = &q.addition_coefficients[add_idx];
|
|
add_idx += 1;
|
|
|
|
g_rq_at_p = Fp4G::<P>::new(
|
|
&ac.c_rz * &p.y_twist,
|
|
(&q.y_over_twist * &ac.c_rz + &l1_coeff * &ac.c_l1).negate()?,
|
|
);
|
|
} else if *bit == -1 {
|
|
let ac = &q.addition_coefficients[add_idx];
|
|
add_idx += 1;
|
|
|
|
g_rq_at_p = Fp4G::<P>::new(
|
|
&ac.c_rz * &p.y_twist,
|
|
(y_over_twist_neg * &ac.c_rz + &l1_coeff * &ac.c_l1).negate()?,
|
|
);
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
f *= &g_rq_at_p;
|
|
}
|
|
|
|
if P::ATE_IS_LOOP_COUNT_NEG {
|
|
let ac = &q.addition_coefficients[add_idx];
|
|
|
|
let g_rnegr_at_p = Fp4G::<P>::new(
|
|
&ac.c_rz * &p.y_twist,
|
|
(&q.y_over_twist * &ac.c_rz + &l1_coeff * &ac.c_l1).negate()?,
|
|
);
|
|
f = (&f * &g_rnegr_at_p).inverse()?;
|
|
}
|
|
|
|
Ok(f)
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs", skip(value))]
|
|
pub(crate) fn final_exponentiation(value: &Fp4G<P>) -> Result<GTVar<P>, SynthesisError> {
|
|
let value_inv = value.inverse()?;
|
|
let value_to_first_chunk = Self::final_exponentiation_first_chunk(value, &value_inv)?;
|
|
let value_inv_to_first_chunk = Self::final_exponentiation_first_chunk(&value_inv, value)?;
|
|
Self::final_exponentiation_last_chunk(&value_to_first_chunk, &value_inv_to_first_chunk)
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs", skip(elt, elt_inv))]
|
|
fn final_exponentiation_first_chunk(
|
|
elt: &Fp4G<P>,
|
|
elt_inv: &Fp4G<P>,
|
|
) -> Result<Fp4G<P>, SynthesisError> {
|
|
// (q^2-1)
|
|
|
|
// elt_q2 = elt^(q^2)
|
|
let elt_q2 = elt.unitary_inverse()?;
|
|
// elt_q2_over_elt = elt^(q^2-1)
|
|
Ok(elt_q2 * elt_inv)
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs", skip(elt, elt_inv))]
|
|
fn final_exponentiation_last_chunk(
|
|
elt: &Fp4G<P>,
|
|
elt_inv: &Fp4G<P>,
|
|
) -> Result<Fp4G<P>, SynthesisError> {
|
|
let elt_clone = elt.clone();
|
|
let elt_inv_clone = elt_inv.clone();
|
|
|
|
let mut elt_q = elt.clone();
|
|
elt_q.frobenius_map_in_place(1)?;
|
|
|
|
let w1_part = elt_q.cyclotomic_exp(&P::FINAL_EXPONENT_LAST_CHUNK_1)?;
|
|
let w0_part = if P::FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG {
|
|
elt_inv_clone.cyclotomic_exp(&P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)?
|
|
} else {
|
|
elt_clone.cyclotomic_exp(&P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)?
|
|
};
|
|
|
|
Ok(w1_part * &w0_part)
|
|
}
|
|
}
|
|
|
|
impl<P: MNT4Config> PG<MNT4<P>, P::Fp> for PairingVar<P> {
|
|
type G1Var = G1Var<P>;
|
|
type G2Var = G2Var<P>;
|
|
type G1PreparedVar = G1PreparedVar<P>;
|
|
type G2PreparedVar = G2PreparedVar<P>;
|
|
type GTVar = GTVar<P>;
|
|
|
|
#[tracing::instrument(target = "r1cs")]
|
|
fn miller_loop(
|
|
ps: &[Self::G1PreparedVar],
|
|
qs: &[Self::G2PreparedVar],
|
|
) -> Result<Self::GTVar, SynthesisError> {
|
|
let mut result = Fp4G::<P>::one();
|
|
for (p, q) in ps.iter().zip(qs) {
|
|
result *= Self::ate_miller_loop(p, q)?;
|
|
}
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs")]
|
|
fn final_exponentiation(r: &Self::GTVar) -> Result<Self::GTVar, SynthesisError> {
|
|
Self::final_exponentiation(r)
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs")]
|
|
fn prepare_g1(p: &Self::G1Var) -> Result<Self::G1PreparedVar, SynthesisError> {
|
|
Self::G1PreparedVar::from_group_var(p)
|
|
}
|
|
|
|
#[tracing::instrument(target = "r1cs")]
|
|
fn prepare_g2(q: &Self::G2Var) -> Result<Self::G2PreparedVar, SynthesisError> {
|
|
Self::G2PreparedVar::from_group_var(q)
|
|
}
|
|
}
|