Browse Source

add point compress&decompress, add modsqrt with Tonelli-Shanks algorithm

main
arnaucube 5 years ago
parent
commit
eb42f48c65
4 changed files with 332 additions and 61 deletions
  1. +1
    -0
      Cargo.toml
  2. +1
    -1
      README.md
  3. +147
    -50
      src/lib.rs
  4. +183
    -10
      src/utils.rs

+ 1
- 0
Cargo.toml

@ -16,3 +16,4 @@ generic-array = "0.13.2"
tiny-keccak = "1.5"
rustc-hex = "1.0.0"
mimc-rs = "0.0.1"
arrayref = "0.3.5"

+ 1
- 1
README.md

@ -4,7 +4,7 @@ BabyJubJub elliptic curve implementation in Rust
Uses MiMC7 hash function: https://github.com/arnaucube/mimc-rs
## Warning
Doing this in my free time to get familiar with Rust, do not use in production
Doing this in my free time to get familiar with Rust, do not use in production.
- [x] point addition
- [x] point scalar multiplication

+ 147
- 50
src/lib.rs

@ -1,3 +1,5 @@
#[macro_use]
extern crate arrayref;
extern crate generic_array;
extern crate mimc_rs;
extern crate num;
@ -8,9 +10,7 @@ extern crate rand;
use blake2::{Blake2b, Digest};
use mimc_rs::Mimc7;
use num_bigint::RandBigInt;
use num_bigint::{BigInt, Sign, ToBigInt};
use num_bigint::{BigInt, RandBigInt, Sign, ToBigInt};
use num_traits::{One, Zero};
use generic_array::GenericArray;
@ -22,11 +22,56 @@ pub struct Point {
pub x: BigInt,
pub y: BigInt,
}
pub struct Signature {
r_b8: Point,
s: BigInt,
}
pub struct PrivateKey {
bbjj: Babyjubjub,
key: BigInt,
}
impl PrivateKey {
pub fn public(&self) -> Point {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let pk = &self.bbjj.mul_scalar(self.bbjj.b8.clone(), self.key.clone());
pk.clone()
}
pub fn sign(&self, msg: BigInt) -> Signature {
// https://tools.ietf.org/html/rfc8032#section-5.1.6
let mut hasher = Blake2b::new();
let (_, sk_bytes) = self.key.to_bytes_be();
hasher.input(sk_bytes);
let mut h = hasher.result(); // h: hash(sk)
// s: h[32:64]
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
let (_, msg_bytes) = msg.to_bytes_be();
let r_bytes = utils::concatenate_arrays(s, &msg_bytes);
let mut r = BigInt::from_bytes_be(Sign::Plus, &r_bytes[..]);
r = utils::modulus(&r, &self.bbjj.sub_order);
let r8: Point = self.bbjj.mul_scalar(self.bbjj.b8.clone(), r.clone());
// let a = &self.sk_to_pk(sk.clone());
let a = &self.public();
let hm_input = vec![r8.x.clone(), r8.y.clone(), a.x.clone(), a.y.clone(), msg];
let mimc7 = Mimc7::new();
let hm = mimc7.hash(hm_input);
let mut s = &self.key << 3;
s = hm * s;
s = r + s;
s = s % &self.bbjj.sub_order;
Signature {
r_b8: r8.clone(),
s: s,
}
}
}
pub struct Babyjubjub {
d: BigInt,
a: BigInt,
@ -82,17 +127,13 @@ impl Babyjubjub {
let one: BigInt = One::one();
let x_num: BigInt = &p.x * &q.y + &p.y * &q.x;
let x_den: BigInt = &one + &self.d * &p.x * &q.x * &p.y * &q.y;
let x_den_inv = utils::mod_inverse0(&x_den, &self.q);
// let x_den_inv = utils::mod_inverse1(x_den, self.q.clone());
// let x_den_inv = utils::mod_inverse2(x_den, self.q.clone());
let x_den_inv = utils::modinv(&x_den, &self.q);
let x: BigInt = utils::modulus(&(&x_num * &x_den_inv), &self.q);
// y = (y1 * y2 - a * x1 * x2) / (1 - d * x1 * x2 * y1 * y2)
let y_num = &p.y * &q.y - &self.a * &p.x * &q.x;
let y_den = utils::modulus(&(&one - &self.d * &p.x * &q.x * &p.y * &q.y), &self.q);
let y_den_inv = utils::mod_inverse0(&y_den, &self.q);
// let y_den_inv = utils::mod_inverse1(y_den, self.q.clone());
// let y_den_inv = utils::mod_inverse2(y_den, self.q.clone());
let y_den_inv = utils::modinv(&y_den, &self.q);
let y: BigInt = utils::modulus(&(&y_num * &y_den_inv), &self.q);
Point { x: x, y: y }
@ -122,7 +163,52 @@ impl Babyjubjub {
r
}
pub fn new_key(&self) -> BigInt {
pub fn compress(&self, p: Point) -> [u8; 32] {
let mut r: [u8; 32];
let (_, y_bytes) = p.y.to_bytes_le();
r = *array_ref!(y_bytes, 0, 32);
if &p.x > &(&self.q >> 1) {
r[31] = r[31] | 0x80;
}
r
}
pub fn decompress_point(&self, bb: [u8; 32]) -> Point {
// https://tools.ietf.org/html/rfc8032#section-5.2.3
let mut sign: bool = false;
let mut b = bb.clone();
if b[31] & 0x80 != 0x00 {
sign = true;
b[31] = b[31] & 0x7F;
}
let y: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[..]);
if y >= self.q {
// println!("ERROR0");
}
let one: BigInt = One::one();
// x^2 = (1 - y^2) / (a - d * y^2) (mod p)
let mut x: BigInt = utils::modulus(
&((one - utils::modulus(&(&y * &y), &self.q))
* utils::modinv(
&utils::modulus(
&(&self.a - utils::modulus(&(&self.d * (&y * &y)), &self.q)),
&self.q,
),
&self.q,
)),
&self.q,
);
x = utils::modsqrt(&x, &self.q);
if (sign && x >= Zero::zero()) || (!sign && x < Zero::zero()) {
x = x * -1.to_bigint().unwrap();
}
x = utils::modulus(&x, &self.q);
Point { x: x, y: y }
}
pub fn new_key(&self) -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let mut rng = rand::thread_rng();
let sk_raw = rng.gen_biguint(1024).to_bigint().unwrap();
@ -138,43 +224,16 @@ impl Babyjubjub {
let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
sk
}
pub fn sk_to_pk(&self, sk: BigInt) -> Point {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
// TODO this will be moved into a method of PrivateKey type
let pk = &self.mul_scalar(self.b8.clone(), sk);
pk.clone()
}
pub fn sign(&self, sk: BigInt, msg: BigInt) -> Signature {
// https://tools.ietf.org/html/rfc8032#section-5.1.6
let mut hasher = Blake2b::new();
let (_, sk_bytes) = sk.to_bytes_be();
hasher.input(sk_bytes);
let mut h = hasher.result(); // h: hash(sk)
// s: h[32:64]
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
let (_, msg_bytes) = msg.to_bytes_be();
let r_bytes = utils::concatenate_arrays(s, &msg_bytes);
let mut r = BigInt::from_bytes_be(Sign::Plus, &r_bytes[..]);
r = utils::modulus(&r, &self.sub_order);
let r8: Point = self.mul_scalar(self.b8.clone(), r.clone());
let a = &self.sk_to_pk(sk.clone());
let hm_input = vec![r8.x.clone(), r8.y.clone(), a.x.clone(), a.y.clone(), msg];
let mimc7 = Mimc7::new();
let hm = mimc7.hash(hm_input);
let mut s = sk << 3;
s = hm * s;
s = r + s;
s = s % &self.sub_order;
Signature {
r_b8: r8.clone(),
s: s,
let bbjj_new = Babyjubjub {
d: self.d.clone(),
a: self.a.clone(),
q: self.q.clone(),
b8: self.b8.clone(),
sub_order: self.sub_order.clone(),
};
PrivateKey {
bbjj: bbjj_new,
key: sk,
}
}
@ -200,6 +259,8 @@ impl Babyjubjub {
#[cfg(test)]
mod tests {
use super::*;
extern crate rustc_hex;
use rustc_hex::ToHex;
#[test]
fn test_add_same_point() {
@ -321,12 +382,48 @@ mod tests {
}
#[test]
fn test_new_key_sign_verify() {
fn test_point_compress_decompress() {
let bbjj = Babyjubjub::new();
let p: Point = Point {
x: BigInt::parse_bytes(
b"17777552123799933955779906779655732241715742912184938656739573121738514868268",
10,
)
.unwrap(),
y: BigInt::parse_bytes(
b"2626589144620713026669568689430873010625803728049924121243784502389097019475",
10,
)
.unwrap(),
};
let p_comp = bbjj.compress(p.clone());
assert_eq!(
p_comp[..].to_hex(),
"53b81ed5bffe9545b54016234682e7b2f699bd42a5e9eae27ff4051bc698ce85"
);
let p2 = bbjj.decompress_point(p_comp);
assert_eq!(p.x, p2.x);
assert_eq!(p.y, p2.y);
}
#[test]
fn test_new_key_sign_verify0() {
let bbjj = Babyjubjub::new();
let sk = bbjj.new_key();
let pk = bbjj.sk_to_pk(sk.clone());
let pk = sk.public();
let msg = 5.to_bigint().unwrap();
let sig = bbjj.sign(sk, msg.clone());
let sig = sk.sign(msg.clone());
let v = bbjj.verify(pk, sig, msg);
assert_eq!(v, true);
}
#[test]
fn test_new_key_sign_verify1() {
let bbjj = Babyjubjub::new();
let sk = bbjj.new_key();
let pk = sk.public();
let msg = BigInt::parse_bytes(b"123456789012345678901234567890", 10).unwrap();
let sig = sk.sign(msg.clone());
let v = bbjj.verify(pk, sig, msg);
assert_eq!(v, true);
}

+ 183
- 10
src/utils.rs

@ -2,14 +2,14 @@ extern crate num;
extern crate num_bigint;
extern crate num_traits;
use num_bigint::BigInt;
use num_bigint::{BigInt, ToBigInt};
use num_traits::{One, Zero};
pub fn modulus(a: &BigInt, m: &BigInt) -> BigInt {
((a % m) + m) % m
}
pub fn mod_inverse0(a: &BigInt, q: &BigInt) -> BigInt {
pub fn modinv(a: &BigInt, q: &BigInt) -> BigInt {
let mut mn = (q.clone(), a.clone());
let mut xy: (BigInt, BigInt) = (Zero::zero(), One::one());
@ -26,13 +26,13 @@ pub fn mod_inverse0(a: &BigInt, q: &BigInt) -> BigInt {
}
/*
pub fn mod_inverse1(a0: BigInt, m0: BigInt) -> BigInt {
if m0 == One::one() {
pub fn modinv_v2(a0: &BigInt, m0: &BigInt) -> BigInt {
if m0 == &One::one() {
return One::one();
}
let (mut a, mut m, mut x0, mut inv): (BigInt, BigInt, BigInt, BigInt) =
(a0, m0.clone(), Zero::zero(), One::one());
(a0.clone(), m0.clone(), Zero::zero(), One::one());
while a > One::one() {
inv = inv - (&a / m.clone()) * x0.clone();
@ -47,9 +47,9 @@ pub fn mod_inverse1(a0: BigInt, m0: BigInt) -> BigInt {
inv
}
pub fn mod_inverse2(a: BigInt, q: BigInt) -> BigInt {
let mut aa: BigInt = a;
let mut qq: BigInt = q;
pub fn modinv_v3(a: &BigInt, q: &BigInt) -> BigInt {
let mut aa: BigInt = a.clone();
let mut qq: BigInt = q.clone();
if qq < Zero::zero() {
qq = -qq;
}
@ -68,12 +68,165 @@ pub fn mod_inverse2(a: BigInt, q: BigInt) -> BigInt {
}
res
}
pub fn modinv_v4(x: &BigInt, q: &BigInt) -> BigInt {
let (gcd, inverse, _) = extended_gcd(x.clone(), q.clone());
let one: BigInt = One::one();
if gcd == one {
modulus(&inverse, q)
} else {
panic!("error: gcd!=one")
}
}
pub fn extended_gcd(a: BigInt, b: BigInt) -> (BigInt, BigInt, BigInt) {
let (mut s, mut old_s) = (BigInt::zero(), BigInt::one());
let (mut t, mut old_t) = (BigInt::one(), BigInt::zero());
let (mut r, mut old_r) = (b, a);
while r != BigInt::zero() {
let quotient = &old_r / &r;
old_r -= &quotient * &r;
std::mem::swap(&mut old_r, &mut r);
old_s -= &quotient * &s;
std::mem::swap(&mut old_s, &mut s);
old_t -= quotient * &t;
std::mem::swap(&mut old_t, &mut t);
}
let _quotients = (t, s); // == (a, b) / gcd
(old_r, old_s, old_t)
}
*/
pub fn concatenate_arrays<T: Clone>(x: &[T], y: &[T]) -> Vec<T> {
x.iter().chain(y).cloned().collect()
}
pub fn modsqrt(a: &BigInt, q: &BigInt) -> BigInt {
// Tonelli-Shanks Algorithm (https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm)
//
// This implementation is following the Go lang core implementation https://golang.org/src/math/big/int.go?s=23173:23210#L859
// Also described in https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
// -> section 6
let zero: BigInt = Zero::zero();
let one: BigInt = One::one();
if legendre_symbol(&a, q) != 1 {
// not a mod p square
return zero;
} else if a == &zero {
return zero;
} else if q == &2.to_bigint().unwrap() {
return zero;
} else if q % 4.to_bigint().unwrap() == 3.to_bigint().unwrap() {
let r = a.modpow(&((q + one) / 4), &q);
return r;
}
let mut s = q - &one;
let mut e: BigInt = Zero::zero();
while &s % 2 == zero {
s = s >> 1;
e = e + &one;
}
let mut n: BigInt = 2.to_bigint().unwrap();
while legendre_symbol(&n, q) != -1 {
n = &n + &one;
}
let mut y = a.modpow(&((&s + &one) >> 1), q);
let mut b = a.modpow(&s, q);
let mut g = n.modpow(&s, q);
let mut r = e;
loop {
let mut t = b.clone();
let mut m: BigInt = Zero::zero();
while &t != &one {
t = modulus(&(&t * &t), q);
m = m + &one;
}
if m == zero {
return y.clone();
}
t = g.modpow(&(2.to_bigint().unwrap().modpow(&(&r - &m - 1), q)), q);
g = g.modpow(&(2.to_bigint().unwrap().modpow(&(r - &m), q)), q);
y = modulus(&(y * t), q);
b = modulus(&(b * &g), q);
r = m.clone();
}
}
#[allow(dead_code)]
pub fn modsqrt_v2(a: &BigInt, q: &BigInt) -> BigInt {
// Tonelli-Shanks Algorithm (https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm)
//
// This implementation is following this Python implementation by Dusk https://github.com/dusk-network/dusk-zerocaf/blob/master/tools/tonelli.py
let zero: BigInt = Zero::zero();
let one: BigInt = One::one();
if legendre_symbol(&a, q) != 1 {
// not a mod p square
return zero;
} else if a == &zero {
return zero;
} else if q == &2.to_bigint().unwrap() {
return zero;
} else if q % 4.to_bigint().unwrap() == 3.to_bigint().unwrap() {
let r = a.modpow(&((q + one) / 4), &q);
return r;
}
let mut p = q - &one;
let mut s: BigInt = Zero::zero();
while &p % 2.to_bigint().unwrap() == zero {
s = s + &one;
p = p >> 1;
}
let mut z: BigInt = One::one();
while legendre_symbol(&z, q) != -1 {
z = &z + &one;
}
let mut c = z.modpow(&p, q);
let mut x = a.modpow(&((&p + &one) >> 1), q);
let mut t = a.modpow(&p, q);
let mut m = s;
while &t != &one {
let mut i: BigInt = One::one();
let mut e: BigInt = 2.to_bigint().unwrap();
while i < m {
if t.modpow(&e, q) == one {
break;
}
e = e * 2.to_bigint().unwrap();
i = i + &one;
}
let b = c.modpow(&(2.to_bigint().unwrap().modpow(&(&m - &i - 1), q)), q);
x = modulus(&(x * &b), q);
t = modulus(&(t * &b * &b), q);
c = modulus(&(&b * &b), q);
m = i.clone();
}
return x;
}
pub fn legendre_symbol(a: &BigInt, q: &BigInt) -> i32 {
// returns 1 if has a square root modulo q
let one: BigInt = One::one();
let ls: BigInt = a.modpow(&((q - &one) >> 1), &q);
if &(ls) == &(q - one) {
return -1;
}
1
}
#[cfg(test)]
mod tests {
use super::*;
@ -82,9 +235,29 @@ mod tests {
fn test_mod_inverse() {
let a = BigInt::parse_bytes(b"123456789123456789123456789123456789123456789", 10).unwrap();
let b = BigInt::parse_bytes(b"12345678", 10).unwrap();
assert_eq!(modinv(&a, &b), BigInt::parse_bytes(b"641883", 10).unwrap());
}
#[test]
fn test_sqrtmod() {
let a = BigInt::parse_bytes(
b"6536923810004159332831702809452452174451353762940761092345538667656658715568",
10,
)
.unwrap();
let q = BigInt::parse_bytes(
b"7237005577332262213973186563042994240857116359379907606001950938285454250989",
10,
)
.unwrap();
assert_eq!(
(modsqrt(&a, &q)).to_string(),
"5464794816676661649783249706827271879994893912039750480019443499440603127256"
);
assert_eq!(
mod_inverse0(&a, &b),
BigInt::parse_bytes(b"641883", 10).unwrap()
(modsqrt_v2(&a, &q)).to_string(),
"5464794816676661649783249706827271879994893912039750480019443499440603127256"
);
}
}

Loading…
Cancel
Save