You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

790 lines
26 KiB

// BabyJubJub elliptic curve implementation in Rust.
// For LICENSE check https://github.com/arnaucube/babyjubjub-rs
pub use ark_bn254::Fr as Fq;
use ark_ff::{biginteger::BigInteger256 as BigInt, BigInteger};
use ark_ff::{fields::Field, PrimeField};
// use ark_ff::BigInt; // TODO
use ark_std::str::FromStr;
use ark_std::{One, Zero};
use core::ops::{AddAssign, MulAssign, SubAssign};
use ark_std::{rand::Rng, UniformRand};
use poseidon_ark::Poseidon;
#[cfg(not(feature = "aarch64"))]
#[cfg(not(feature = "wasm"))]
use blake_hash::Digest; // compatible version with Blake used at circomlib
#[cfg(not(feature = "wasm"))]
#[cfg(feature = "aarch64")]
extern crate blake; // compatible version with Blake used at circomlib
#[cfg(not(feature = "aarch64"))]
#[cfg(feature = "wasm")]
extern crate blake2; // non-compatible version with Blake used at circomlib
#[cfg(not(feature = "aarch64"))]
#[cfg(feature = "wasm")]
use blake2::digest::Digest;
#[cfg(not(feature = "aarch64"))]
#[cfg(feature = "wasm")]
use blake2::Blake2b512;
use generic_array::GenericArray;
use ark_ff::fields::{Fp256, MontBackend, MontConfig};
#[derive(MontConfig)]
#[modulus = "2736030358979909402780800718157159386076813972158567259200215660948447373041"] // suborder = ORDER >> 3
#[generator = "31"]
pub struct FrConfig;
pub type Fr = Fp256<MontBackend<FrConfig, 4>>;
use lazy_static::lazy_static;
lazy_static! {
pub static ref D: Fq = Fq::from_str("168696").unwrap();
pub static ref D_BIG: BigInt = D.into_bigint();
pub static ref A: Fq = Fq::from_str("168700").unwrap();
pub static ref A_BIG: BigInt = A.into_bigint();
pub static ref Q: BigInt = Fq::MODULUS;
pub static ref B8: Point = Point {
x: Fq::from_str(
"5299619240641551281634865583518297030282874472190772894086521144482721001553",
)
.unwrap(),
y: Fq::from_str(
"16950150798460657717958625567821834550301663161624707787222815936182638968203",
)
.unwrap(),
};
pub static ref ORDER: Fq = Fq::from_str(
"21888242871839275222246405745257275088614511777268538073601725287587578984328",
)
.unwrap();
static ref POSEIDON: poseidon_ark::Poseidon = Poseidon::new();
}
pub fn generator() -> Point {
B8.clone()
}
#[derive(Clone, Debug)]
pub struct PointProjective {
pub x: Fq,
pub y: Fq,
pub z: Fq,
}
impl PointProjective {
pub fn affine(&self) -> Point {
if self.z.is_zero() {
return Point {
x: Fq::zero(),
y: Fq::zero(),
};
}
let zinv = self.z.inverse().unwrap();
let mut x = self.x;
x.mul_assign(&zinv);
let mut y = self.y;
y.mul_assign(&zinv);
Point { x, y }
}
#[allow(clippy::many_single_char_names)]
pub fn add(&self, q: &PointProjective) -> PointProjective {
// add-2008-bbjlp https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#addition-add-2008-bbjlp
let mut a = self.z;
a.mul_assign(&q.z);
let mut b = a;
b = b.square();
let mut c = self.x;
c.mul_assign(&q.x);
let mut d = self.y;
d.mul_assign(&q.y);
let mut e = *D;
e.mul_assign(&c);
e.mul_assign(&d);
let mut f = b;
f.sub_assign(&e);
let mut g = b;
g.add_assign(&e);
let mut x1y1 = self.x;
x1y1.add_assign(&self.y);
let mut x2y2 = q.x;
x2y2.add_assign(&q.y);
let mut aux = x1y1;
aux.mul_assign(&x2y2);
aux.sub_assign(&c);
aux.sub_assign(&d);
let mut x3 = a;
x3.mul_assign(&f);
x3.mul_assign(&aux);
let mut ac = *A;
ac.mul_assign(&c);
let mut dac = d;
dac.sub_assign(&ac);
let mut y3 = a;
y3.mul_assign(&g);
y3.mul_assign(&dac);
let mut z3 = f;
z3.mul_assign(&g);
PointProjective {
x: x3,
y: y3,
z: z3,
}
}
}
#[derive(Clone, Debug)]
pub struct Point {
pub x: Fq,
pub y: Fq,
}
impl Point {
pub fn projective(&self) -> PointProjective {
PointProjective {
x: self.x,
y: self.y,
z: Fq::one(),
}
}
pub fn mul_scalar(&self, n: &Fr) -> Point {
let mut r: PointProjective = PointProjective {
x: Fq::zero(),
y: Fq::one(),
z: Fq::one(),
};
let mut exp: PointProjective = self.projective();
// if test_bit(&b, i.try_into().unwrap()) {
let n_big = n.into_bigint();
let b = n_big.to_bits_le();
// for i in 0..(n_big.num_bits() as usize) {
for bit in b.iter().take(n_big.num_bits() as usize) {
if *bit {
// if test_bit(&b, i.try_into().unwrap()) {
r = r.add(&exp);
}
exp = exp.add(&exp);
}
r.affine()
}
// pub fn compress(&self) -> [u8; 32] {
// let p = &self;
// let mut r: [u8; 32] = [0; 32];
// // let x_big = BigInt::parse_bytes(to_hex(&p.x).as_bytes(), 16).unwrap();
// // let y_big = BigInt::parse_bytes(to_hex(&p.y).as_bytes(), 16).unwrap();
// // let x_big = BigInt::parse_bytes(&p.x.into_bigint().to_bytes_be(), 16).unwrap();
// // let y_big = BigInt::parse_bytes(&p.y.into_bigint().to_bytes_be(), 16).unwrap();
// let x_big = &p.x.into_bigint();
// let y_big = &p.y.into_bigint();
// // let (_, y_bytes) = y_big.to_bytes_le();
// let y_bytes = y_big.to_bytes_le();
// let len = min(y_bytes.len(), r.len());
// r[..len].copy_from_slice(&y_bytes[..len]);
// if x_big > (Q.clone() >> 1) {
// r[31] |= 0x80;
// }
// r
// }
pub fn equals(&self, p: Point) -> bool {
if self.x == p.x && self.y == p.y {
return true;
}
false
}
}
pub fn test_bit(b: &[u8], i: usize) -> bool {
b[i / 8] & (1 << (i % 8)) != 0
}
// pub fn decompress_point(bb: [u8; 32]) -> Result<Point, String> {
// // https://tools.ietf.org/html/rfc8032#section-5.2.3
// let mut sign: bool = false;
// let mut b = bb;
// if b[31] & 0x80 != 0x00 {
// sign = true;
// b[31] &= 0x7F;
// }
// let y: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[..]);
// if y >= Q.clone() {
// return Err("y outside the Finite Field over R".to_string());
// }
// let one: BigInt = One::one();
//
// // x^2 = (1 - y^2) / (a - d * y^2) (mod p)
// let den = utils::modinv(
// &utils::modulus(
// &(&A_BIG.clone() - utils::modulus(&(&D_BIG.clone() * (&y * &y)), &Q)),
// &Q,
// ),
// &Q,
// )?;
// let mut x: BigInt = utils::modulus(&((one - utils::modulus(&(&y * &y), &Q)) * den), &Q);
// x = utils::modsqrt(&x, &Q)?;
//
// if sign && (x <= (&Q.clone() >> 1)) || (!sign && (x > (&Q.clone() >> 1))) {
// x *= -(1.to_bigint().unwrap());
// }
// x = utils::modulus(&x, &Q);
// let x_fr: Fq = Fq::from_str(&x.to_string()).unwrap();
// let y_fr: Fq = Fq::from_str(&y.to_string()).unwrap();
// Ok(Point { x: x_fr, y: y_fr })
// }
#[cfg(not(feature = "aarch64"))]
#[cfg(not(feature = "wasm"))]
fn blh(b: &[u8]) -> Vec<u8> {
let hash = blake_hash::Blake512::digest(b);
hash.to_vec()
}
#[cfg(not(feature = "wasm"))]
#[cfg(feature = "aarch64")]
fn blh(b: &[u8]) -> Vec<u8> {
let mut hash = [0; 64];
blake::hash(512, b, &mut hash).unwrap();
hash.to_vec()
}
#[cfg(not(feature = "aarch64"))]
#[cfg(feature = "wasm")]
fn blh(b: &[u8]) -> Vec<u8> {
// not-compatible with circomlib implementation, but using Blake2b
let mut hasher = Blake2b512::new();
hasher.update(b);
hasher.finalize().to_vec()
}
#[derive(Debug, Clone)]
pub struct Signature {
pub r_b8: Point,
pub s: Fr,
}
// impl Signature {
// pub fn compress(&self) -> [u8; 64] {
// let mut b: Vec<u8> = Vec::new();
// b.append(&mut self.r_b8.compress().to_vec());
// let (_, s_bytes) = self.s.to_bytes_le();
// let mut s_32bytes: [u8; 32] = [0; 32];
// let len = min(s_bytes.len(), s_32bytes.len());
// s_32bytes[..len].copy_from_slice(&s_bytes[..len]);
// b.append(&mut s_32bytes.to_vec());
// let mut r: [u8; 64] = [0; 64];
// r[..].copy_from_slice(&b[..]);
// r
// }
// }
// pub fn decompress_signature(b: &[u8; 64]) -> Result<Signature, String> {
// let r_b8_bytes: [u8; 32] = *array_ref!(b[..32], 0, 32);
// let s: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[32..]);
// let r_b8 = decompress_point(r_b8_bytes);
// match r_b8 {
// Result::Err(err) => Err(err),
// Result::Ok(res) => Ok(Signature { r_b8: res, s }),
// }
// }
pub struct PrivateKey {
pub key: [u8; 32],
}
impl PrivateKey {
pub fn import(b: Vec<u8>) -> Result<PrivateKey, String> {
if b.len() != 32 {
return Err(String::from("imported key can not be bigger than 32 bytes"));
}
let mut sk: [u8; 32] = [0; 32];
sk.copy_from_slice(&b[..32]);
Ok(PrivateKey { key: sk })
}
pub fn scalar_key(&self) -> Fr {
// not-compatible with circomlib implementation, but using Blake2b
// let mut hasher = Blake2b::new();
// hasher.update(sk_raw_bytes);
// let mut h = hasher.finalize();
// compatible with circomlib implementation
let hash: Vec<u8> = blh(&self.key);
let mut h: Vec<u8> = hash[..32].to_vec();
// prune buffer following RFC 8032
// https://tools.ietf.org/html/rfc8032#page-13
h[0] &= 0xF8;
h[31] &= 0x7F;
h[31] |= 0x40;
// let sk = BigInt::deserialize(&h[..]);
// let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
let sk = Fr::from_le_bytes_mod_order(&h[..]);
// sk >> 3
sk / Fr::from(8_u8)
}
pub fn public(&self) -> Point {
B8.mul_scalar(&self.scalar_key())
}
pub fn sign(&self, msg: Fq) -> Result<Signature, String> {
// if msg > Q.clone() {
// return Err("msg outside the Finite Field".to_string());
// }
// let (_, sk_bytes) = self.key.to_bytes_le();
// let mut hasher = Blake2b::new();
// hasher.update(sk_bytes);
// let mut h = hasher.finalize(); // h: hash(sk), s: h[32:64]
let mut h: Vec<u8> = blh(&self.key);
// let (_, msg_bytes) = msg.to_bytes_le();
let msg_bytes = msg.into_bigint().to_bytes_le();
let mut msg32: [u8; 32] = [0; 32];
msg32[..msg_bytes.len()].copy_from_slice(&msg_bytes[..]);
// let msg_fr: Fq = Fq::from_str(&msg.to_string()).unwrap(); // TODO msg_fq
// https://tools.ietf.org/html/rfc8032#section-5.1.6
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
let r_bytes = concatenate_arrays(s, &msg32);
let r_hashed: Vec<u8> = blh(&r_bytes);
let r = Fr::from_le_bytes_mod_order(&r_hashed[..]);
// let mut r = BigInt::from_bytes_le(Sign::Plus, &r_hashed[..]);
// r = utils::modulus(&r, &SUBORDER);
let r_b8: Point = B8.mul_scalar(&r);
let a = &self.public();
let hm_input = vec![r_b8.x, r_b8.y, a.x, a.y, msg];
let hm = POSEIDON.hash(hm_input)?;
// let mut s = &self.scalar_key() << 3;
let mut s = self.scalar_key() * Fr::from(8_u8);
// let hm_b = BigInt::parse_bytes(to_hex(&hm).as_bytes(), 16).unwrap();
// let hm_b = BigInt::parse_bytes(&hm.into_bigint().to_bytes_be(), 16).unwrap();
let hm_Fr = Fr::from_le_bytes_mod_order(&hm.into_bigint().to_bytes_le());
s = hm_Fr * s;
s = r + s;
// s %= &SUBORDER.clone();
Ok(Signature { r_b8, s })
}
// #[allow(clippy::many_single_char_names)]
// pub fn sign_schnorr(&self, m: BigInt) -> Result<(Point, BigInt), String> {
// // random r
// let mut rng = rand::thread_rng();
// let k = rng.gen_biguint(1024).to_bigint().unwrap();
//
// // r = k·G
// let r = B8.mul_scalar(&k);
//
// // h = H(x, r, m)
// let pk = self.public();
// let h = schnorr_hash(&pk, m, &r)?;
//
// // s= k+x·h
// let sk_scalar = self.scalar_key();
// let s = k + &sk_scalar * &h;
// Ok((r, s))
// }
}
pub fn concatenate_arrays<T: Clone>(x: &[T], y: &[T]) -> Vec<T> {
x.iter().chain(y).cloned().collect()
}
//
// pub fn schnorr_hash(pk: &Point, msg: BigInt, c: &Point) -> Result<BigInt, String> {
// if msg > Q.clone() {
// return Err("msg outside the Finite Field".to_string());
// }
// let msg_fr: Fq = Fq::from_str(&msg.to_string()).unwrap();
// let hm_input = vec![pk.x, pk.y, c.x, c.y, msg_fr];
// let h = POSEIDON.hash(hm_input)?;
// // let h_b = BigInt::parse_bytes(to_hex(&h).as_bytes(), 16).unwrap();
// let h_b = BigInt::parse_bytes(&h.into_bigint().to_bytes_be(), 16).unwrap();
// Ok(h_b)
// }
//
// pub fn verify_schnorr(pk: Point, m: BigInt, r: Point, s: BigInt) -> Result<bool, String> {
// // sG = s·G
// let sg = B8.mul_scalar(&s);
//
// // r + h · x
// let h = schnorr_hash(&pk, m, &r)?;
// let pk_h = pk.mul_scalar(&h);
// let right = r.projective().add(&pk_h.projective());
//
// Ok(sg.equals(right.affine()))
// }
pub fn new_key<R: Rng>(rng: &mut R) -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
// let mut rng = rand::thread_rng();
// let sk_raw = rng.gen_biguint(1024).to_bigint().unwrap();
// let (_, sk_raw_bytes) = sk_raw.to_bytes_be();
// PrivateKey::import(sk_raw_bytes[..32].to_vec()).unwrap()
let sk_raw_bytes = BigInt::rand(rng).to_bytes_le();
PrivateKey::import(sk_raw_bytes[..32].to_vec()).unwrap()
}
pub fn verify(pk: Point, sig: Signature, msg: Fq) -> bool {
let hm_input = vec![sig.r_b8.x, sig.r_b8.y, pk.x, pk.y, msg];
let hm = match POSEIDON.hash(hm_input) {
Result::Err(_) => return false,
Result::Ok(hm) => hm,
};
let l = B8.mul_scalar(&sig.s);
let hm_b = Fr::from_le_bytes_mod_order(&hm.into_bigint().to_bytes_le());
let r = sig
.r_b8
.projective()
.add(&pk.mul_scalar(&(Fr::from(8_u8) * hm_b)).projective());
l.equals(r.affine())
}
#[cfg(test)]
mod tests {
use super::*;
use ::hex;
#[test]
fn test_add_same_point() {
let p: PointProjective = PointProjective {
x: Fq::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fq::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
z: Fq::one(),
};
let q: PointProjective = PointProjective {
x: Fq::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fq::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
z: Fq::one(),
};
let res = p.add(&q).affine();
assert_eq!(
res.x,
Fq::from_str(
"6890855772600357754907169075114257697580319025794532037257385534741338397365"
)
.unwrap()
);
assert_eq!(
res.y,
Fq::from_str(
"4338620300185947561074059802482547481416142213883829469920100239455078257889"
)
.unwrap()
);
}
#[test]
fn test_add_different_points() {
let p: PointProjective = PointProjective {
x: Fq::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fq::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
z: Fq::one(),
};
let q: PointProjective = PointProjective {
x: Fq::from_str(
"16540640123574156134436876038791482806971768689494387082833631921987005038935",
)
.unwrap(),
y: Fq::from_str(
"20819045374670962167435360035096875258406992893633759881276124905556507972311",
)
.unwrap(),
z: Fq::one(),
};
let res = p.add(&q).affine();
assert_eq!(
res.x,
Fq::from_str(
"7916061937171219682591368294088513039687205273691143098332585753343424131937"
)
.unwrap()
);
assert_eq!(
res.y,
Fq::from_str(
"14035240266687799601661095864649209771790948434046947201833777492504781204499"
)
.unwrap()
);
}
#[test]
fn test_mul_scalar() {
let p: Point = Point {
x: Fq::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fq::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
};
let res_m = p.mul_scalar(&Fr::from(3_u32));
let res_a = p.projective().add(&p.projective());
let res_a = res_a.add(&p.projective()).affine();
assert_eq!(res_m.x, res_a.x);
assert_eq!(
res_m.x,
Fq::from_str(
"19372461775513343691590086534037741906533799473648040012278229434133483800898"
)
.unwrap()
);
assert_eq!(
res_m.y,
Fq::from_str(
"9458658722007214007257525444427903161243386465067105737478306991484593958249"
)
.unwrap()
);
let n = Fr::from_str(
"14035240266687799601661095864649209771790948434046947201833777492504781204499",
)
.unwrap();
let res2 = p.mul_scalar(&n);
assert_eq!(
res2.x,
Fq::from_str(
"17070357974431721403481313912716834497662307308519659060910483826664480189605"
)
.unwrap()
);
assert_eq!(
res2.y,
Fq::from_str(
"4014745322800118607127020275658861516666525056516280575712425373174125159339"
)
.unwrap()
);
}
#[test]
fn test_new_key_sign_verify_0() {
let mut rng = ark_std::test_rng();
let sk = new_key(&mut rng);
let pk = sk.public();
let msg = Fq::from(5_u32);
let sig = sk.sign(msg.clone()).unwrap();
let v = verify(pk, sig, msg);
assert_eq!(v, true);
}
#[test]
fn test_new_key_sign_verify_1() {
let mut rng = ark_std::test_rng();
let sk = new_key(&mut rng);
let pk = sk.public();
let msg = Fq::from_str("123456789012345678901234567890").unwrap();
let sig = sk.sign(msg.clone()).unwrap();
let v = verify(pk, sig, msg);
assert_eq!(v, true);
}
//
// #[test]
// fn test_point_compress_decompress() {
// let p: Point = Point {
// x: Fq::from_str(
// "17777552123799933955779906779655732241715742912184938656739573121738514868268",
// )
// .unwrap(),
// y: Fq::from_str(
// "2626589144620713026669568689430873010625803728049924121243784502389097019475",
// )
// .unwrap(),
// };
// let p_comp = p.compress();
// assert_eq!(
// hex::encode(p_comp),
// "53b81ed5bffe9545b54016234682e7b2f699bd42a5e9eae27ff4051bc698ce85"
// );
// let p2 = decompress_point(p_comp).unwrap();
// assert_eq!(p.x, p2.x);
// assert_eq!(p.y, p2.y);
// }
//
// #[test]
// fn test_point_decompress0() {
// let y_bytes_raw =
// hex::decode("b5328f8791d48f20bec6e481d91c7ada235f1facf22547901c18656b6c3e042f")
// .unwrap();
// let mut y_bytes: [u8; 32] = [0; 32];
// y_bytes.copy_from_slice(&y_bytes_raw);
// let p = decompress_point(y_bytes).unwrap();
//
// let expected_px_raw =
// hex::decode("b86cc8d9c97daef0afe1a4753c54fb2d8a530dc74c7eee4e72b3fdf2496d2113")
// .unwrap();
// let mut e_px_bytes: [u8; 32] = [0; 32];
// e_px_bytes.copy_from_slice(&expected_px_raw);
// let expected_px: Fq =
// Fq::from_str(&BigInt::from_bytes_le(Sign::Plus, &e_px_bytes).to_string()).unwrap();
// assert_eq!(&p.x, &expected_px);
// }
//
// #[test]
// fn test_point_decompress1() {
// let y_bytes_raw =
// hex::decode("70552d3ff548e09266ded29b33ce75139672b062b02aa66bb0d9247ffecf1d0b")
// .unwrap();
// let mut y_bytes: [u8; 32] = [0; 32];
// y_bytes.copy_from_slice(&y_bytes_raw);
// let p = decompress_point(y_bytes).unwrap();
//
// let expected_px_raw =
// hex::decode("30f1635ba7d56f9cb32c3ffbe6dca508a68c7f43936af11a23c785ce98cb3404")
// .unwrap();
// let mut e_px_bytes: [u8; 32] = [0; 32];
// e_px_bytes.copy_from_slice(&expected_px_raw);
// let expected_px: Fq =
// Fq::from_str(&BigInt::from_bytes_le(Sign::Plus, &e_px_bytes).to_string()).unwrap();
// assert_eq!(&p.x, &expected_px);
// }
//
// #[test]
// fn test_point_decompress_loop() {
// for _ in 0..5 {
// let random_bytes = rand::thread_rng().gen::<[u8; 32]>();
// let sk_raw: BigInt = BigInt::from_bytes_le(Sign::Plus, &random_bytes[..]);
// let (_, sk_raw_bytes) = sk_raw.to_bytes_be();
// let mut h: Vec<u8> = blh(&sk_raw_bytes);
//
// h[0] = h[0] & 0xF8;
// h[31] = h[31] & 0x7F;
// h[31] = h[31] | 0x40;
//
// let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
// let point = B8.mul_scalar(&sk);
// let cmp_point = point.compress();
// let dcmp_point = decompress_point(cmp_point).unwrap();
//
// assert_eq!(&point.x, &dcmp_point.x);
// assert_eq!(&point.y, &dcmp_point.y);
// }
// }
//
// #[test]
// fn test_signature_compress_decompress() {
// let sk = new_key();
// let pk = sk.public();
//
// for i in 0..5 {
// let msg_raw = "123456".to_owned() + &i.to_string();
// let msg = BigInt::parse_bytes(msg_raw.as_bytes(), 10).unwrap();
// let sig = sk.sign(msg.clone()).unwrap();
//
// let compressed_sig = sig.compress();
// let decompressed_sig = decompress_signature(&compressed_sig).unwrap();
// assert_eq!(&sig.r_b8.x, &decompressed_sig.r_b8.x);
// assert_eq!(&sig.r_b8.y, &decompressed_sig.r_b8.y);
// assert_eq!(&sig.s, &decompressed_sig.s);
//
// let v = verify(pk.clone(), decompressed_sig, msg);
// assert_eq!(v, true);
// }
// }
//
// #[test]
// fn test_schnorr_signature() {
// let sk = new_key();
// let pk = sk.public();
//
// let msg = BigInt::parse_bytes(b"123456789012345678901234567890", 10).unwrap();
// let (s, e) = sk.sign_schnorr(msg.clone()).unwrap();
// let verification = verify_schnorr(pk, msg, s, e).unwrap();
// assert_eq!(true, verification);
// }
#[test]
fn test_circomlib_testvector() {
let sk_raw_bytes =
hex::decode("0001020304050607080900010203040506070809000102030405060708090001")
.unwrap();
// test blake compatible with circomlib implementation
let h: Vec<u8> = blh(&sk_raw_bytes);
assert_eq!(hex::encode(h), "c992db23d6290c70ffcc02f7abeb00b9d00fa8b43e55d7949c28ba6be7545d3253882a61bd004a236ef1cdba01b27ba0aedfb08eefdbfb7c19657c880b43ddf1");
// test private key
let sk = PrivateKey::import(
hex::decode("0001020304050607080900010203040506070809000102030405060708090001")
.unwrap(),
)
.unwrap();
// assert_eq!(
// sk.scalar_key().to_string(),
// "6466070937662820620902051049739362987537906109895538826186780010858059362905"
// );
// test public key
let pk = sk.public();
assert_eq!(
pk.x.to_string(),
// "Fq(0x1d5ac1f31407018b7d413a4f52c8f74463b30e6ac2238220ad8b254de4eaa3a2)"
"13277427435165878497778222415993513565335242147425444199013288855685581939618"
);
assert_eq!(
pk.y.to_string(),
// "Fq(0x1e1de8a908826c3f9ac2e0ceee929ecd0caf3b99b3ef24523aaab796a6f733c4)"
"13622229784656158136036771217484571176836296686641868549125388198837476602820"
);
// test signature & verification
// let msg = BigInt::from_bytes_le(Sign::Plus, &hex::decode("00010203040506070809").unwrap());
let msg = Fq::from_le_bytes_mod_order(&hex::decode("00010203040506070809").unwrap());
let sig = sk.sign(msg.clone()).unwrap();
assert_eq!(
sig.r_b8.x.to_string(),
// "Fq(0x192b4e51adf302c8139d356d0e08e2404b5ace440ef41fc78f5c4f2428df0765)"
"11384336176656855268977457483345535180380036354188103142384839473266348197733"
);
assert_eq!(
sig.r_b8.y.to_string(),
// "Fq(0x2202bebcf57b820863e0acc88970b6ca7d987a0d513c2ddeb42e3f5d31b4eddf)"
"15383486972088797283337779941324724402501462225528836549661220478783371668959"
);
assert_eq!(
sig.s.to_string(),
"1672775540645840396591609181675628451599263765380031905495115170613215233181"
);
let v = verify(pk, sig, msg);
assert_eq!(v, true);
}
}