@ -2,19 +2,37 @@
// For LICENSE check https://github.com/arnaucube/babyjubjub-rs
use ff ::* ;
use std ::fmt ::Error ;
use num ::Num ;
use std ::fmt ;
use serde ::{ Serialize , ser ::SerializeStruct , de ::Visitor , de ::MapAccess , Deserialize , Deserializer } ;
use poseidon_rs ::Poseidon ;
pub type Fr = poseidon_rs ::Fr ; // alias
extern crate rand_new ;
extern crate rand ;
extern crate ff ;
// Create a new primefield for the subgroup defined by the base point, order Fl:
#[ derive(PrimeField) ]
#[ PrimeFieldModulus = " 2736030358979909402780800718157159386076813972158567259200215660948447373041 " ]
#[ PrimeFieldGenerator = " 7 " ] // TODO: double check this is a valid generator!!!
pub struct Fl ( FpRepr ) ;
use arrayref ::array_ref ;
#[ cfg(not(feature = " aarch64 " )) ]
#[ cfg(not(any( target_arch = " aarch64 " , target_arch = " wasm32 " ) ))]
use blake_hash ::Digest ; // compatible version with Blake used at circomlib
#[ cfg(feature = " aarch64 " ) ]
#[ cfg( target_arch = " aarch64 " )]
extern crate blake ; // compatible version with Blake used at circomlib
use std ::cmp ::min ;
#[ cfg( target_arch = " wasm32 " ) ]
use blake2 ::{ Blake2b512 , Blake2s256 , Digest } ; // NOT compatible with circomlib but it works on WASM
use std ::{ cmp ::min , str ::FromStr } ;
use num_bigint ::{ BigInt , RandBigInt , Sign , ToBigInt } ;
use num_traits ::One ;
@ -34,7 +52,19 @@ lazy_static! {
b" 21888242871839275222246405745257275088548364400416034343698204186575808495617 " , 10
)
. unwrap ( ) ;
static ref B8 : Point = Point {
pub static ref G : Point = Point {
x : Fr ::from_str (
"995203441582195749578291179787384436505546430278305826713579947235728471134" ,
)
. unwrap ( ) ,
y : Fr ::from_str (
"5472060717959818805561601436314318772137091100104008585924551046643952123905" ,
)
. unwrap ( ) ,
} ;
pub static ref B8 : Point = Point {
x : Fr ::from_str (
"5299619240641551281634865583518297030282874472190772894086521144482721001553" ,
)
@ -42,21 +72,35 @@ lazy_static! {
y : Fr ::from_str (
"16950150798460657717958625567821834550301663161624707787222815936182638968203" ,
)
. unwrap ( ) ,
. unwrap ( ) ,
} ;
pub static ref O : Point = Point {
x : Fr ::zero ( ) ,
y : Fr ::one ( )
} ;
static ref ORDER : Fr = Fr ::from_str (
"21888242871839275222246405745257275088614511777268538073601725287587578984328" ,
)
. unwrap ( ) ;
// Order expressed as a bigint (it is larger than the r modulus of the Fr struct)
pub static ref ORDER : BigInt = BigInt ::parse_bytes (
b" 21888242871839275222246405745257275088614511777268538073601725287587578984328 " ,
10 ,
) . unwrap ( ) ;
// SUBORDER = ORDER >> 3
static ref SUBORDER : BigInt = & BigInt ::parse_bytes (
pub static ref SUBORDER : BigInt = & BigInt ::parse_bytes (
b" 21888242871839275222246405745257275088614511777268538073601725287587578984328 " ,
10 ,
) . unwrap ( )
> > 3 ;
pub static ref POSEIDON : poseidon_rs ::Poseidon = Poseidon ::new ( ) ;
// MAX_MSG is maximum message length that can be encoded into a point
pub static ref MAX_MSG : BigInt = BigInt ::parse_bytes (
b" 21888242871839275222246405745257275088548364400416034343698204186575808495617 " , 10
)
. unwrap ( )
> > 3 ;
static ref POSEIDON : poseidon_rs ::Poseidon = Poseidon ::new ( ) ;
> > 10 ;
}
#[ derive(Clone, Debug) ]
@ -137,6 +181,109 @@ pub struct Point {
pub y : Fr ,
}
pub trait ToDecimalString {
fn to_dec_string ( & self ) -> String ;
}
impl ToDecimalString for Fr {
fn to_dec_string ( & self ) -> String {
let s = self . to_string ( ) ;
let hex_str = s [ 5 . . s . len ( ) - 1 ] . to_string ( ) ;
BigInt ::from_str_radix ( & hex_str , 16 ) . unwrap ( ) . to_string ( )
}
}
impl ToDecimalString for Fl {
fn to_dec_string ( & self ) -> String {
let s = self . to_string ( ) ;
let hex_str = s [ 5 . . s . len ( ) - 1 ] . to_string ( ) ;
BigInt ::from_str_radix ( & hex_str , 16 ) . unwrap ( ) . to_string ( )
}
}
pub trait FrBigIntConversion < T > {
fn from_bigint ( bi : & BigInt ) -> T ;
fn to_bigint ( & self ) -> BigInt ;
}
impl FrBigIntConversion < Fr > for Fr {
// Note: this could probably be more efficient by converting bigint to raw repr to Fr
fn from_bigint ( bi : & BigInt ) -> Fr {
Fr ::from_str ( & bi . to_string ( ) ) . unwrap ( )
}
fn to_bigint ( & self ) -> BigInt {
BigInt ::from_str ( & self . to_dec_string ( ) ) . unwrap ( )
}
}
impl FrBigIntConversion < Fl > for Fl {
// Note: this could probably be more efficient by converting bigint to raw repr to Fr
fn from_bigint ( bi : & BigInt ) -> Fl {
Fl ::from_str ( & bi . to_string ( ) ) . unwrap ( )
}
fn to_bigint ( & self ) -> BigInt {
BigInt ::from_str ( & self . to_dec_string ( ) ) . unwrap ( )
}
}
impl Serialize for Point {
fn serialize < S > ( & self , serializer : S ) -> Result < S ::Ok , S ::Error >
where
S : serde ::Serializer {
let mut state = serializer . serialize_struct ( "Point" , 2 ) ? ;
state . serialize_field ( "x" , & self . x . to_dec_string ( ) ) ? ;
state . serialize_field ( "y" , & self . y . to_dec_string ( ) ) ? ;
state . end ( )
}
}
impl < 'de > Deserialize < 'de > for Point {
fn deserialize < D > ( deserializer : D ) -> Result < Self , D ::Error >
where
D : Deserializer < 'de >
{
deserializer . deserialize_map ( PointVisitor )
}
}
// For deserialization:
struct PointVisitor ;
impl < 'de > Visitor < 'de > for PointVisitor {
type Value = Point ;
fn expecting ( & self , formatter : & mut fmt ::Formatter ) -> fmt ::Result {
write ! ( formatter , "a map with keys 'x' and 'y'" )
}
fn visit_map < M > ( self , mut map : M ) -> Result < Self ::Value , M ::Error >
where
M : MapAccess < 'de >
{
let mut x = None ;
let mut y = None ;
while let Some ( k ) = map . next_key ::< String > ( ) ? {
if k = = "x" {
let x_ : String = map . next_value ( ) ? ;
x = Fr ::from_str ( & x_ ) ;
}
else if k = = "y" {
let y_ : String = map . next_value ( ) ? ;
y = Fr ::from_str ( & y_ ) ;
}
else {
return Err ( serde ::de ::Error ::custom ( & format ! ( "Invalid key: {}" , k ) ) ) ;
}
}
if x . is_none ( ) | | y . is_none ( ) {
return Err ( serde ::de ::Error ::custom ( "Missing first or second" ) ) ;
}
Ok ( Point { x : x . unwrap ( ) , y : y . unwrap ( ) } )
}
}
// For addition shorthand
impl Point {
pub fn projective ( & self ) -> PointProjective {
PointProjective {
@ -146,6 +293,18 @@ impl Point {
}
}
pub fn add ( & self , another_point : & Point ) -> Point {
self . projective ( ) . add ( & another_point . projective ( ) ) . affine ( )
}
pub fn neg ( & self ) -> Point {
let mut x_inverse = Fr ::zero ( ) ;
x_inverse . sub_assign ( & self . x ) ;
Point {
x : x_inverse ,
y : self . y
}
}
pub fn mul_scalar ( & self , n : & BigInt ) -> Point {
let mut r : PointProjective = PointProjective {
x : Fr ::zero ( ) ,
@ -177,12 +336,100 @@ impl Point {
r
}
pub fn equals ( & self , p : Point ) -> bool {
pub fn equals ( & self , p : & Point ) -> bool {
if self . x = = p . x & & self . y = = p . y {
return true ;
}
false
}
/// Koblitz decoding method, adapted for this curve:
/// message m must be < r/(2^10) //using 2^10=1024 instead of Koblitz' parameter of 1000, so arithmetic can happen easily mod 2. This shouldn't have any (negative) impact: https://crypto.stackexchange.com/questions/103132/encoding-a-message-as-points-on-elliptic-curve
/// Try finding a point with y value m*1024+0, m*1024+1, .... m*1024+5617 (5617 are last four digits of prime r)
/// There is an approximately 1/(2^1024) chance no point will be encodable,
/// since each y value has probability of about 1/2 of being on the curve
pub fn from_msg_vartime ( msg : & BigInt ) -> Option < Point > {
#[ allow(non_snake_case) ]
let ACC_UNDER = 1024 ; // Last four digits of prime r. MAX_MSG * 1024 + ACC_UNDER = r
assert ! ( msg < = & MAX_MSG ) ;
let mut acc : u16 = 0 ;
// Start with message * 10000 as x coordinate
let mut x : Fr = Fr ::from_str ( & msg . to_str_radix ( 10 ) ) . unwrap ( ) ;
let mut y : Fr ;
x . mul_assign ( & Fr ::from_str ( & ACC_UNDER . to_string ( ) ) . unwrap ( ) ) ;
let one = Fr ::one ( ) ;
while acc < ACC_UNDER {
// If x is on curve, calculate what y^2 should be, by (ax^2 - 1) / (dx^2 - 1)
let mut x2 = x . clone ( ) ;
x2 . mul_assign ( & x ) ;
// Numerator will be (ax^2 - 1) and denominator will be (dx^2 - 1)
let mut numerator = x2 ;
let mut denominator = x2 . clone ( ) ;
numerator . mul_assign ( & A ) ;
denominator . mul_assign ( & D ) ;
numerator . sub_assign ( & one ) ;
denominator . sub_assign ( & one ) ;
// If the point is on the curve, numerator/denominator will be y^2. Check whether numerator/denominator is a quadratic residue:
numerator . mul_assign ( & denominator . inverse ( ) . unwrap ( ) ) ; // Note: this is no longer a numerator since it was divided in this step
if let LegendreSymbol ::QuadraticResidue = numerator . legendre ( ) {
y = numerator . sqrt ( ) . unwrap ( ) ;
let pt = Point { x , y } ;
if pt . in_subgroup ( ) {
return Some ( Point { x , y } )
}
}
acc + = 1 ;
x . add_assign ( & one ) ;
}
return None
}
/// Converts a point to a message by dividing its x by 1024 (a.k.a. right-shifting by 10)
pub fn to_msg ( & self ) -> Fr {
let mut msg = self . x . clone ( ) . into_repr ( ) ;
msg . shr ( 10 ) ;
Fr ::from_repr ( msg ) . unwrap ( )
}
/// Checks that a point is on the BabyJubJub curve. Does not check the point is in the correct subgroup.
pub fn on_curve ( & self ) -> bool {
let mut x2 = self . x . clone ( ) ;
let mut y2 = self . y . clone ( ) ;
x2 . mul_assign ( & self . x ) ;
y2 . mul_assign ( & self . y ) ;
// compute left hand side ax^2+y^2
let mut lhs = x2 . clone ( ) ;
lhs . mul_assign ( & A ) ;
lhs . add_assign ( & y2 ) ;
// compute right hand side: x^2*y^2*d+1
let mut rhs = x2 . clone ( ) ;
rhs . mul_assign ( & y2 ) ;
rhs . mul_assign ( & D ) ;
rhs . add_assign ( & Fr ::one ( ) ) ;
lhs . eq ( & rhs )
}
/// Checks that a point's order is equal to the subgroup order. Does not check the point is on the curve.
pub fn in_subgroup ( & self ) -> bool {
let should_be_zero = self . mul_scalar ( & SUBORDER ) ;
should_be_zero . equals ( {
& O
} )
}
pub fn from_xy_strings ( x : String , y : String ) -> Point {
Point {
x : Fr ::from_str ( & x ) . unwrap ( ) ,
y : Fr ::from_str ( & y ) . unwrap ( )
}
}
}
pub fn test_bit ( b : & [ u8 ] , i : usize ) -> bool {
@ -223,20 +470,30 @@ pub fn decompress_point(bb: [u8; 32]) -> Result {
Ok ( Point { x : x_fr , y : y_fr } )
}
#[ cfg(not(feature = " aarch64 " )) ]
fn blh ( b : & [ u8 ] ) -> Vec < u8 > {
#[ cfg(not(any( target_arch = " aarch64 " , target_arch = " wasm32 " ) ))]
pub fn blh ( b : & [ u8 ] ) -> Vec < u8 > {
let hash = blake_hash ::Blake512 ::digest ( b ) ;
hash . to_vec ( )
}
#[ cfg(feature = " aarch64 " ) ]
fn blh ( b : & [ u8 ] ) -> Vec < u8 > {
#[ cfg(target_arch = " aarch64 " ) ]
pub fn blh ( b : & [ u8 ] ) -> Vec < u8 > {
let mut hash = [ 0 ; 64 ] ;
blake ::hash ( 512 , b , & mut hash ) . unwrap ( ) ;
hash . to_vec ( )
}
#[ derive(Debug, Clone) ]
#[ cfg(target_arch = " wasm32 " ) ]
/// This is incompatible with the circom version
/// TODO: find a BLAKE-512 that works on WASM
pub fn blh ( b : & [ u8 ] ) -> Vec < u8 > {
let mut hasher = Blake2b512 ::new ( ) ;
hasher . update ( b ) ;
hasher . finalize ( ) . to_vec ( )
}
// #[cfg(target_arch = "wasm32")]
#[ derive(Debug, Clone, Serialize) ]
pub struct Signature {
pub r_b8 : Point ,
pub s : BigInt ,
@ -266,6 +523,11 @@ pub fn decompress_signature(b: &[u8; 64]) -> Result {
Result ::Ok ( res ) = > Ok ( Signature { r_b8 : res , s } ) ,
}
}
#[ derive(Debug, Serialize, Deserialize, Clone) ]
pub struct ElGamalEncryption {
pub c1 : Point ,
pub c2 : Point
}
pub struct PrivateKey {
pub key : [ u8 ; 32 ] ,
@ -302,6 +564,8 @@ impl PrivateKey {
}
pub fn public ( & self ) -> Point {
println ! ( "calling public" ) ;
println ! ( "scalar key {}" , & self . scalar_key ( ) ) ;
B8 . mul_scalar ( & self . scalar_key ( ) )
}
@ -338,13 +602,13 @@ impl PrivateKey {
s = r + s ;
s % = & SUBORDER . clone ( ) ;
Ok ( Signature { r_b8 , s } )
Ok ( Signature { r_b8 , s : s } )
}
#[ allow(clippy::many_single_char_names) ]
pub fn sign_schnorr ( & self , m : BigInt ) -> Result < ( Point , BigInt ) , String > {
// random r
let mut rng = rand ::thread_rng ( ) ;
let mut rng = rand_new ::thread_rng ( ) ;
let k = rng . gen_biguint ( 1024 ) . to_bigint ( ) . unwrap ( ) ;
// r = k·G
@ -359,6 +623,32 @@ impl PrivateKey {
let s = k + & sk_scalar * & h ;
Ok ( ( r , s ) )
}
pub fn decrypt_elgamal ( & self , encrypted_point : & ElGamalEncryption ) -> Point {
// Make sure inputs aren't bad (i imagine this check could be skipped for performance reasons, but it seems a sanity check here would be helpful)
assert ! ( encrypted_point . c1 . on_curve ( ) , "Error: C1 is not on the curve!" ) ;
assert ! ( encrypted_point . c1 . in_subgroup ( ) , "Error: C1 is not in the subgroup!" ) ;
assert ! ( encrypted_point . c2 . on_curve ( ) , "Error: C2 is not on the curve!" ) ;
assert ! ( encrypted_point . c2 . in_subgroup ( ) , "Error: C2 is not in the subgroup!" ) ;
let shared_secret = encrypted_point . c1 . mul_scalar ( & self . scalar_key ( ) ) ;
// Subtract the shared secret
encrypted_point . c2 . add ( & shared_secret . neg ( ) )
}
}
// encrypts msg to public key to_pubkey, using some random scalar nonce
pub fn encrypt_elgamal ( to_pubkey : & Point , nonce : & BigInt , msg : & Point ) -> ElGamalEncryption {
let shared_secret = to_pubkey . mul_scalar ( & nonce ) ;
let public_nonce = B8 . mul_scalar ( & nonce ) ;
// let msg_point = point_for_msg(msg);
let msg_plus_secret = msg . add ( & shared_secret ) ;
ElGamalEncryption {
c1 : public_nonce ,
c2 : msg_plus_secret
}
}
pub fn schnorr_hash ( pk : & Point , msg : BigInt , c : & Point ) -> Result < BigInt , String > {
@ -379,14 +669,14 @@ pub fn verify_schnorr(pk: Point, m: BigInt, r: Point, s: BigInt) -> Result
// r + h · x
let h = schnorr_hash ( & pk , m , & r ) ? ;
let pk_h = pk . mul_scalar ( & h ) ;
let right = r . projective ( ) . add ( & pk_h . projective ( ) ) ;
let right = r . add ( & pk_h ) ;
Ok ( sg . equals ( right . affine ( ) ) )
Ok ( sg . equals ( & right ) )
}
pub fn new_key ( ) -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let mut rng = rand ::thread_rng ( ) ;
let mut rng = rand_new ::thread_rng ( ) ;
let sk_raw = rng . gen_biguint ( 1024 ) . to_bigint ( ) . unwrap ( ) ;
let ( _ , sk_raw_bytes ) = sk_raw . to_bytes_be ( ) ;
PrivateKey ::import ( sk_raw_bytes [ . . 32 ] . to_vec ( ) ) . unwrap ( )
@ -406,17 +696,202 @@ pub fn verify(pk: Point, sig: Signature, msg: BigInt) -> bool {
let hm_b = BigInt ::parse_bytes ( to_hex ( & hm ) . as_bytes ( ) , 16 ) . unwrap ( ) ;
let r = sig
. r_b8
. projective ( )
. add ( & pk . mul_scalar ( & ( 8. to_bigint ( ) . unwrap ( ) * hm_b ) ) . projective ( ) ) ;
l . equals ( r . affine ( ) )
. add ( & pk . mul_scalar ( & ( 8. to_bigint ( ) . unwrap ( ) * hm_b ) ) ) ;
l . equals ( & r )
}
pub struct DLEQProof {
pub A : Point ,
pub B : Point ,
pub xA : Point ,
pub xB : Point ,
pub challenge : Fl ,
pub response : Fl ,
}
impl DLEQProof {
// Prove x*A = variable xA and x*B = variable xB
pub fn new ( x : Fl , point_A : Point , point_B : Point ) -> Result < DLEQProof , Error > {
let x_bigint = x . to_bigint ( ) ;
let modulus = SUBORDER . clone ( ) ;
// TODO: better error handling (not assert), make it more efficient too:
assert ! ( x_bigint < modulus ) ;
let k_bigint = rand_new ::thread_rng ( ) . gen_biguint ( 512 ) . to_bigint ( ) . unwrap ( ) % & modulus ;
let k = Fl ::from_bigint ( & k_bigint ) ;
let xA = point_A . mul_scalar ( & x_bigint ) ;
let xB = point_B . mul_scalar ( & x_bigint ) ;
let kA = point_A . mul_scalar ( & k_bigint ) ;
let kB = point_B . mul_scalar ( & k_bigint ) ;
let challenge = DLEQProof ::get_challenge ( & point_A , & point_B , & xA , & xB , & kA , & kB ) ;
let mut challenge_x = challenge . clone ( ) ; challenge_x . mul_assign ( & x ) ;
// response = k - challenge * x;
let mut response = k . clone ( ) ; response . sub_assign ( & challenge_x ) ;
Ok ( DLEQProof {
A : point_A ,
B : point_B ,
xA : xA ,
xB : xB ,
challenge : challenge ,
response : response ,
} )
}
pub fn verify ( & self ) -> bool {
// This should equal kA
let kA_ =
self . A . mul_scalar ( & self . response . to_bigint ( ) ) . add (
& self . xA . mul_scalar ( & self . challenge . to_bigint ( ) )
) ;
// This should equal kB
let kB_ =
self . B . mul_scalar ( & self . response . to_bigint ( ) ) . add (
& self . xB . mul_scalar ( & self . challenge . to_bigint ( ) )
) ;
let challenge = DLEQProof ::get_challenge ( & self . A , & self . B , & self . xA , & self . xB , & kA_ , & kB_ ) ;
return challenge = = self . challenge ;
}
// Generates randomness for DLEQ Fiat-Shamir transform
fn get_challenge ( point_A : & Point , point_B : & Point , xA : & Point , xB : & Point , kA : & Point , kB : & Point ) -> Fl {
// This could probably be faster if we neglect either the x or y coordinate, but rn doing both to be safe until i study this more
let inputs : Vec < Fr > = vec ! [
point_A . x , point_A . y ,
xA . x , xA . y ,
point_B . x , point_B . y ,
xB . x , xB . y ,
kA . x , kA . y ,
kB . x , kB . y
] ;
let input : Vec < u8 > = inputs . iter ( ) . map ( | f | {
let as_hex = to_hex ( f ) ;
hex ::decode ( as_hex ) . unwrap ( )
} )
. flatten ( )
. collect ( ) ;
let challenge_hash = blh ( & input ) ;
Fl ::from_bigint ( & BigInt ::from_bytes_be ( Sign ::Plus , & challenge_hash . as_slice ( ) ) )
}
}
#[ cfg(test) ]
mod tests {
use super ::* ;
use ::hex ;
use rand ::Rng ;
use rand_new ::Rng ;
use num_traits ::FromPrimitive ;
#[ test ]
fn test_dleq ( ) {
let a = BigInt ::parse_bytes ( b" 123456789 " , 10 ) . unwrap ( ) ;
let point_A = B8 . mul_scalar ( & a ) ;
let b = BigInt ::parse_bytes ( b" 55555555555555512345678944444444444 " , 10 ) . unwrap ( ) ;
let point_B = B8 . mul_scalar ( & b ) ;
let mut rng = rand_new ::thread_rng ( ) ;
let x = Fl ::from_bigint ( & rng . gen_biguint ( 512 ) . to_bigint ( ) . unwrap ( ) ) ;
let proof = DLEQProof ::new ( x , point_A , point_B ) . unwrap ( ) ;
assert ! ( proof . verify ( ) ) ;
}
#[ test ]
fn test_on_curve ( ) {
assert_eq ! ( B8 . on_curve ( ) , true ) ;
assert_eq ! ( B8 . mul_scalar ( & 12345. to_bigint ( ) . unwrap ( ) ) . on_curve ( ) , true ) ;
let some_point = Point { x : Fr ::from_str ( "1234" ) . unwrap ( ) , y : Fr ::from_str ( "5678" ) . unwrap ( ) } ;
assert_eq ! ( some_point . on_curve ( ) , false ) ;
}
#[ test ]
fn test_in_subgroup ( ) {
assert_eq ! ( B8 . in_subgroup ( ) , true ) ;
assert_eq ! ( B8 . mul_scalar ( & 12345. to_bigint ( ) . unwrap ( ) ) . in_subgroup ( ) , true ) ;
assert_eq ! ( G . in_subgroup ( ) , false ) ;
assert_eq ! ( G . mul_scalar ( & 5. to_bigint ( ) . unwrap ( ) ) . in_subgroup ( ) , false ) ;
assert_eq ! ( G . mul_scalar ( & 7. to_bigint ( ) . unwrap ( ) ) . in_subgroup ( ) , false ) ;
assert_eq ! ( G . mul_scalar ( & 8. to_bigint ( ) . unwrap ( ) ) . in_subgroup ( ) , true ) ;
assert_eq ! ( G . mul_scalar ( & 16. to_bigint ( ) . unwrap ( ) ) . in_subgroup ( ) , true ) ;
assert_eq ! ( G . mul_scalar ( & 8000. to_bigint ( ) . unwrap ( ) ) . in_subgroup ( ) , true ) ;
}
#[ test ]
fn test_from_msg_vartime ( ) {
let msg = 123456789. to_bigint ( ) . unwrap ( ) ;
assert ! ( Point ::from_msg_vartime ( & msg ) . unwrap ( ) . on_curve ( ) ) ;
// Try with some more random numbers -- it's extremely unlikely to get lucky will with valid points 20 times in a row if it's not always producing valid points
for n in 0 . . 20 {
let m = rand_new ::thread_rng ( ) . gen_bigint_range ( & 0. to_bigint ( ) . unwrap ( ) , & MAX_MSG ) ;
assert ! ( Point ::from_msg_vartime ( & m ) . unwrap ( ) . on_curve ( ) ) ;
assert ! ( Point ::from_msg_vartime ( & m ) . unwrap ( ) . in_subgroup ( ) ) ;
}
}
#[ test ]
fn test_from_to_msg ( ) {
// Convert from msg to point back to msg and make sure it works:
let msg = 123456789. to_bigint ( ) . unwrap ( ) ;
assert ! (
Point ::from_msg_vartime ( & msg ) . unwrap ( ) . to_msg ( )
. eq (
& Fr ::from_str ( & msg . to_string ( ) ) . unwrap ( )
)
) ;
// Try with some more random numbers -- it's extremely unlikely to get lucky will with valid points 20 times in a row if it's not always producing valid points
for n in 0 . . 20 {
let m = rand_new ::thread_rng ( ) . gen_bigint_range ( & 0. to_bigint ( ) . unwrap ( ) , & MAX_MSG ) ;
assert ! (
Point ::from_msg_vartime ( & m ) . unwrap ( ) . to_msg ( )
. eq (
& Fr ::from_str ( & m . to_string ( ) ) . unwrap ( )
)
) ;
}
}
#[ test ]
fn test_neg ( ) {
let some_point = B8 . mul_scalar ( & BigInt ::from_u8 ( 0x69 ) . unwrap ( ) ) ;
let another_point = B8 . mul_scalar ( & BigInt ::from_u8 ( 0x99 ) . unwrap ( ) ) ;
let mut some_point_x_inverse = Fr ::zero ( ) ;
some_point_x_inverse . sub_assign ( & some_point . x ) ;
// assert_eq!(some_point_x_inverse, some_point.x.inverse().unwrap());
assert ! ( some_point . equals (
& some_point . add ( & another_point ) . add (
& another_point . neg ( ) )
) ) ;
}
#[ test ]
fn test_elgamal ( ) {
let some_point = B8 . mul_scalar ( & BigInt ::from_u8 ( 0x69 ) . unwrap ( ) ) ;
let some_privkey = new_key ( ) ;
let some_point_encrypted = encrypt_elgamal (
& some_privkey . public ( ) ,
& BigInt ::parse_bytes ( b" ABCDEF123456789 " , 16 ) . unwrap ( ) ,
& some_point
) ;
let some_point_encrypted_decrypted = some_privkey . decrypt_elgamal ( & some_point_encrypted ) ;
assert_eq ! ( some_point . x , some_point_encrypted_decrypted . x ) ;
assert_eq ! ( some_point . y , some_point_encrypted_decrypted . y ) ;
}
#[ test ]
fn test_add_same_point ( ) {
let p : PointProjective = PointProjective {
@ -511,8 +986,8 @@ mod tests {
. unwrap ( ) ,
} ;
let res_m = p . mul_scalar ( & 3. to_bigint ( ) . unwrap ( ) ) ;
let res_a = p . projective ( ) . add ( & p . projective ( ) ) ;
let res_a = res_a . add ( & p . projective ( ) ) . affine ( ) ;
let res_a = p . add ( & p ) ;
let res_a = res_a . add ( & p ) ;
assert_eq ! ( res_m . x , res_a . x ) ;
assert_eq ! (
res_m . x ,
@ -634,7 +1109,7 @@ mod tests {
#[ test ]
fn test_point_decompress_loop ( ) {
for _ in 0 . . 5 {
let random_bytes = rand ::thread_rng ( ) . gen ::< [ u8 ; 32 ] > ( ) ;
let random_bytes = rand_new ::thread_rng ( ) . gen ::< [ u8 ; 32 ] > ( ) ;
let sk_raw : BigInt = BigInt ::from_bytes_le ( Sign ::Plus , & random_bytes [ . . ] ) ;
let ( _ , sk_raw_bytes ) = sk_raw . to_bytes_be ( ) ;
let mut h : Vec < u8 > = blh ( & sk_raw_bytes ) ;
@ -719,7 +1194,6 @@ mod tests {
// test signature & verification
let msg = BigInt ::from_bytes_le ( Sign ::Plus , & hex ::decode ( "00010203040506070809" ) . unwrap ( ) ) ;
println ! ( "msg {:?}" , msg . to_string ( ) ) ;
let sig = sk . sign ( msg . clone ( ) ) . unwrap ( ) ;
assert_eq ! (
sig . r_b8 . x . to_string ( ) ,