Browse Source

Merge 5064685224 into 367ee99d8d

pull/8/merge
Nanak Nihal Khalsa 10 months ago
committed by GitHub
parent
commit
22e7813ddb
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
2 changed files with 525 additions and 40 deletions
  1. +19
    -8
      Cargo.toml
  2. +506
    -32
      src/lib.rs

+ 19
- 8
Cargo.toml

@ -9,17 +9,19 @@ repository = "https://github.com/arnaucube/babyjubjub-rs"
readme = "README.md"
[dependencies]
ff = {package="ff_ce" , version= "0.11", features = ["derive"]}
rand = "0.8"
ff = {package="ff_ce", version= "0.11", features = ["derive"]}
rand_new = {package="rand", version="0.8.5"}
rand = "0.4.6"
# rand = "0.8"
num = "0.4"
num-bigint = {version = "0.4", features = ["rand"]}
num-bigint = {version = "0.4", features = ["rand", "serde"]}
num-traits = "0.2.8"
blake-hash = {version="0.4.0", optional=true}
blake = {version="2.0.1", optional=true}
generic-array = "0.14"
poseidon-rs = "0.0.8"
arrayref = "0.3.5"
lazy_static = "1.4.0"
serde = { version = "1.0.152", features = ["derive"] }
bytes = "1.4.0"
[dev-dependencies]
criterion = "0.3"
@ -30,6 +32,15 @@ hex = "0.4"
name = "bench_babyjubjub"
harness = false
[features]
default = ["blake-hash"]
aarch64 = ["blake"]
[target.'cfg(not(any( target_arch = "aarch64", target_arch = "wasm32" )))'.dependencies]
blake-hash = {version="0.4.1" }
[target.'cfg(target_arch = "aarch64")'.dependencies]
blake = { version = "2.0.1" }
[target.'cfg(target_arch = "wasm32")'.dependencies]
blake2 = { version = "0.10.6" }
# [features]
# default = ["blake-hash"]
# aarch64 = ["blake"]

+ 506
- 32
src/lib.rs

@ -2,19 +2,37 @@
// For LICENSE check https://github.com/arnaucube/babyjubjub-rs
use ff::*;
use std::fmt::Error;
use num::Num;
use std::fmt;
use serde::{Serialize, ser::SerializeStruct, de::Visitor, de::MapAccess, Deserialize, Deserializer};
use poseidon_rs::Poseidon;
pub type Fr = poseidon_rs::Fr; // alias
extern crate rand_new;
extern crate rand;
extern crate ff;
// Create a new primefield for the subgroup defined by the base point, order Fl:
#[derive(PrimeField)]
#[PrimeFieldModulus = "2736030358979909402780800718157159386076813972158567259200215660948447373041"]
#[PrimeFieldGenerator = "7"] // TODO: double check this is a valid generator!!!
pub struct Fl(FpRepr);
use arrayref::array_ref;
#[cfg(not(feature = "aarch64"))]
#[cfg(not(any( target_arch = "aarch64", target_arch = "wasm32" )))]
use blake_hash::Digest; // compatible version with Blake used at circomlib
#[cfg(feature = "aarch64")]
#[cfg( target_arch = "aarch64" )]
extern crate blake; // compatible version with Blake used at circomlib
use std::cmp::min;
#[cfg( target_arch = "wasm32" )]
use blake2::{Blake2b512, Blake2s256, Digest}; // NOT compatible with circomlib but it works on WASM
use std::{cmp::min, str::FromStr};
use num_bigint::{BigInt, RandBigInt, Sign, ToBigInt};
use num_traits::One;
@ -34,7 +52,19 @@ lazy_static! {
b"21888242871839275222246405745257275088548364400416034343698204186575808495617",10
)
.unwrap();
static ref B8: Point = Point {
pub static ref G: Point = Point {
x: Fr::from_str(
"995203441582195749578291179787384436505546430278305826713579947235728471134",
)
.unwrap(),
y: Fr::from_str(
"5472060717959818805561601436314318772137091100104008585924551046643952123905",
)
.unwrap(),
};
pub static ref B8: Point = Point {
x: Fr::from_str(
"5299619240641551281634865583518297030282874472190772894086521144482721001553",
)
@ -42,21 +72,35 @@ lazy_static! {
y: Fr::from_str(
"16950150798460657717958625567821834550301663161624707787222815936182638968203",
)
.unwrap(),
.unwrap(),
};
pub static ref O: Point = Point {
x: Fr::zero(),
y: Fr::one()
};
static ref ORDER: Fr = Fr::from_str(
"21888242871839275222246405745257275088614511777268538073601725287587578984328",
)
.unwrap();
// Order expressed as a bigint (it is larger than the r modulus of the Fr struct)
pub static ref ORDER: BigInt = BigInt::parse_bytes(
b"21888242871839275222246405745257275088614511777268538073601725287587578984328",
10,
).unwrap();
// SUBORDER = ORDER >> 3
static ref SUBORDER: BigInt = &BigInt::parse_bytes(
pub static ref SUBORDER: BigInt = &BigInt::parse_bytes(
b"21888242871839275222246405745257275088614511777268538073601725287587578984328",
10,
).unwrap()
>> 3;
pub static ref POSEIDON: poseidon_rs::Poseidon = Poseidon::new();
// MAX_MSG is maximum message length that can be encoded into a point
pub static ref MAX_MSG: BigInt = BigInt::parse_bytes(
b"21888242871839275222246405745257275088548364400416034343698204186575808495617",10
)
.unwrap()
>> 3;
static ref POSEIDON: poseidon_rs::Poseidon = Poseidon::new();
>> 10;
}
#[derive(Clone, Debug)]
@ -137,6 +181,109 @@ pub struct Point {
pub y: Fr,
}
pub trait ToDecimalString {
fn to_dec_string(&self) -> String;
}
impl ToDecimalString for Fr {
fn to_dec_string(&self) -> String {
let s = self.to_string();
let hex_str = s[5..s.len()-1].to_string();
BigInt::from_str_radix(&hex_str, 16).unwrap().to_string()
}
}
impl ToDecimalString for Fl {
fn to_dec_string(&self) -> String {
let s = self.to_string();
let hex_str = s[5..s.len()-1].to_string();
BigInt::from_str_radix(&hex_str, 16).unwrap().to_string()
}
}
pub trait FrBigIntConversion<T> {
fn from_bigint(bi: &BigInt) -> T;
fn to_bigint(&self) -> BigInt;
}
impl FrBigIntConversion<Fr> for Fr {
// Note: this could probably be more efficient by converting bigint to raw repr to Fr
fn from_bigint(bi: &BigInt) -> Fr {
Fr::from_str(&bi.to_string()).unwrap()
}
fn to_bigint(&self) -> BigInt {
BigInt::from_str(&self.to_dec_string()).unwrap()
}
}
impl FrBigIntConversion<Fl> for Fl {
// Note: this could probably be more efficient by converting bigint to raw repr to Fr
fn from_bigint(bi: &BigInt) -> Fl {
Fl::from_str(&bi.to_string()).unwrap()
}
fn to_bigint(&self) -> BigInt {
BigInt::from_str(&self.to_dec_string()).unwrap()
}
}
impl Serialize for Point {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer {
let mut state = serializer.serialize_struct("Point", 2)?;
state.serialize_field("x", &self.x.to_dec_string())?;
state.serialize_field("y", &self.y.to_dec_string())?;
state.end()
}
}
impl<'de> Deserialize<'de> for Point {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>
{
deserializer.deserialize_map(PointVisitor)
}
}
// For deserialization:
struct PointVisitor;
impl<'de> Visitor<'de> for PointVisitor {
type Value = Point;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "a map with keys 'x' and 'y'")
}
fn visit_map<M>(self, mut map: M) -> Result<Self::Value, M::Error>
where
M: MapAccess<'de>
{
let mut x = None;
let mut y = None;
while let Some(k) = map.next_key::<String>()? {
if k == "x" {
let x_: String = map.next_value()?;
x = Fr::from_str(&x_);
}
else if k == "y" {
let y_: String = map.next_value()?;
y = Fr::from_str(&y_);
}
else {
return Err(serde::de::Error::custom(&format!("Invalid key: {}", k)));
}
}
if x.is_none() || y.is_none() {
return Err(serde::de::Error::custom("Missing first or second"));
}
Ok(Point { x: x.unwrap(), y: y.unwrap() })
}
}
// For addition shorthand
impl Point {
pub fn projective(&self) -> PointProjective {
PointProjective {
@ -146,6 +293,18 @@ impl Point {
}
}
pub fn add(&self, another_point: &Point) -> Point {
self.projective().add(&another_point.projective()).affine()
}
pub fn neg(&self) -> Point {
let mut x_inverse = Fr::zero();
x_inverse.sub_assign(&self.x);
Point {
x: x_inverse,
y: self.y
}
}
pub fn mul_scalar(&self, n: &BigInt) -> Point {
let mut r: PointProjective = PointProjective {
x: Fr::zero(),
@ -177,12 +336,100 @@ impl Point {
r
}
pub fn equals(&self, p: Point) -> bool {
pub fn equals(&self, p: &Point) -> bool {
if self.x == p.x && self.y == p.y {
return true;
}
false
}
/// Koblitz decoding method, adapted for this curve:
/// message m must be < r/(2^10) //using 2^10=1024 instead of Koblitz' parameter of 1000, so arithmetic can happen easily mod 2. This shouldn't have any (negative) impact: https://crypto.stackexchange.com/questions/103132/encoding-a-message-as-points-on-elliptic-curve
/// Try finding a point with y value m*1024+0, m*1024+1, .... m*1024+5617 (5617 are last four digits of prime r)
/// There is an approximately 1/(2^1024) chance no point will be encodable,
/// since each y value has probability of about 1/2 of being on the curve
pub fn from_msg_vartime(msg: &BigInt) -> Option<Point> {
#[allow(non_snake_case)]
let ACC_UNDER = 1024; // Last four digits of prime r. MAX_MSG * 1024 + ACC_UNDER = r
assert!(msg <= &MAX_MSG);
let mut acc: u16 = 0;
// Start with message * 10000 as x coordinate
let mut x: Fr = Fr::from_str(&msg.to_str_radix(10)).unwrap();
let mut y: Fr;
x.mul_assign(&Fr::from_str(&ACC_UNDER.to_string()).unwrap());
let one = Fr::one();
while acc < ACC_UNDER {
// If x is on curve, calculate what y^2 should be, by (ax^2 - 1) / (dx^2 - 1)
let mut x2 = x.clone();
x2.mul_assign(&x);
// Numerator will be (ax^2 - 1) and denominator will be (dx^2 - 1)
let mut numerator = x2;
let mut denominator = x2.clone();
numerator.mul_assign(&A);
denominator.mul_assign(&D);
numerator.sub_assign(&one);
denominator.sub_assign(&one);
// If the point is on the curve, numerator/denominator will be y^2. Check whether numerator/denominator is a quadratic residue:
numerator.mul_assign(&denominator.inverse().unwrap()); // Note: this is no longer a numerator since it was divided in this step
if let LegendreSymbol::QuadraticResidue = numerator.legendre() {
y = numerator.sqrt().unwrap();
let pt = Point {x, y};
if pt.in_subgroup() {
return Some(Point {x, y})
}
}
acc += 1;
x.add_assign(&one);
}
return None
}
/// Converts a point to a message by dividing its x by 1024 (a.k.a. right-shifting by 10)
pub fn to_msg(&self) -> Fr {
let mut msg = self.x.clone().into_repr();
msg.shr(10);
Fr::from_repr(msg).unwrap()
}
/// Checks that a point is on the BabyJubJub curve. Does not check the point is in the correct subgroup.
pub fn on_curve(&self) -> bool {
let mut x2 = self.x.clone();
let mut y2 = self.y.clone();
x2.mul_assign(&self.x);
y2.mul_assign(&self.y);
// compute left hand side ax^2+y^2
let mut lhs = x2.clone();
lhs.mul_assign(&A);
lhs.add_assign(&y2);
// compute right hand side: x^2*y^2*d+1
let mut rhs = x2.clone();
rhs.mul_assign(&y2);
rhs.mul_assign(&D);
rhs.add_assign(&Fr::one());
lhs.eq(&rhs)
}
/// Checks that a point's order is equal to the subgroup order. Does not check the point is on the curve.
pub fn in_subgroup(&self) -> bool {
let should_be_zero = self.mul_scalar(&SUBORDER);
should_be_zero.equals({
&O
})
}
pub fn from_xy_strings(x: String, y: String) -> Point {
Point {
x: Fr::from_str(&x).unwrap(),
y: Fr::from_str(&y).unwrap()
}
}
}
pub fn test_bit(b: &[u8], i: usize) -> bool {
@ -223,20 +470,30 @@ pub fn decompress_point(bb: [u8; 32]) -> Result {
Ok(Point { x: x_fr, y: y_fr })
}
#[cfg(not(feature = "aarch64"))]
fn blh(b: &[u8]) -> Vec<u8> {
#[cfg(not(any( target_arch = "aarch64", target_arch = "wasm32" )))]
pub fn blh(b: &[u8]) -> Vec<u8> {
let hash = blake_hash::Blake512::digest(b);
hash.to_vec()
}
#[cfg(feature = "aarch64")]
fn blh(b: &[u8]) -> Vec<u8> {
#[cfg(target_arch = "aarch64")]
pub fn blh(b: &[u8]) -> Vec<u8> {
let mut hash = [0; 64];
blake::hash(512, b, &mut hash).unwrap();
hash.to_vec()
}
#[derive(Debug, Clone)]
#[cfg(target_arch = "wasm32")]
/// This is incompatible with the circom version
/// TODO: find a BLAKE-512 that works on WASM
pub fn blh(b: &[u8]) -> Vec<u8> {
let mut hasher = Blake2b512::new();
hasher.update(b);
hasher.finalize().to_vec()
}
// #[cfg(target_arch = "wasm32")]
#[derive(Debug, Clone, Serialize)]
pub struct Signature {
pub r_b8: Point,
pub s: BigInt,
@ -266,6 +523,11 @@ pub fn decompress_signature(b: &[u8; 64]) -> Result {
Result::Ok(res) => Ok(Signature { r_b8: res, s }),
}
}
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct ElGamalEncryption {
pub c1: Point,
pub c2: Point
}
pub struct PrivateKey {
pub key: [u8; 32],
@ -302,6 +564,8 @@ impl PrivateKey {
}
pub fn public(&self) -> Point {
println!("calling public");
println!("scalar key {}", &self.scalar_key());
B8.mul_scalar(&self.scalar_key())
}
@ -338,13 +602,13 @@ impl PrivateKey {
s = r + s;
s %= &SUBORDER.clone();
Ok(Signature { r_b8, s })
Ok(Signature { r_b8, s: s })
}
#[allow(clippy::many_single_char_names)]
pub fn sign_schnorr(&self, m: BigInt) -> Result<(Point, BigInt), String> {
// random r
let mut rng = rand::thread_rng();
let mut rng = rand_new::thread_rng();
let k = rng.gen_biguint(1024).to_bigint().unwrap();
// r = k·G
@ -359,6 +623,32 @@ impl PrivateKey {
let s = k + &sk_scalar * &h;
Ok((r, s))
}
pub fn decrypt_elgamal(&self, encrypted_point: &ElGamalEncryption) -> Point {
// Make sure inputs aren't bad (i imagine this check could be skipped for performance reasons, but it seems a sanity check here would be helpful)
assert!(encrypted_point.c1.on_curve(), "Error: C1 is not on the curve!");
assert!(encrypted_point.c1.in_subgroup(), "Error: C1 is not in the subgroup!");
assert!(encrypted_point.c2.on_curve(), "Error: C2 is not on the curve!");
assert!(encrypted_point.c2.in_subgroup(), "Error: C2 is not in the subgroup!");
let shared_secret = encrypted_point.c1.mul_scalar(&self.scalar_key());
// Subtract the shared secret
encrypted_point.c2.add(&shared_secret.neg())
}
}
// encrypts msg to public key to_pubkey, using some random scalar nonce
pub fn encrypt_elgamal(to_pubkey: &Point, nonce: &BigInt, msg: &Point) -> ElGamalEncryption {
let shared_secret = to_pubkey.mul_scalar(&nonce);
let public_nonce = B8.mul_scalar(&nonce);
// let msg_point = point_for_msg(msg);
let msg_plus_secret = msg.add(&shared_secret);
ElGamalEncryption {
c1: public_nonce,
c2: msg_plus_secret
}
}
pub fn schnorr_hash(pk: &Point, msg: BigInt, c: &Point) -> Result<BigInt, String> {
@ -379,14 +669,14 @@ pub fn verify_schnorr(pk: Point, m: BigInt, r: Point, s: BigInt) -> Result
// r + h · x
let h = schnorr_hash(&pk, m, &r)?;
let pk_h = pk.mul_scalar(&h);
let right = r.projective().add(&pk_h.projective());
let right = r.add(&pk_h);
Ok(sg.equals(right.affine()))
Ok(sg.equals(&right))
}
pub fn new_key() -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let mut rng = rand::thread_rng();
let mut rng = rand_new::thread_rng();
let sk_raw = rng.gen_biguint(1024).to_bigint().unwrap();
let (_, sk_raw_bytes) = sk_raw.to_bytes_be();
PrivateKey::import(sk_raw_bytes[..32].to_vec()).unwrap()
@ -406,17 +696,202 @@ pub fn verify(pk: Point, sig: Signature, msg: BigInt) -> bool {
let hm_b = BigInt::parse_bytes(to_hex(&hm).as_bytes(), 16).unwrap();
let r = sig
.r_b8
.projective()
.add(&pk.mul_scalar(&(8.to_bigint().unwrap() * hm_b)).projective());
l.equals(r.affine())
.add(&pk.mul_scalar(&(8.to_bigint().unwrap() * hm_b)));
l.equals(&r)
}
pub struct DLEQProof {
pub A: Point,
pub B: Point,
pub xA: Point,
pub xB: Point,
pub challenge: Fl,
pub response: Fl,
}
impl DLEQProof {
// Prove x*A = variable xA and x*B = variable xB
pub fn new(x: Fl, point_A: Point, point_B: Point) -> Result<DLEQProof, Error> {
let x_bigint = x.to_bigint();
let modulus = SUBORDER.clone();
// TODO: better error handling (not assert), make it more efficient too:
assert!(x_bigint < modulus);
let k_bigint = rand_new::thread_rng().gen_biguint(512).to_bigint().unwrap() % &modulus;
let k = Fl::from_bigint(&k_bigint);
let xA = point_A.mul_scalar(&x_bigint);
let xB = point_B.mul_scalar(&x_bigint);
let kA = point_A.mul_scalar(&k_bigint);
let kB = point_B.mul_scalar(&k_bigint);
let challenge = DLEQProof::get_challenge(&point_A, &point_B, &xA, &xB, &kA, &kB);
let mut challenge_x = challenge.clone(); challenge_x.mul_assign(&x);
// response = k - challenge * x;
let mut response = k.clone(); response.sub_assign(&challenge_x);
Ok(DLEQProof {
A: point_A,
B: point_B,
xA: xA,
xB: xB,
challenge: challenge,
response: response,
})
}
pub fn verify(&self) -> bool {
// This should equal kA
let kA_ =
self.A.mul_scalar(&self.response.to_bigint()).add(
&self.xA.mul_scalar(&self.challenge.to_bigint())
);
// This should equal kB
let kB_ =
self.B.mul_scalar(&self.response.to_bigint()).add(
&self.xB.mul_scalar(&self.challenge.to_bigint())
);
let challenge = DLEQProof::get_challenge(&self.A, &self.B, &self.xA, &self.xB, &kA_, &kB_);
return challenge == self.challenge;
}
// Generates randomness for DLEQ Fiat-Shamir transform
fn get_challenge(point_A: &Point, point_B: &Point, xA: &Point, xB: &Point, kA: &Point, kB: &Point) -> Fl {
// This could probably be faster if we neglect either the x or y coordinate, but rn doing both to be safe until i study this more
let inputs: Vec<Fr> = vec![
point_A.x,point_A.y,
xA.x,xA.y,
point_B.x,point_B.y,
xB.x,xB.y,
kA.x,kA.y,
kB.x,kB.y
];
let input: Vec<u8> = inputs.iter().map(|f| {
let as_hex = to_hex(f);
hex::decode(as_hex).unwrap()
})
.flatten()
.collect();
let challenge_hash = blh(&input);
Fl::from_bigint(&BigInt::from_bytes_be(Sign::Plus, &challenge_hash.as_slice()))
}
}
#[cfg(test)]
mod tests {
use super::*;
use ::hex;
use rand::Rng;
use rand_new::Rng;
use num_traits::FromPrimitive;
#[test]
fn test_dleq() {
let a = BigInt::parse_bytes(b"123456789", 10).unwrap();
let point_A = B8.mul_scalar(&a);
let b = BigInt::parse_bytes(b"55555555555555512345678944444444444", 10).unwrap();
let point_B = B8.mul_scalar(&b);
let mut rng = rand_new::thread_rng();
let x = Fl::from_bigint(&rng.gen_biguint(512).to_bigint().unwrap());
let proof = DLEQProof::new(x, point_A, point_B).unwrap();
assert!(proof.verify());
}
#[test]
fn test_on_curve() {
assert_eq!(B8.on_curve(), true);
assert_eq!(B8.mul_scalar(&12345.to_bigint().unwrap()).on_curve(), true);
let some_point = Point { x: Fr::from_str("1234").unwrap(), y: Fr::from_str("5678").unwrap() };
assert_eq!(some_point.on_curve(), false);
}
#[test]
fn test_in_subgroup() {
assert_eq!(B8.in_subgroup(), true);
assert_eq!(B8.mul_scalar(&12345.to_bigint().unwrap()).in_subgroup(), true);
assert_eq!(G.in_subgroup(), false);
assert_eq!(G.mul_scalar(&5.to_bigint().unwrap()).in_subgroup(), false);
assert_eq!(G.mul_scalar(&7.to_bigint().unwrap()).in_subgroup(), false);
assert_eq!(G.mul_scalar(&8.to_bigint().unwrap()).in_subgroup(), true);
assert_eq!(G.mul_scalar(&16.to_bigint().unwrap()).in_subgroup(), true);
assert_eq!(G.mul_scalar(&8000.to_bigint().unwrap()).in_subgroup(), true);
}
#[test]
fn test_from_msg_vartime() {
let msg = 123456789.to_bigint().unwrap();
assert!(Point::from_msg_vartime(&msg).unwrap().on_curve());
// Try with some more random numbers -- it's extremely unlikely to get lucky will with valid points 20 times in a row if it's not always producing valid points
for n in 0..20 {
let m = rand_new::thread_rng().gen_bigint_range(&0.to_bigint().unwrap() , &MAX_MSG);
assert!(Point::from_msg_vartime(&m).unwrap().on_curve());
assert!(Point::from_msg_vartime(&m).unwrap().in_subgroup());
}
}
#[test]
fn test_from_to_msg() {
// Convert from msg to point back to msg and make sure it works:
let msg = 123456789.to_bigint().unwrap();
assert!(
Point::from_msg_vartime(&msg).unwrap().to_msg()
.eq(
&Fr::from_str(&msg.to_string()).unwrap()
)
);
// Try with some more random numbers -- it's extremely unlikely to get lucky will with valid points 20 times in a row if it's not always producing valid points
for n in 0..20 {
let m = rand_new::thread_rng().gen_bigint_range(&0.to_bigint().unwrap() , &MAX_MSG);
assert!(
Point::from_msg_vartime(&m).unwrap().to_msg()
.eq(
&Fr::from_str(&m.to_string()).unwrap()
)
);
}
}
#[test]
fn test_neg() {
let some_point = B8.mul_scalar(&BigInt::from_u8(0x69).unwrap());
let another_point = B8.mul_scalar(&BigInt::from_u8(0x99).unwrap());
let mut some_point_x_inverse = Fr::zero();
some_point_x_inverse.sub_assign(&some_point.x);
// assert_eq!(some_point_x_inverse, some_point.x.inverse().unwrap());
assert!(some_point.equals(
&some_point.add(&another_point).add(
&another_point.neg())
));
}
#[test]
fn test_elgamal() {
let some_point = B8.mul_scalar(&BigInt::from_u8(0x69).unwrap());
let some_privkey = new_key();
let some_point_encrypted = encrypt_elgamal(
&some_privkey.public(),
&BigInt::parse_bytes(b"ABCDEF123456789", 16).unwrap(),
&some_point
);
let some_point_encrypted_decrypted = some_privkey.decrypt_elgamal(&some_point_encrypted);
assert_eq!(some_point.x, some_point_encrypted_decrypted.x);
assert_eq!(some_point.y, some_point_encrypted_decrypted.y);
}
#[test]
fn test_add_same_point() {
let p: PointProjective = PointProjective {
@ -511,8 +986,8 @@ mod tests {
.unwrap(),
};
let res_m = p.mul_scalar(&3.to_bigint().unwrap());
let res_a = p.projective().add(&p.projective());
let res_a = res_a.add(&p.projective()).affine();
let res_a = p.add(&p);
let res_a = res_a.add(&p);
assert_eq!(res_m.x, res_a.x);
assert_eq!(
res_m.x,
@ -634,7 +1109,7 @@ mod tests {
#[test]
fn test_point_decompress_loop() {
for _ in 0..5 {
let random_bytes = rand::thread_rng().gen::<[u8; 32]>();
let random_bytes = rand_new::thread_rng().gen::<[u8; 32]>();
let sk_raw: BigInt = BigInt::from_bytes_le(Sign::Plus, &random_bytes[..]);
let (_, sk_raw_bytes) = sk_raw.to_bytes_be();
let mut h: Vec<u8> = blh(&sk_raw_bytes);
@ -719,7 +1194,6 @@ mod tests {
// test signature & verification
let msg = BigInt::from_bytes_le(Sign::Plus, &hex::decode("00010203040506070809").unwrap());
println!("msg {:?}", msg.to_string());
let sig = sk.sign(msg.clone()).unwrap();
assert_eq!(
sig.r_b8.x.to_string(),

Loading…
Cancel
Save