|
|
@ -191,6 +191,9 @@ impl Point { |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn add(&self, another_point: &Point) -> Point {
|
|
|
|
self.projective().add(&another_point.projective()).affine()
|
|
|
|
}
|
|
|
|
pub fn neg(&self) -> Point {
|
|
|
|
let mut x_inverse = Fr::zero();
|
|
|
|
x_inverse.sub_assign(&self.x);
|
|
|
@ -514,9 +517,7 @@ impl PrivateKey { |
|
|
|
assert!(encrypted_point.c1.on_curve() && encrypted_point.c2.on_curve());
|
|
|
|
let shared_secret = encrypted_point.c1.mul_scalar(&self.scalar_key());
|
|
|
|
// Subtract the shared secret
|
|
|
|
encrypted_point.c2.projective().add(
|
|
|
|
&shared_secret.neg().projective()
|
|
|
|
).affine()
|
|
|
|
encrypted_point.c2.add(&shared_secret.neg())
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
@ -526,10 +527,8 @@ pub fn encrypt_elgamal(to_pubkey: &Point, nonce: &BigInt, msg: &Point) -> ElGama |
|
|
|
let shared_secret = to_pubkey.mul_scalar(&nonce);
|
|
|
|
let public_nonce = B8.mul_scalar(&nonce);
|
|
|
|
// let msg_point = point_for_msg(msg);
|
|
|
|
let msg_plus_secret = msg.projective().add(
|
|
|
|
&shared_secret.projective()
|
|
|
|
)
|
|
|
|
.affine();
|
|
|
|
let msg_plus_secret = msg.add(&shared_secret);
|
|
|
|
|
|
|
|
ElGamalEncryption {
|
|
|
|
c1: public_nonce,
|
|
|
|
c2: msg_plus_secret
|
|
|
@ -554,9 +553,9 @@ pub fn verify_schnorr(pk: Point, m: BigInt, r: Point, s: BigInt) -> Result |
|
|
|
// r + h · x
|
|
|
|
let h = schnorr_hash(&pk, m, &r)?;
|
|
|
|
let pk_h = pk.mul_scalar(&h);
|
|
|
|
let right = r.projective().add(&pk_h.projective());
|
|
|
|
let right = r.add(&pk_h);
|
|
|
|
|
|
|
|
Ok(sg.equals(right.affine()))
|
|
|
|
Ok(sg.equals(right))
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn new_key() -> PrivateKey {
|
|
|
@ -581,9 +580,8 @@ pub fn verify(pk: Point, sig: Signature, msg: BigInt) -> bool { |
|
|
|
let hm_b = BigInt::parse_bytes(to_hex(&hm).as_bytes(), 16).unwrap();
|
|
|
|
let r = sig
|
|
|
|
.r_b8
|
|
|
|
.projective()
|
|
|
|
.add(&pk.mul_scalar(&(8.to_bigint().unwrap() * hm_b)).projective());
|
|
|
|
l.equals(r.affine())
|
|
|
|
.add(&pk.mul_scalar(&(8.to_bigint().unwrap() * hm_b)));
|
|
|
|
l.equals(r)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
@ -644,9 +642,8 @@ mod tests { |
|
|
|
some_point_x_inverse.sub_assign(&some_point.x);
|
|
|
|
// assert_eq!(some_point_x_inverse, some_point.x.inverse().unwrap());
|
|
|
|
assert!(some_point.equals(
|
|
|
|
some_point.projective().add(&another_point.projective()).add(
|
|
|
|
&another_point.neg().projective())
|
|
|
|
.affine()
|
|
|
|
some_point.add(&another_point).add(
|
|
|
|
&another_point.neg())
|
|
|
|
));
|
|
|
|
|
|
|
|
}
|
|
|
@ -758,8 +755,8 @@ mod tests { |
|
|
|
.unwrap(),
|
|
|
|
};
|
|
|
|
let res_m = p.mul_scalar(&3.to_bigint().unwrap());
|
|
|
|
let res_a = p.projective().add(&p.projective());
|
|
|
|
let res_a = res_a.add(&p.projective()).affine();
|
|
|
|
let res_a = p.add(&p);
|
|
|
|
let res_a = res_a.add(&p);
|
|
|
|
assert_eq!(res_m.x, res_a.x);
|
|
|
|
assert_eq!(
|
|
|
|
res_m.x,
|
|
|
|