@ -9,6 +9,17 @@ use bytes::{BytesMut, BufMut};
use poseidon_rs ::Poseidon ;
pub type Fr = poseidon_rs ::Fr ; // alias
extern crate rand_new ;
extern crate rand ;
#[ macro_use ]
extern crate ff ;
// Create a new primefield for the subgroup defined by the base point, order Fl:
#[ derive(PrimeField) ]
#[ PrimeFieldModulus = " 2736030358979909402780800718157159386076813972158567259200215660948447373041 " ]
#[ PrimeFieldGenerator = " 7 " ] // TODO: double check this is a valid generator!!!
pub struct Fl ( FpRepr ) ;
use arrayref ::array_ref ;
// #[cfg(not(feature = "aarch64"))]
@ -54,7 +65,7 @@ lazy_static! {
. unwrap ( ) ;
// SUBORDER = ORDER >> 3
static ref SUBORDER : BigInt = & BigInt ::parse_bytes (
pub static ref SUBORDER : BigInt = & BigInt ::parse_bytes (
b" 21888242871839275222246405745257275088614511777268538073601725287587578984328 " ,
10 ,
)
@ -69,8 +80,8 @@ lazy_static! {
. unwrap ( )
> > 10 ;
// An arbitrary number for Koblitz method of encoding string to point. 1024 is convenient compared to original 1000 to do bitshifts instead of multiplications/divisions
pub static ref KOBLITZ_NUMBER : Fr = Fr ::from_str ( "1024" ) . unwrap ( ) ;
pub static ref KOBLITZ_NUMBER_INV : Fr = Fr ::from_str ( "1024" ) . unwrap ( ) . inverse ( ) . unwrap ( ) ;
// pub static ref KOBLITZ_NUMBER: Fr = Fr::from_str("1024").unwrap();
// pub static ref KOBLITZ_NUMBER_INV: Fr = Fr::from_str("1024").unwrap().inverse().unwrap();
}
@ -162,12 +173,20 @@ impl ToDecimalString for Fr {
BigInt ::from_str_radix ( & hex_str , 16 ) . unwrap ( ) . to_string ( )
}
}
pub trait FrBigIntConversion {
fn from_bigint ( bi : & BigInt ) -> Fr ;
impl ToDecimalString for Fl {
fn to_dec_string ( & self ) -> String {
let mut s = self . to_string ( ) ;
let hex_str = s [ 5 . . s . len ( ) - 1 ] . to_string ( ) ;
BigInt ::from_str_radix ( & hex_str , 16 ) . unwrap ( ) . to_string ( )
}
}
pub trait FrBigIntConversion < T > {
fn from_bigint ( bi : & BigInt ) -> T ;
fn to_bigint ( & self ) -> BigInt ;
}
impl FrBigIntConversion for Fr {
impl FrBigIntConversion < Fr > for Fr {
// Note: this could probably be more efficient by converting bigint to raw repr to Fr
fn from_bigint ( bi : & BigInt ) -> Fr {
Fr ::from_str ( & bi . to_string ( ) ) . unwrap ( )
@ -177,6 +196,16 @@ impl FrBigIntConversion for Fr {
}
}
impl FrBigIntConversion < Fl > for Fl {
// Note: this could probably be more efficient by converting bigint to raw repr to Fr
fn from_bigint ( bi : & BigInt ) -> Fl {
Fl ::from_str ( & bi . to_string ( ) ) . unwrap ( )
}
fn to_bigint ( & self ) -> BigInt {
BigInt ::from_str ( & self . to_dec_string ( ) ) . unwrap ( )
}
}
pub struct FrWrapper {
pub fr : Fr
}
@ -525,7 +554,7 @@ impl PrivateKey {
#[ allow(clippy::many_single_char_names) ]
pub fn sign_schnorr ( & self , m : BigInt ) -> Result < ( Point , BigInt ) , String > {
// random r
let mut rng = rand ::thread_rng ( ) ;
let mut rng = rand_new ::thread_rng ( ) ;
let k = rng . gen_biguint ( 1024 ) . to_bigint ( ) . unwrap ( ) ;
// r = k·G
@ -589,7 +618,7 @@ pub fn verify_schnorr(pk: Point, m: BigInt, r: Point, s: BigInt) -> Result
pub fn new_key ( ) -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let mut rng = rand ::thread_rng ( ) ;
let mut rng = rand_new ::thread_rng ( ) ;
let sk_raw = rng . gen_biguint ( 1024 ) . to_bigint ( ) . unwrap ( ) ;
let ( _ , sk_raw_bytes ) = sk_raw . to_bytes_be ( ) ;
PrivateKey ::import ( sk_raw_bytes [ . . 32 ] . to_vec ( ) ) . unwrap ( )
@ -617,7 +646,7 @@ pub fn verify(pk: Point, sig: Signature, msg: BigInt) -> bool {
mod tests {
use super ::* ;
use ::hex ;
use rand ::Rng ;
use rand_new ::Rng ;
use num_traits ::FromPrimitive ;
#[ test ]
@ -635,7 +664,7 @@ mod tests {
// Try with some more random numbers -- it's extremely unlikely to get lucky will with valid points 20 times in a row if it's not always producing valid points
for n in 0 . . 20 {
let m = rand ::thread_rng ( ) . gen_bigint_range ( & 0. to_bigint ( ) . unwrap ( ) , & MAX_MSG ) ;
let m = rand_new ::thread_rng ( ) . gen_bigint_range ( & 0. to_bigint ( ) . unwrap ( ) , & MAX_MSG ) ;
assert ! ( Point ::from_msg_vartime ( & m ) . on_curve ( ) ) ;
}
@ -654,7 +683,7 @@ mod tests {
// Try with some more random numbers -- it's extremely unlikely to get lucky will with valid points 20 times in a row if it's not always producing valid points
for n in 0 . . 20 {
let m = rand ::thread_rng ( ) . gen_bigint_range ( & 0. to_bigint ( ) . unwrap ( ) , & MAX_MSG ) ;
let m = rand_new ::thread_rng ( ) . gen_bigint_range ( & 0. to_bigint ( ) . unwrap ( ) , & MAX_MSG ) ;
assert ! (
Point ::from_msg_vartime ( & m ) . to_msg ( )
. eq (
@ -907,7 +936,7 @@ mod tests {
#[ test ]
fn test_point_decompress_loop ( ) {
for _ in 0 . . 5 {
let random_bytes = rand ::thread_rng ( ) . gen ::< [ u8 ; 32 ] > ( ) ;
let random_bytes = rand_new ::thread_rng ( ) . gen ::< [ u8 ; 32 ] > ( ) ;
let sk_raw : BigInt = BigInt ::from_bytes_le ( Sign ::Plus , & random_bytes [ . . ] ) ;
let ( _ , sk_raw_bytes ) = sk_raw . to_bytes_be ( ) ;
let mut h : Vec < u8 > = blh ( & sk_raw_bytes ) ;