Browse Source

koblitz variation implemented but not yet tested

pull/8/head
Nanak Nihal Singh Khalsa 1 year ago
parent
commit
aace3068e0
1 changed files with 65 additions and 21 deletions
  1. +65
    -21
      src/lib.rs

+ 65
- 21
src/lib.rs

@ -206,31 +206,75 @@ impl Point {
false false
} }
// // Use a variation of the Koblitz method
// pub fn from_msg_vartime(msg: &[u8; 28]) -> Point {
// }
pub fn from_msg(msg: &[u8; 28]) -> Point {
// Use a variation of the Koblitz method
pub fn from_msg_vartime(msg: BigInt/*msg: &[u8; 28]*/) -> Point {
// This is the largest point that can fit BabyJubJub curve while still allowing 8 extra bytes, as long as those bytes are less than f0000001 // This is the largest point that can fit BabyJubJub curve while still allowing 8 extra bytes, as long as those bytes are less than f0000001
// Babyjubjub r parameter is 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 // Babyjubjub r parameter is 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
assert!(
BigInt::from_bytes_be(Sign::Plus, msg)
<
BigInt::parse_bytes(b"30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001",16).unwrap()
);
let mut acc: u32 = 0;
let mut pt: Point;
let mut is_residue: bool = false;
// assert!(
// BigInt::from_bytes_be(Sign::Plus, msg)
// <
// BigInt::parse_bytes(b"30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f00000",16).unwrap()
// );
// let mut acc: u32 = 0;
// let mut pt: Point;
// let mut is_residue: bool = false;
// let mut on_curve: bool = false;
// while (acc <= 0xf0000001) && !on_curve {
// let acc_bytes: [u8; 4] = acc.to_be_bytes();
// // let mut buff: ArrayVec::<[u8; 32]> = concat_bytes!()[msg, acc_bytes]);
// let mut buf = BytesMut::with_capacity(32);
// buf.put_slice(msg);
// buf.put_u32(acc);
// Fr::from_str("123").unwrap().legendre()
// println!("bytes {:?}", buf);
// }
// Koblitz decoding method, adapted for this curve:
// message m must be < r/10000
// Try finding a point with y value m*10000+0, m*10000+1, .... m*10000+5617 (5617 are last four digits of prime r)
// There is an approximately 1/(2^1000) chance no point will be encodable,
// since each y value has probability of about 1/2 of being on the curve
let MAX_MSG: BigInt = BigInt::parse_bytes(
b"2188824287183927522224640574525727508854836440041603434369820418657580849",10 // Prime r but missing last 4 digits
).unwrap();
let ACC_UNDER = 5617; // Last four digits of prime r. MAX_MSG * 10000 + ACC_UNDER = r
assert!(msg <= MAX_MSG);
let mut acc: u16 = 0;
let mut on_curve: bool = false; let mut on_curve: bool = false;
while (acc <= 0xf0000001) && !on_curve {
let acc_bytes: [u8; 4] = acc.to_be_bytes();
// let mut buff: ArrayVec::<[u8; 32]> = concat_bytes!()[msg, acc_bytes]);
let mut buf = BytesMut::with_capacity(32);
buf.put_slice(msg);
buf.put_u32(acc);
println!("bytes {:?}", buf);
// Start with message * 10000 as x coordinate
let mut x: Fr = Fr::from_str(&msg.to_str_radix(10)).unwrap();
let mut y: Option<Fr> = None;
x.mul_assign(&Fr::from_str("10000").unwrap());
let one = Fr::one();
// let m10000 = 1000.to_bigint().unwrap() * msg;
while (acc < ACC_UNDER) && !on_curve {
// If x is on curve, calculate what y^2 should be, by (ax^2 - 1) / (dx^2 - 1)
let mut x2 = x.clone();
x2.mul_assign(&x);
// Numerator will be (ax^2 - 1) and denominator will be (dx^2 - 1)
let mut numerator = x2;
let mut denominator = x2.clone();
numerator.mul_assign(&A);
denominator.mul_assign(&D);
numerator.sub_assign(&one);
denominator.sub_assign(&one);
// If the point is on the curve, numerator/denominator will be y^2. Check whether numerator/denominator is a quadratic residue:
numerator.mul_assign(&denominator.inverse().unwrap()); // Note: this is no longer a numerator since it was divided in this step
if let LegendreSymbol::QuadraticResidue = numerator.legendre() {
on_curve=true;
y = numerator.sqrt();
} else {
acc += 1;
}
} }
Point {x:Fr::zero(), y:Fr::zero()}
// Unwrap y since we can't be 100% sure at compile-time it will have been found; it may still be a None value!
Point {x:x, y:y.unwrap()}
} }
pub fn on_curve(&self) -> bool { pub fn on_curve(&self) -> bool {

Loading…
Cancel
Save