You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

739 lines
23 KiB

// BabyJubJub elliptic curve implementation in Rust.
// For LICENSE check https://github.com/arnaucube/babyjubjub-rs
use ff::*;
use poseidon_rs::Poseidon;
pub type Fr = poseidon_rs::Fr; // alias
use arrayref::array_ref;
#[cfg(not(feature = "aarch64"))]
use blake_hash::Digest; // compatible version with Blake used at circomlib
#[cfg(feature = "aarch64")]
extern crate blake; // compatible version with Blake used at circomlib
use std::cmp::min;
use num_bigint::{BigInt, RandBigInt, Sign, ToBigInt};
use num_traits::One;
use generic_array::GenericArray;
pub mod utils;
use lazy_static::lazy_static;
lazy_static! {
static ref D: Fr = Fr::from_str("168696").unwrap();
static ref D_BIG: BigInt = BigInt::parse_bytes(b"168696", 10).unwrap();
static ref A: Fr = Fr::from_str("168700").unwrap();
static ref A_BIG: BigInt = BigInt::parse_bytes(b"168700", 10).unwrap();
pub static ref Q: BigInt = BigInt::parse_bytes(
b"21888242871839275222246405745257275088548364400416034343698204186575808495617",10
)
.unwrap();
static ref B8: Point = Point {
x: Fr::from_str(
"5299619240641551281634865583518297030282874472190772894086521144482721001553",
)
.unwrap(),
y: Fr::from_str(
"16950150798460657717958625567821834550301663161624707787222815936182638968203",
)
.unwrap(),
};
static ref ORDER: Fr = Fr::from_str(
"21888242871839275222246405745257275088614511777268538073601725287587578984328",
)
.unwrap();
// SUBORDER = ORDER >> 3
static ref SUBORDER: BigInt = &BigInt::parse_bytes(
b"21888242871839275222246405745257275088614511777268538073601725287587578984328",
10,
)
.unwrap()
>> 3;
static ref POSEIDON: poseidon_rs::Poseidon = Poseidon::new();
}
#[derive(Clone, Debug)]
pub struct PointProjective {
pub x: Fr,
pub y: Fr,
pub z: Fr,
}
impl PointProjective {
pub fn affine(&self) -> Point {
if self.z.is_zero() {
return Point {
x: Fr::zero(),
y: Fr::zero(),
};
}
let zinv = self.z.inverse().unwrap();
let mut x = self.x;
x.mul_assign(&zinv);
let mut y = self.y;
y.mul_assign(&zinv);
Point { x, y }
}
#[allow(clippy::many_single_char_names)]
pub fn add(&self, q: &PointProjective) -> PointProjective {
// add-2008-bbjlp https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-dbl-2008-bbjlp
let mut a = self.z;
a.mul_assign(&q.z);
let mut b = a;
b.square();
let mut c = self.x;
c.mul_assign(&q.x);
let mut d = self.y;
d.mul_assign(&q.y);
let mut e = *D;
e.mul_assign(&c);
e.mul_assign(&d);
let mut f = b;
f.sub_assign(&e);
let mut g = b;
g.add_assign(&e);
let mut x1y1 = self.x;
x1y1.add_assign(&self.y);
let mut x2y2 = q.x;
x2y2.add_assign(&q.y);
let mut aux = x1y1;
aux.mul_assign(&x2y2);
aux.sub_assign(&c);
aux.sub_assign(&d);
let mut x3 = a;
x3.mul_assign(&f);
x3.mul_assign(&aux);
let mut ac = *A;
ac.mul_assign(&c);
let mut dac = d;
dac.sub_assign(&ac);
let mut y3 = a;
y3.mul_assign(&g);
y3.mul_assign(&dac);
let mut z3 = f;
z3.mul_assign(&g);
PointProjective {
x: x3,
y: y3,
z: z3,
}
}
}
#[derive(Clone, Debug)]
pub struct Point {
pub x: Fr,
pub y: Fr,
}
impl Point {
pub fn projective(&self) -> PointProjective {
PointProjective {
x: self.x,
y: self.y,
z: Fr::one(),
}
}
pub fn mul_scalar(&self, n: &BigInt) -> Point {
let mut r: PointProjective = PointProjective {
x: Fr::zero(),
y: Fr::one(),
z: Fr::one(),
};
let mut exp: PointProjective = self.projective();
let (_, b) = n.to_bytes_le();
for i in 0..n.bits() {
if test_bit(&b, i.try_into().unwrap()) {
r = r.add(&exp);
}
exp = exp.add(&exp);
}
r.affine()
}
pub fn compress(&self) -> [u8; 32] {
let p = &self;
let mut r: [u8; 32] = [0; 32];
let x_big = BigInt::parse_bytes(to_hex(&p.x).as_bytes(), 16).unwrap();
let y_big = BigInt::parse_bytes(to_hex(&p.y).as_bytes(), 16).unwrap();
let (_, y_bytes) = y_big.to_bytes_le();
let len = min(y_bytes.len(), r.len());
r[..len].copy_from_slice(&y_bytes[..len]);
if x_big > (&Q.clone() >> 1) {
r[31] |= 0x80;
}
r
}
pub fn equals(&self, p: Point) -> bool {
if self.x == p.x && self.y == p.y {
return true;
}
false
}
}
pub fn test_bit(b: &[u8], i: usize) -> bool {
b[i / 8] & (1 << (i % 8)) != 0
}
pub fn decompress_point(bb: [u8; 32]) -> Result<Point, String> {
// https://tools.ietf.org/html/rfc8032#section-5.2.3
let mut sign: bool = false;
let mut b = bb;
if b[31] & 0x80 != 0x00 {
sign = true;
b[31] &= 0x7F;
}
let y: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[..]);
if y >= Q.clone() {
return Err("y outside the Finite Field over R".to_string());
}
let one: BigInt = One::one();
// x^2 = (1 - y^2) / (a - d * y^2) (mod p)
let den = utils::modinv(
&utils::modulus(
&(&A_BIG.clone() - utils::modulus(&(&D_BIG.clone() * (&y * &y)), &Q)),
&Q,
),
&Q,
)?;
let mut x: BigInt = utils::modulus(&((one - utils::modulus(&(&y * &y), &Q)) * den), &Q);
x = utils::modsqrt(&x, &Q)?;
if sign && (x <= (&Q.clone() >> 1)) || (!sign && (x > (&Q.clone() >> 1))) {
x *= -(1.to_bigint().unwrap());
}
x = utils::modulus(&x, &Q);
let x_fr: Fr = Fr::from_str(&x.to_string()).unwrap();
let y_fr: Fr = Fr::from_str(&y.to_string()).unwrap();
Ok(Point { x: x_fr, y: y_fr })
}
#[cfg(not(feature = "aarch64"))]
fn blh(b: &[u8]) -> Vec<u8> {
let hash = blake_hash::Blake512::digest(b);
hash.to_vec()
}
#[cfg(feature = "aarch64")]
fn blh(b: &[u8]) -> Vec<u8> {
let mut hash = [0; 64];
blake::hash(512, b, &mut hash).unwrap();
hash.to_vec()
}
#[derive(Debug, Clone)]
pub struct Signature {
r_b8: Point,
s: BigInt,
}
impl Signature {
pub fn compress(&self) -> [u8; 64] {
let mut b: Vec<u8> = Vec::new();
b.append(&mut self.r_b8.compress().to_vec());
let (_, s_bytes) = self.s.to_bytes_le();
let mut s_32bytes: [u8; 32] = [0; 32];
let len = min(s_bytes.len(), s_32bytes.len());
s_32bytes[..len].copy_from_slice(&s_bytes[..len]);
b.append(&mut s_32bytes.to_vec());
let mut r: [u8; 64] = [0; 64];
r[..].copy_from_slice(&b[..]);
r
}
}
pub fn decompress_signature(b: &[u8; 64]) -> Result<Signature, String> {
let r_b8_bytes: [u8; 32] = *array_ref!(b[..32], 0, 32);
let s: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[32..]);
let r_b8 = decompress_point(r_b8_bytes);
match r_b8 {
Result::Err(err) => Err(err),
Result::Ok(res) => Ok(Signature { r_b8: res, s }),
}
}
pub struct PrivateKey {
key: [u8; 32],
}
impl PrivateKey {
pub fn import(b: Vec<u8>) -> Result<PrivateKey, String> {
if b.len() != 32 {
return Err(String::from("imported key can not be bigger than 32 bytes"));
}
let mut sk: [u8; 32] = [0; 32];
sk.copy_from_slice(&b[..32]);
Ok(PrivateKey { key: sk })
}
pub fn scalar_key(&self) -> BigInt {
// not-compatible with circomlib implementation, but using Blake2b
// let mut hasher = Blake2b::new();
// hasher.update(sk_raw_bytes);
// let mut h = hasher.finalize();
// compatible with circomlib implementation
let hash: Vec<u8> = blh(&self.key);
let mut h: Vec<u8> = hash[..32].to_vec();
// prune buffer following RFC 8032
// https://tools.ietf.org/html/rfc8032#page-13
h[0] &= 0xF8;
h[31] &= 0x7F;
h[31] |= 0x40;
let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
sk >> 3
}
pub fn public(&self) -> Point {
B8.mul_scalar(&self.scalar_key())
}
pub fn sign(&self, msg: BigInt) -> Result<Signature, String> {
if msg > Q.clone() {
return Err("msg outside the Finite Field".to_string());
}
// let (_, sk_bytes) = self.key.to_bytes_le();
// let mut hasher = Blake2b::new();
// hasher.update(sk_bytes);
// let mut h = hasher.finalize(); // h: hash(sk), s: h[32:64]
let mut h: Vec<u8> = blh(&self.key);
let (_, msg_bytes) = msg.to_bytes_le();
let mut msg32: [u8; 32] = [0; 32];
msg32[..msg_bytes.len()].copy_from_slice(&msg_bytes[..]);
let msg_fr: Fr = Fr::from_str(&msg.to_string()).unwrap();
// https://tools.ietf.org/html/rfc8032#section-5.1.6
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
let r_bytes = utils::concatenate_arrays(s, &msg32);
let r_hashed: Vec<u8> = blh(&r_bytes);
let mut r = BigInt::from_bytes_le(Sign::Plus, &r_hashed[..]);
r = utils::modulus(&r, &SUBORDER);
let r_b8: Point = B8.mul_scalar(&r);
let a = &self.public();
let hm_input = vec![r_b8.x, r_b8.y, a.x, a.y, msg_fr];
let hm = POSEIDON.hash(hm_input)?;
let mut s = &self.scalar_key() << 3;
let hm_b = BigInt::parse_bytes(to_hex(&hm).as_bytes(), 16).unwrap();
s = hm_b * s;
s = r + s;
s %= &SUBORDER.clone();
Ok(Signature { r_b8, s })
}
#[allow(clippy::many_single_char_names)]
pub fn sign_schnorr(&self, m: BigInt) -> Result<(Point, BigInt), String> {
// random r
let mut rng = rand::thread_rng();
let k = rng.gen_biguint(1024).to_bigint().unwrap();
// r = k·G
let r = B8.mul_scalar(&k);
// h = H(x, r, m)
let pk = self.public();
let h = schnorr_hash(&pk, m, &r)?;
// s= k+x·h
let sk_scalar = self.scalar_key();
let s = k + &sk_scalar * &h;
Ok((r, s))
}
}
pub fn schnorr_hash(pk: &Point, msg: BigInt, c: &Point) -> Result<BigInt, String> {
if msg > Q.clone() {
return Err("msg outside the Finite Field".to_string());
}
let msg_fr: Fr = Fr::from_str(&msg.to_string()).unwrap();
let hm_input = vec![pk.x, pk.y, c.x, c.y, msg_fr];
let h = POSEIDON.hash(hm_input)?;
let h_b = BigInt::parse_bytes(to_hex(&h).as_bytes(), 16).unwrap();
Ok(h_b)
}
pub fn verify_schnorr(pk: Point, m: BigInt, r: Point, s: BigInt) -> Result<bool, String> {
// sG = s·G
let sg = B8.mul_scalar(&s);
// r + h · x
let h = schnorr_hash(&pk, m, &r)?;
let pk_h = pk.mul_scalar(&h);
let right = r.projective().add(&pk_h.projective());
Ok(sg.equals(right.affine()))
}
pub fn new_key() -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let mut rng = rand::thread_rng();
let sk_raw = rng.gen_biguint(1024).to_bigint().unwrap();
let (_, sk_raw_bytes) = sk_raw.to_bytes_be();
PrivateKey::import(sk_raw_bytes[..32].to_vec()).unwrap()
}
pub fn verify(pk: Point, sig: Signature, msg: BigInt) -> bool {
if msg > Q.clone() {
return false;
}
let msg_fr: Fr = Fr::from_str(&msg.to_string()).unwrap();
let hm_input = vec![sig.r_b8.x, sig.r_b8.y, pk.x, pk.y, msg_fr];
let hm = match POSEIDON.hash(hm_input) {
Result::Err(_) => return false,
Result::Ok(hm) => hm,
};
let l = B8.mul_scalar(&sig.s);
let hm_b = BigInt::parse_bytes(to_hex(&hm).as_bytes(), 16).unwrap();
let r = sig
.r_b8
.projective()
.add(&pk.mul_scalar(&(8.to_bigint().unwrap() * hm_b)).projective());
l.equals(r.affine())
}
#[cfg(test)]
mod tests {
use super::*;
use ::hex;
use rand::Rng;
#[test]
fn test_add_same_point() {
let p: PointProjective = PointProjective {
x: Fr::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fr::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
z: Fr::one(),
};
let q: PointProjective = PointProjective {
x: Fr::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fr::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
z: Fr::one(),
};
let res = p.add(&q).affine();
assert_eq!(
res.x,
Fr::from_str(
"6890855772600357754907169075114257697580319025794532037257385534741338397365"
)
.unwrap()
);
assert_eq!(
res.y,
Fr::from_str(
"4338620300185947561074059802482547481416142213883829469920100239455078257889"
)
.unwrap()
);
}
#[test]
fn test_add_different_points() {
let p: PointProjective = PointProjective {
x: Fr::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fr::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
z: Fr::one(),
};
let q: PointProjective = PointProjective {
x: Fr::from_str(
"16540640123574156134436876038791482806971768689494387082833631921987005038935",
)
.unwrap(),
y: Fr::from_str(
"20819045374670962167435360035096875258406992893633759881276124905556507972311",
)
.unwrap(),
z: Fr::one(),
};
let res = p.add(&q).affine();
assert_eq!(
res.x,
Fr::from_str(
"7916061937171219682591368294088513039687205273691143098332585753343424131937"
)
.unwrap()
);
assert_eq!(
res.y,
Fr::from_str(
"14035240266687799601661095864649209771790948434046947201833777492504781204499"
)
.unwrap()
);
}
#[test]
fn test_mul_scalar() {
let p: Point = Point {
x: Fr::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fr::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
};
let res_m = p.mul_scalar(&3.to_bigint().unwrap());
let res_a = p.projective().add(&p.projective());
let res_a = res_a.add(&p.projective()).affine();
assert_eq!(res_m.x, res_a.x);
assert_eq!(
res_m.x,
Fr::from_str(
"19372461775513343691590086534037741906533799473648040012278229434133483800898"
)
.unwrap()
);
assert_eq!(
res_m.y,
Fr::from_str(
"9458658722007214007257525444427903161243386465067105737478306991484593958249"
)
.unwrap()
);
let n = BigInt::parse_bytes(
b"14035240266687799601661095864649209771790948434046947201833777492504781204499",
10,
)
.unwrap();
let res2 = p.mul_scalar(&n);
assert_eq!(
res2.x,
Fr::from_str(
"17070357974431721403481313912716834497662307308519659060910483826664480189605"
)
.unwrap()
);
assert_eq!(
res2.y,
Fr::from_str(
"4014745322800118607127020275658861516666525056516280575712425373174125159339"
)
.unwrap()
);
}
#[test]
fn test_new_key_sign_verify_0() {
let sk = new_key();
let pk = sk.public();
let msg = 5.to_bigint().unwrap();
let sig = sk.sign(msg.clone()).unwrap();
let v = verify(pk, sig, msg);
assert_eq!(v, true);
}
#[test]
fn test_new_key_sign_verify_1() {
let sk = new_key();
let pk = sk.public();
let msg = BigInt::parse_bytes(b"123456789012345678901234567890", 10).unwrap();
let sig = sk.sign(msg.clone()).unwrap();
let v = verify(pk, sig, msg);
assert_eq!(v, true);
}
#[test]
fn test_point_compress_decompress() {
let p: Point = Point {
x: Fr::from_str(
"17777552123799933955779906779655732241715742912184938656739573121738514868268",
)
.unwrap(),
y: Fr::from_str(
"2626589144620713026669568689430873010625803728049924121243784502389097019475",
)
.unwrap(),
};
let p_comp = p.compress();
assert_eq!(
hex::encode(p_comp),
"53b81ed5bffe9545b54016234682e7b2f699bd42a5e9eae27ff4051bc698ce85"
);
let p2 = decompress_point(p_comp).unwrap();
assert_eq!(p.x, p2.x);
assert_eq!(p.y, p2.y);
}
#[test]
fn test_point_decompress0() {
let y_bytes_raw =
hex::decode("b5328f8791d48f20bec6e481d91c7ada235f1facf22547901c18656b6c3e042f")
.unwrap();
let mut y_bytes: [u8; 32] = [0; 32];
y_bytes.copy_from_slice(&y_bytes_raw);
let p = decompress_point(y_bytes).unwrap();
let expected_px_raw =
hex::decode("b86cc8d9c97daef0afe1a4753c54fb2d8a530dc74c7eee4e72b3fdf2496d2113")
.unwrap();
let mut e_px_bytes: [u8; 32] = [0; 32];
e_px_bytes.copy_from_slice(&expected_px_raw);
let expected_px: Fr =
Fr::from_str(&BigInt::from_bytes_le(Sign::Plus, &e_px_bytes).to_string()).unwrap();
assert_eq!(&p.x, &expected_px);
}
#[test]
fn test_point_decompress1() {
let y_bytes_raw =
hex::decode("70552d3ff548e09266ded29b33ce75139672b062b02aa66bb0d9247ffecf1d0b")
.unwrap();
let mut y_bytes: [u8; 32] = [0; 32];
y_bytes.copy_from_slice(&y_bytes_raw);
let p = decompress_point(y_bytes).unwrap();
let expected_px_raw =
hex::decode("30f1635ba7d56f9cb32c3ffbe6dca508a68c7f43936af11a23c785ce98cb3404")
.unwrap();
let mut e_px_bytes: [u8; 32] = [0; 32];
e_px_bytes.copy_from_slice(&expected_px_raw);
let expected_px: Fr =
Fr::from_str(&BigInt::from_bytes_le(Sign::Plus, &e_px_bytes).to_string()).unwrap();
assert_eq!(&p.x, &expected_px);
}
#[test]
fn test_point_decompress_loop() {
for _ in 0..5 {
let random_bytes = rand::thread_rng().gen::<[u8; 32]>();
let sk_raw: BigInt = BigInt::from_bytes_le(Sign::Plus, &random_bytes[..]);
let (_, sk_raw_bytes) = sk_raw.to_bytes_be();
let mut h: Vec<u8> = blh(&sk_raw_bytes);
h[0] = h[0] & 0xF8;
h[31] = h[31] & 0x7F;
h[31] = h[31] | 0x40;
let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
let point = B8.mul_scalar(&sk);
let cmp_point = point.compress();
let dcmp_point = decompress_point(cmp_point).unwrap();
assert_eq!(&point.x, &dcmp_point.x);
assert_eq!(&point.y, &dcmp_point.y);
}
}
#[test]
fn test_signature_compress_decompress() {
let sk = new_key();
let pk = sk.public();
for i in 0..5 {
let msg_raw = "123456".to_owned() + &i.to_string();
let msg = BigInt::parse_bytes(msg_raw.as_bytes(), 10).unwrap();
let sig = sk.sign(msg.clone()).unwrap();
let compressed_sig = sig.compress();
let decompressed_sig = decompress_signature(&compressed_sig).unwrap();
assert_eq!(&sig.r_b8.x, &decompressed_sig.r_b8.x);
assert_eq!(&sig.r_b8.y, &decompressed_sig.r_b8.y);
assert_eq!(&sig.s, &decompressed_sig.s);
let v = verify(pk.clone(), decompressed_sig, msg);
assert_eq!(v, true);
}
}
#[test]
fn test_schnorr_signature() {
let sk = new_key();
let pk = sk.public();
let msg = BigInt::parse_bytes(b"123456789012345678901234567890", 10).unwrap();
let (s, e) = sk.sign_schnorr(msg.clone()).unwrap();
let verification = verify_schnorr(pk, msg, s, e).unwrap();
assert_eq!(true, verification);
}
#[test]
fn test_circomlib_testvector() {
let sk_raw_bytes =
hex::decode("0001020304050607080900010203040506070809000102030405060708090001")
.unwrap();
// test blake compatible with circomlib implementation
let h: Vec<u8> = blh(&sk_raw_bytes);
assert_eq!(hex::encode(h), "c992db23d6290c70ffcc02f7abeb00b9d00fa8b43e55d7949c28ba6be7545d3253882a61bd004a236ef1cdba01b27ba0aedfb08eefdbfb7c19657c880b43ddf1");
// test private key
let sk = PrivateKey::import(
hex::decode("0001020304050607080900010203040506070809000102030405060708090001")
.unwrap(),
)
.unwrap();
assert_eq!(
sk.scalar_key().to_string(),
"6466070937662820620902051049739362987537906109895538826186780010858059362905"
);
// test public key
let pk = sk.public();
assert_eq!(
pk.x.to_string(),
"Fr(0x1d5ac1f31407018b7d413a4f52c8f74463b30e6ac2238220ad8b254de4eaa3a2)"
);
assert_eq!(
pk.y.to_string(),
"Fr(0x1e1de8a908826c3f9ac2e0ceee929ecd0caf3b99b3ef24523aaab796a6f733c4)"
);
// test signature & verification
let msg = BigInt::from_bytes_le(Sign::Plus, &hex::decode("00010203040506070809").unwrap());
println!("msg {:?}", msg.to_string());
let sig = sk.sign(msg.clone()).unwrap();
assert_eq!(
sig.r_b8.x.to_string(),
"Fr(0x192b4e51adf302c8139d356d0e08e2404b5ace440ef41fc78f5c4f2428df0765)"
);
assert_eq!(
sig.r_b8.y.to_string(),
"Fr(0x2202bebcf57b820863e0acc88970b6ca7d987a0d513c2ddeb42e3f5d31b4eddf)"
);
assert_eq!(
sig.s.to_string(),
"1672775540645840396591609181675628451599263765380031905495115170613215233181"
);
let v = verify(pk, sig, msg);
assert_eq!(v, true);
}
}