package ownrsa
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
"math/rand"
|
|
"strings"
|
|
"time"
|
|
)
|
|
|
|
type RSAPublicKey struct {
|
|
E *big.Int `json:"e"`
|
|
N *big.Int `json:"n"`
|
|
}
|
|
type RSAPublicKeyString struct {
|
|
E string `json:"e"`
|
|
N string `json:"n"`
|
|
}
|
|
type RSAPrivateKey struct {
|
|
D *big.Int `json:"d"`
|
|
N *big.Int `json:"n"`
|
|
}
|
|
|
|
type RSA struct {
|
|
PubK RSAPublicKey
|
|
PrivK RSAPrivateKey
|
|
}
|
|
|
|
const maxPrime = 500
|
|
const minPrime = 100
|
|
|
|
func GenerateKeyPair() RSA {
|
|
|
|
rand.Seed(time.Now().Unix())
|
|
p := randPrime(minPrime, maxPrime)
|
|
q := randPrime(minPrime, maxPrime)
|
|
fmt.Print("p:")
|
|
fmt.Println(p)
|
|
fmt.Print("q:")
|
|
fmt.Println(q)
|
|
|
|
n := p * q
|
|
phi := (p - 1) * (q - 1)
|
|
e := 65537
|
|
var pubK RSAPublicKey
|
|
pubK.E = big.NewInt(int64(e))
|
|
pubK.N = big.NewInt(int64(n))
|
|
|
|
d := new(big.Int).ModInverse(big.NewInt(int64(e)), big.NewInt(int64(phi)))
|
|
|
|
var privK RSAPrivateKey
|
|
privK.D = d
|
|
privK.N = big.NewInt(int64(n))
|
|
|
|
var rsa RSA
|
|
rsa.PubK = pubK
|
|
rsa.PrivK = privK
|
|
return rsa
|
|
}
|
|
func Encrypt(m string, pubK RSAPublicKey) []int {
|
|
var c []int
|
|
mBytes := []byte(m)
|
|
for _, byte := range mBytes {
|
|
c = append(c, EncryptInt(int(byte), pubK))
|
|
}
|
|
return c
|
|
}
|
|
func Decrypt(c []int, privK RSAPrivateKey) string {
|
|
var m string
|
|
var mBytes []byte
|
|
for _, indC := range c {
|
|
mBytes = append(mBytes, byte(DecryptInt(indC, privK)))
|
|
}
|
|
m = string(mBytes)
|
|
return m
|
|
}
|
|
|
|
func EncryptBigInt(bigint *big.Int, pubK RSAPublicKey) *big.Int {
|
|
Me := new(big.Int).Exp(bigint, pubK.E, nil)
|
|
c := new(big.Int).Mod(Me, pubK.N)
|
|
return c
|
|
}
|
|
func DecryptBigInt(bigint *big.Int, privK RSAPrivateKey) *big.Int {
|
|
Cd := new(big.Int).Exp(bigint, privK.D, nil)
|
|
m := new(big.Int).Mod(Cd, privK.N)
|
|
return m
|
|
}
|
|
|
|
func EncryptInt(char int, pubK RSAPublicKey) int {
|
|
charBig := big.NewInt(int64(char))
|
|
Me := charBig.Exp(charBig, pubK.E, nil)
|
|
c := Me.Mod(Me, pubK.N)
|
|
return int(c.Int64())
|
|
}
|
|
func DecryptInt(val int, privK RSAPrivateKey) int {
|
|
valBig := big.NewInt(int64(val))
|
|
Cd := valBig.Exp(valBig, privK.D, nil)
|
|
m := Cd.Mod(Cd, privK.N)
|
|
return int(m.Int64())
|
|
}
|
|
|
|
func Blind(m []int, r int, pubK RSAPublicKey, privK RSAPrivateKey) []int {
|
|
var mBlinded []int
|
|
rBigInt := big.NewInt(int64(r))
|
|
for i := 0; i < len(m); i++ {
|
|
mBigInt := big.NewInt(int64(m[i]))
|
|
rE := new(big.Int).Exp(rBigInt, pubK.E, nil)
|
|
mrE := new(big.Int).Mul(mBigInt, rE)
|
|
mrEmodN := new(big.Int).Mod(mrE, privK.N)
|
|
mBlinded = append(mBlinded, int(mrEmodN.Int64()))
|
|
}
|
|
return mBlinded
|
|
}
|
|
|
|
func BlindSign(m []int, pubK RSAPublicKey, privK RSAPrivateKey) []int {
|
|
var r []int
|
|
for i := 0; i < len(m); i++ {
|
|
mBigInt := big.NewInt(int64(m[i]))
|
|
sigma := new(big.Int).Exp(mBigInt, privK.D, pubK.N)
|
|
r = append(r, int(sigma.Int64()))
|
|
}
|
|
return r
|
|
}
|
|
func Unblind(blindsigned []int, r int, pubK RSAPublicKey) []int {
|
|
var mSigned []int
|
|
rBigInt := big.NewInt(int64(r))
|
|
for i := 0; i < len(blindsigned); i++ {
|
|
bsBigInt := big.NewInt(int64(blindsigned[i]))
|
|
//r1 := new(big.Int).Exp(rBigInt, big.NewInt(int64(-1)), nil)
|
|
r1 := new(big.Int).ModInverse(rBigInt, pubK.N)
|
|
bsr := new(big.Int).Mul(bsBigInt, r1)
|
|
sig := new(big.Int).Mod(bsr, pubK.N)
|
|
mSigned = append(mSigned, int(sig.Int64()))
|
|
}
|
|
return mSigned
|
|
}
|
|
func Verify(msg []int, mSigned []int, pubK RSAPublicKey) bool {
|
|
if len(msg) != len(mSigned) {
|
|
return false
|
|
}
|
|
var mSignedDecrypted []int
|
|
for _, ms := range mSigned {
|
|
msBig := big.NewInt(int64(ms))
|
|
//decrypt the mSigned with pubK
|
|
Cd := new(big.Int).Exp(msBig, pubK.E, nil)
|
|
m := new(big.Int).Mod(Cd, pubK.N)
|
|
mSignedDecrypted = append(mSignedDecrypted, int(m.Int64()))
|
|
}
|
|
fmt.Print("msg signed decrypted: ")
|
|
fmt.Println(mSignedDecrypted)
|
|
r := true
|
|
//check if the mSignedDecrypted == msg
|
|
for i := 0; i < len(msg); i++ {
|
|
if msg[i] != mSignedDecrypted[i] {
|
|
r = false
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
func HomomorphicMultiplication(c1 int, c2 int, pubK RSAPublicKey) int {
|
|
c1BigInt := big.NewInt(int64(c1))
|
|
c2BigInt := big.NewInt(int64(c2))
|
|
c1c2 := new(big.Int).Mul(c1BigInt, c2BigInt)
|
|
n2 := new(big.Int).Mul(pubK.N, pubK.N)
|
|
d := new(big.Int).Mod(c1c2, n2)
|
|
r := int(d.Int64())
|
|
return r
|
|
}
|
|
|
|
func PubKStringToBigInt(kS RSAPublicKeyString) (RSAPublicKey, error) {
|
|
var k RSAPublicKey
|
|
var ok bool
|
|
k.E, ok = new(big.Int).SetString(kS.E, 10)
|
|
if !ok {
|
|
return k, errors.New("error parsing big int E")
|
|
}
|
|
k.N, ok = new(big.Int).SetString(kS.N, 10)
|
|
if !ok {
|
|
return k, errors.New("error parsing big int N")
|
|
}
|
|
return k, nil
|
|
}
|
|
|
|
type PackRSA struct {
|
|
PubK string `json:"pubK"`
|
|
PrivK string `json:"privK"`
|
|
}
|
|
|
|
func PackKey(k RSA) PackRSA {
|
|
var p PackRSA
|
|
p.PubK = k.PubK.E.String() + "," + k.PubK.N.String()
|
|
p.PrivK = k.PrivK.D.String() + "," + k.PrivK.N.String()
|
|
return p
|
|
}
|
|
|
|
func UnpackKey(p PackRSA) RSA {
|
|
var k RSA
|
|
var ok bool
|
|
k.PubK.E, ok = new(big.Int).SetString(strings.Split(p.PubK, ",")[0], 10)
|
|
k.PubK.N, ok = new(big.Int).SetString(strings.Split(p.PubK, ",")[1], 10)
|
|
k.PrivK.D, ok = new(big.Int).SetString(strings.Split(p.PrivK, ",")[0], 10)
|
|
k.PrivK.N, ok = new(big.Int).SetString(strings.Split(p.PrivK, ",")[1], 10)
|
|
if !ok {
|
|
fmt.Println("error on Unpacking Keys")
|
|
}
|
|
return k
|
|
}
|