You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
11 KiB

  1. <!DOCTYPE html>
  2. <html lang="en">
  3. <head>
  4. <meta name="description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning." />
  5. <meta charset="utf-8">
  6. <title> Notes on KZG polynomial commitments - arnaucube</title>
  7. <meta name="title" content=" Notes on KZG polynomial commitments - arnaucube">
  8. <meta name="description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning.">
  9. <meta property="og:title" content=" Notes on KZG polynomial commitments - arnaucube" />
  10. <meta property="og:description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning." />
  11. <meta property="og:url" content="https://arnaucube.com/blog/kzg-commitments.html" />
  12. <meta property="og:type" content="article" />
  13. <meta property="og:image" content="https://arnaucube.com/blog/" />
  14. <meta name="twitter:title" content=" Notes on KZG polynomial commitments - arnaucube">
  15. <meta name="twitter:description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning.">
  16. <meta name="twitter:image" content="https://arnaucube.com/blog/">
  17. <meta name="twitter:card" content="summary_large_image">
  18. <meta name="author" content="arnaucube">
  19. <meta name="viewport" content="width=device-width, initial-scale=1">
  20. <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
  21. <link rel="stylesheet" href="css/style.css">
  22. <!-- highlightjs -->
  23. <!-- <link rel="stylesheet" href="js/highlightjs/atom-one-dark.css"> -->
  24. <link rel="stylesheet" href="js/highlightjs/gruvbox-dark.css">
  25. <script src="js/highlightjs/highlight.pack.js"></script>
  26. <!-- katex -->
  27. <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/katex.min.css" integrity="sha384-Um5gpz1odJg5Z4HAmzPtgZKdTBHZdw8S29IecapCSB31ligYPhHQZMIlWLYQGVoc" crossorigin="anonymous">
  28. </head>
  29. <body>
  30. <!-- o_gradient_background" -->
  31. <nav id="mainNav" class="navbar navbar-default navbar-fixed-top"
  32. style="height:50px;font-size:130%;">
  33. <div class="container">
  34. <a href="/blog" style="color:#000;">Blog index</a>
  35. <a href="/" style="color:#000;float:right;">arnaucube.com</a>
  36. </div>
  37. <img style="height:5px; width:100%; margin-top:8px;" src="img/gradient-line.jpg" />
  38. </nav>
  39. <div class="container" style="margin-top:40px;max-width:800px;">
  40. <h2>Notes on KZG polynomial commitments</h2>
  41. <p><em>2021-08-05</em></p>
  42. <blockquote>
  43. <p><strong>Warning</strong>: I want to state clearly that I&rsquo;m not a mathematician, I&rsquo;m just an amateur on math studying in my free time, and this article is just an attempt to try to sort the notes that I took while reading about the KZG Commitments.</p>
  44. </blockquote>
  45. <p>Few weeks ago I started reading about <a href="https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf">KZG Commitments</a> from the articles written by <a href="https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html">Dankrad Feist</a>, by <a href="https://hackmd.io/@tompocock/Hk2A7BD6U">Tom Walton-Pocock</a> and by <a href="https://alinush.github.io/2020/05/06/kzg-polynomial-commitments.html">Alin Tomescu</a>. I want to thank them, because their articles helped me to understand a bit the concepts. I recommend spending the time reading their articles instead of this current notes.</p>
  46. <div class="row">
  47. <div class="col-md-7">
  48. <br>
  49. In the following notes I've tried to summarize the KZG Commitments scheme with the concepts that helped me to follow the reasoning.
  50. </div>
  51. <div class="col-md-5" style="font-size:90%; padding:10px;border:1px solid #cfcfcf;">
  52. <b>Notation:</b><br>
  53. $[x]_1 = x G \in \mathbb{G}_1\newline
  54. [x]_2 = x H \in \mathbb{G}_2$
  55. <br>Where $\mathbb{G}_1 = \langle G \rangle$ and $\mathbb{G}_2 = \langle H \rangle$.
  56. <br>In other words: $G$ is the generator of $\mathbb{G}_1$, and $H$ is the generator of $\mathbb{G}_2$
  57. </div>
  58. </div>
  59. <h4>Trusted setup</h4>
  60. <p>First of all, we need to generate a <em>Trusted Setup</em> that will be used later in the rest of steps. Here, the concept of <em>Trusted Setup</em> is quite similar to what we are familiar when dealing with other zk protocols such zkSNARKs, but with the advantage that for the <em>KZG Commitments</em> the nature of its <em>Trusted Setup</em> allows to have some kind of &lsquo;global&rsquo; <em>Trusted Setup</em> that can be used for different polynomials.</p>
  61. <p>It should be computed in a <em>Multi-Party Computation</em> (<em>MPC</em>) fashion, and ensuring that at least one of the participants is honest, in order to ensure that the original parameter $\tau$ can not be restored.</p>
  62. <p>The parameters of the <em>Trusted Setup</em> are generated by generating a random $\tau \in \mathbb{F}_p$, and from this parameter we can compute $[\tau^i]_1$ and $[\tau^i]_2$ for $i=0,&hellip;,n-1$:</p>
  63. <p>$$
  64. [\tau^i]_1 = ([\tau^0]_1, [\tau^1]_1, [\tau^2]_1, &hellip;, [\tau^{n-1}]_1)\newline
  65. [\tau^i]_2 = ([\tau^0]_2, [\tau^1]_2, [\tau^2]_2, &hellip;, [\tau^{n-1}]_2)
  66. $$</p>
  67. <p>Which in additive representation is:
  68. $$
  69. (G, \tau G, \tau^2 G, &hellip;, \tau^{n-1} G) \in \mathbb{G}_1\newline
  70. (H, \tau H, \tau^2 H, &hellip;, \tau^{n-1} H) \in \mathbb{G}_2
  71. $$</p>
  72. <p>The &lsquo;intuition&rsquo; about the <em>Trusted Setup</em> is that is like encrypting a secret value ($\tau$) that later will be used in the &lsquo;encrypted&rsquo; form to evaluate the polynomials.</p>
  73. <h4>Commitments</h4>
  74. <p>A commitment to a polynomial $p(x) = \sum^n_{i=0} p_i x^i$ is done by computing</p>
  75. <p>$$c=[p(\tau)]_1$$</p>
  76. <p>which is computed by $c = \sum^{deg(p(x))}_{i=0} [\tau^i] \cdot p_i$.</p>
  77. <p>The prover would send the commitment to the polynomial $c$, and then the verifier would choose a value $z \in \mathbb{F}_p$, where $\mathbb{F}_p$ is the finite field of the polynomial.</p>
  78. <h4>Evalutaion proofs</h4>
  79. <p>To prove an evaluation of the polynomial at the choosen value $z$ such that $p(z)=y$, a quotient polynomial is computed: $q(x) = \frac{p(x)-y}{x-z}$. This polynomial is the proof that $p(z)=y$, as if $q$ exists it means that $p(x)-y$ is divisible by $x-z$, which means that it has a root at $z$, being $p(z)-y=0$.</p>
  80. <p>Then, the evaluation proof is</p>
  81. <p>$$\pi = [q(\tau)]_1$$</p>
  82. <p>which, as when computing $c$, is computed by $\pi=\sum^{deg(q(x))}_{i=0} [\tau^i] \cdot q_i$.</p>
  83. <p>Once computed, the prover would send this evaluation proof $\pi$ to the verifier.</p>
  84. <h4>Verifying an evaluation proof</h4>
  85. <p>In order to verify an evaluation proof, the verifier has the commitment $c=[p(\tau)]_1$, the evaluation $y=p(z)$, and the proof $\pi=[q(\tau)]_1$.</p>
  86. <p>So, the verifier can check the <a href="https://en.wikipedia.org/wiki/Pairing-based_cryptography">pairing</a> evaluation:
  87. $$\hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1, H)$$</p>
  88. <p>Where $[\tau]_2$ comes from the Trusted Setup, $[z]_2$ is point at which the polynomial is evaluated, and $[y]_1$ is the claimed value p(z). And $\pi$ and $c$ are given by the prover.</p>
  89. <p>We can unroll that last equivalence, and see that:</p>
  90. <p>$$
  91. \hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1, H)\newline
  92. \Rightarrow \hat{e}([q(\tau)]_1, [\tau-z]_2) == \hat{e}([p(\tau)]_1 - [y]_1, H)\newline
  93. \Rightarrow [q(\tau) \cdot (\tau-z)]_T == [p(\tau) - y]_T
  94. $$</p>
  95. <p>We can see that is the equation $q(x)(x-z)=p(x)-y$, which can be expressed as $q(x) = \frac{p(x) - y}{x-z}$, evaluated at $\tau$ from the <em>trusted setup</em>, which is not known: $q(\tau) = \frac{p(\tau) - y}{\tau-z}$.</p>
  96. <h3>Conclusions</h3>
  97. <p>The content covered in this notes is just a quick overview, but allows us to see the potential of the scheme. One next iteration from what we&rsquo;ve seen is the approach to do batch proofs, which allows us to evaluate at multiple points with a single evaluation proof. This scheme can be used as a <em>vector commitment</em>, using a polynomial where the $p(i) = x_i$ for all values of $x_i$ of the vector, which can be obtained from the $x_i$ values and computing the <a href="https://en.wikipedia.org/wiki/Lagrange_polynomial">Lagrange interpolation</a>. This is quite useful combined with the mentioned batch proofs.</p>
  98. <p>As a final note, in order to try to digest the notes, I&rsquo;ve did a <em>toy implementation</em> of this scheme at <a href="https://github.com/arnaucube/kzg-commitments-study">https://github.com/arnaucube/kzg-commitments-study</a>. It&rsquo;s quite simple, but contains the logic overviewed in this notes.</p>
  99. </div>
  100. <footer style="text-align:center; margin-top:100px;margin-bottom:50px;">
  101. <div class="container">
  102. <div class="row">
  103. <ul class="list-inline">
  104. <li><a href="https://twitter.com/arnaucube"
  105. style="color:gray;text-decoration:none;"
  106. target="_blank">twitter.com/arnaucube</a>
  107. </li>
  108. <li><a href="https://github.com/arnaucube"
  109. style="color:gray;text-decoration:none;"
  110. target="_blank">github.com/arnaucube</a>
  111. </li>
  112. </ul>
  113. </div>
  114. <div class="row" style="display:inline-block;">
  115. Blog made with <a href="http://github.com/arnaucube/blogo/"
  116. target="_blank" style="color: gray;text-decoration:none;">Blogo</a>
  117. </div>
  118. </div>
  119. </footer>
  120. <script>
  121. </script>
  122. <script src="js/external-links.js"></script>
  123. <script>hljs.initHighlightingOnLoad();</script>
  124. <script defer src="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/katex.min.js" integrity="sha384-YNHdsYkH6gMx9y3mRkmcJ2mFUjTd0qNQQvY9VYZgQd7DcN7env35GzlmFaZ23JGp" crossorigin="anonymous"></script>
  125. <script defer src="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/contrib/auto-render.min.js" integrity="sha384-vZTG03m+2yp6N6BNi5iM4rW4oIwk5DfcNdFfxkk9ZWpDriOkXX8voJBFrAO7MpVl" crossorigin="anonymous"></script>
  126. <script>
  127. document.addEventListener("DOMContentLoaded", function() {
  128. renderMathInElement(document.body, {
  129. displayMode: false,
  130. // customised options
  131. // • auto-render specific keys, e.g.:
  132. delimiters: [
  133. {left: '$$', right: '$$', display: true},
  134. {left: '$', right: '$', display: false},
  135. ],
  136. // • rendering keys, e.g.:
  137. throwOnError : true
  138. });
  139. });
  140. </script>
  141. <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
  142. </body>
  143. </html>