mirror of
https://github.com/arnaucube/blog.git
synced 2026-02-10 04:36:41 +01:00
Update to latest version
This commit is contained in:
@@ -19,6 +19,8 @@
|
||||
<meta name="twitter:card" content="summary_large_image">
|
||||
<meta name="author" content="arnaucube">
|
||||
|
||||
<link rel="icon" type="image/png" href="img/logoArnauCubeFavicon.png">
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||
|
||||
<link href="css/bootstrap.min.css" rel="stylesheet">
|
||||
@@ -26,7 +28,8 @@
|
||||
|
||||
<!-- highlightjs -->
|
||||
<!-- <link rel="stylesheet" href="js/highlightjs/atom-one-dark.css"> -->
|
||||
<link rel="stylesheet" href="js/highlightjs/gruvbox-dark.css">
|
||||
<link rel="stylesheet" href="js/highlightjs/atom-one-light.css">
|
||||
<!-- <link rel="stylesheet" href="js/highlightjs/gruvbox-dark.css"> -->
|
||||
<script src="js/highlightjs/highlight.pack.js"></script>
|
||||
|
||||
<!-- katex -->
|
||||
@@ -39,7 +42,11 @@
|
||||
<nav id="mainNav" class="navbar navbar-default navbar-fixed-top"
|
||||
style="height:50px;font-size:130%;">
|
||||
<div class="container">
|
||||
<a href="/blog" style="color:#000;">Blog index</a>
|
||||
<div style="float:left;">
|
||||
<a href="/blog" style="color:#000;display:inline-block;">Blog index</a>
|
||||
<span style="margin-right:20px; margin-left:20px;">|</span>
|
||||
<a href="/blog/notes.html" style="font-size:90%;color:#000;display:inline-block;">other-notes</a>
|
||||
</div>
|
||||
<div style="float:right;">
|
||||
<a href="/" style="color:#000;display:inline-block;">arnaucube.com</a>
|
||||
<div class="onoffswitch" style="margin:10px;display:inline-block;" title="change theme">
|
||||
@@ -63,7 +70,7 @@
|
||||
<p><strong>Warning</strong>: I want to state clearly that I’m not a mathematician, I’m just an amateur on math studying in my free time, and this article is just an attempt to try to sort the notes that I took while reading about the KZG Commitments.</p>
|
||||
</blockquote>
|
||||
|
||||
<p>Few weeks ago I started reading about <a href="https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf">KZG Commitments</a> from the articles written by <a href="https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html">Dankrad Feist</a>, by <a href="https://hackmd.io/@tompocock/Hk2A7BD6U">Tom Walton-Pocock</a> and by <a href="https://alinush.github.io/2020/05/06/kzg-polynomial-commitments.html">Alin Tomescu</a>. I want to thank them, because their articles helped me to understand a bit the concepts. I recommend spending the time reading their articles instead of this current notes.</p>
|
||||
<p>Few weeks ago I started reading about <a href="https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf">KZG Commitments</a> from the articles written by <a href="https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html">Dankrad Feist</a>, by <a href="https://hackmd.io/@tompocock/Hk2A7BD6U">Tom Walton-Pocock</a> and by <a href="https://alinush.github.io/2020/05/06/kzg-polynomial-commitments.html">Alin Tomescu</a>. I want to thank them, because their articles helped me to understand a bit the concepts. I recommend spending the time reading their articles (<a href="https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html">1</a>, <a href="https://hackmd.io/@tompocock/Hk2A7BD6U">2</a>, <a href="https://alinush.github.io/2020/05/06/kzg-polynomial-commitments.html">3</a>) instead of this current notes.</p>
|
||||
|
||||
<div class="row">
|
||||
<div class="col-md-7">
|
||||
@@ -129,7 +136,7 @@ $<span class="math inline">\(\hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1
|
||||
|
||||
<h3>Conclusions</h3>
|
||||
|
||||
<p>The content covered in this notes is just a quick overview, but allows us to see the potential of the scheme. One next iteration from what we’ve seen is the approach to do batch proofs, which allows us to evaluate at multiple points with a single evaluation proof. This scheme can be used as a <em>vector commitment</em>, using a polynomial where the <span class="math inline">\(p(i) = x_i\)</span> for all values of <span class="math inline">\(x_i\)</span> of the vector, which can be obtained from the <span class="math inline">\(x_i\)</span> values and computing the <a href="https://en.wikipedia.org/wiki/Lagrange_polynomial">Lagrange interpolation</a>. This is quite useful combined with the mentioned batch proofs. The <em>batch proofs</em> logic can be found at the <a href="https://arnaucube.com/blog/kzg-batch-proof.html">blog/kzg-batch-proof</a> notes (kind of the continuation of the current notes).</p>
|
||||
<p>The content covered in this notes is just a quick overview, but allows us to see the potential of the scheme. One next iteration from what we’ve seen is the approach to do batch proofs, which allows us to evaluate at multiple points with a single evaluation proof. This scheme can be used as a <em>vector commitment</em>, using a polynomial where the <span class="math inline">\(p(i) = x_i\)</span> for all values of <span class="math inline">\(x_i\)</span> of the vector, which can be obtained from the <span class="math inline">\(x_i\)</span> values and computing the <a href="shamir-secret-sharing.html#lagrange-polynomial%20interpolation">Lagrange interpolation</a>. This is quite useful combined with the mentioned batch proofs. The <em>batch proofs</em> logic can be found at the <a href="https://arnaucube.com/blog/kzg-batch-proof.html">blog/kzg-batch-proof</a> notes (kind of the continuation of the current notes).</p>
|
||||
|
||||
<p>As a final note, in order to try to digest the notes, I’ve did a <em>toy implementation</em> of this scheme at <a href="https://github.com/arnaucube/kzg-commitments-study">https://github.com/arnaucube/kzg-commitments-study</a>. It’s quite simple, but contains the logic overviewed in this notes.</p>
|
||||
|
||||
@@ -140,6 +147,9 @@ $<span class="math inline">\(\hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1
|
||||
|
||||
<footer style="text-align:center; margin-top:100px;margin-bottom:50px;">
|
||||
<div class="container">
|
||||
<br>
|
||||
<a href="/blog">Go to main</a>
|
||||
<br><br>
|
||||
<div class="row">
|
||||
<ul class="list-inline">
|
||||
<li><a href="https://twitter.com/arnaucube"
|
||||
@@ -209,7 +219,7 @@ $<span class="math inline">\(\hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1
|
||||
console.log(theme);
|
||||
}
|
||||
</script>
|
||||
<script>
|
||||
<script>
|
||||
function tagLinks(tagName) {
|
||||
var tags = document.getElementsByTagName(tagName);
|
||||
for (var i=0, hElem; hElem = tags[i]; i++) {
|
||||
|
||||
Reference in New Issue
Block a user