|
<!DOCTYPE html>
|
|
<html lang="en">
|
|
|
|
<head>
|
|
<meta name="description" content="Notes on ring signatures" />
|
|
<meta charset="utf-8">
|
|
<title> bLSAG ring signatures overview - arnaucube - blog</title>
|
|
<meta name="title" content=" bLSAG ring signatures overview - arnaucube - blog">
|
|
<meta name="description" content="Notes on ring signatures">
|
|
|
|
<meta property="og:title" content=" bLSAG ring signatures overview - arnaucube - blog" />
|
|
<meta property="og:description" content="Notes on ring signatures" />
|
|
<meta property="og:url" content="https://arnaucube.com/blog/ringsig.html" />
|
|
<meta property="og:type" content="article" />
|
|
<meta property="og:image" content="https://arnaucube.com/blog/" />
|
|
<meta name="twitter:title" content=" bLSAG ring signatures overview - arnaucube - blog">
|
|
<meta name="twitter:description" content="Notes on ring signatures">
|
|
<meta name="twitter:image" content="https://arnaucube.com/blog/">
|
|
<meta name="twitter:card" content="summary_large_image">
|
|
<meta name="author" content="arnaucube">
|
|
|
|
<link rel="icon" type="image/png" href="img/logoArnauCubeFavicon.png">
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
|
|
<link href="css/bootstrap.min.css" rel="stylesheet">
|
|
<link rel="stylesheet" href="css/style.css">
|
|
|
|
<!-- highlightjs -->
|
|
<!-- <link rel="stylesheet" href="js/highlightjs/atom-one-dark.css"> -->
|
|
<link rel="stylesheet" href="js/highlightjs/atom-one-light.css">
|
|
<!-- <link rel="stylesheet" href="js/highlightjs/gruvbox-dark.css"> -->
|
|
<script src="js/highlightjs/highlight.pack.js"></script>
|
|
|
|
<!-- katex -->
|
|
<link rel="stylesheet" href="js/katex/katex.min.css">
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<!-- o_gradient_background" -->
|
|
<nav id="mainNav" class="navbar navbar-default navbar-fixed-top"
|
|
style="height:50px;font-size:130%;">
|
|
<div class="container">
|
|
<div style="float:left;">
|
|
<a href="/blog" style="color:#000;display:inline-block;">Blog index</a>
|
|
<span style="margin-right:20px; margin-left:20px;">|</span>
|
|
<a href="/blog/notes.html" style="font-size:90%;color:#000;display:inline-block;">other-notes</a>
|
|
</div>
|
|
<div style="float:right;">
|
|
<a href="/" style="color:#000;display:inline-block;">arnaucube.com</a>
|
|
<div class="onoffswitch" style="margin:10px;display:inline-block;" title="change theme">
|
|
<input onclick="switchTheme()" type="checkbox" name="onoffswitch" class="onoffswitch-checkbox"
|
|
id="themeSwitcher">
|
|
<label class="onoffswitch-label" for="themeSwitcher"></label>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<img style="height:5px; width:100%; margin-top:8px;" src="img/gradient-line.jpg" />
|
|
</nav>
|
|
|
|
|
|
|
|
<div class="container" style="margin-top:40px;max-width:800px;">
|
|
<h1>bLSAG ring signatures overview</h1>
|
|
|
|
<p><em>2022-07-20</em></p>
|
|
|
|
<blockquote>
|
|
<p>Note: I’m not a mathematician, I’m just an amateur on math. These notes are just an attempt to try to sort the notes that I took while learning abut bLSAG.</p>
|
|
</blockquote>
|
|
|
|
<p><br>
|
|
bLSAG: Back’s Linkable Spontaneous Anonymous Group signatures</p>
|
|
|
|
<ul>
|
|
<li>signer ambiguity</li>
|
|
<li>linkability</li>
|
|
<li>unforgeability</li>
|
|
</ul>
|
|
|
|
<h3>Setup</h3>
|
|
|
|
<p>Let <span class="math inline">\(G\)</span> be the generator of an EC group.
|
|
We use a hash function <span class="math inline">\(\mathcal{H}_p\)</span>, which maps to curve points in EC, and a normal hash <span class="math inline">\(\mathcal{H}_n\)</span>, which maps to <span class="math inline">\(\mathbb{Z}_p\)</span>.
|
|
Signer’s key pair: <span class="math inline">\(k_{\pi}\)</span>, s.t. <span class="math inline">\(K_{\pi} = k_{\pi} \cdot G \in \mathcal{R}\)</span>, with secret index <span class="math inline">\(\pi\)</span>.
|
|
Set of Public Keys: <span class="math inline">\(\mathcal{R} = \{ K_1, K_2, \ldots, K_n \}\)</span></p>
|
|
|
|
<pre><code class="language-python">def new_key():
|
|
k = F.random_element()
|
|
K = g * k # g is the generator of the EC group
|
|
return K
|
|
</code></pre>
|
|
|
|
<h3>Signature</h3>
|
|
|
|
<ol>
|
|
<li><p>compute key image: <span class="math inline">\(\tilde{K} = k_{\pi} \mathcal{H_p} ( K_{\pi}) \in G\)</span></p>
|
|
|
|
<pre><code class="language-python">key_image = k * hashToPoint(K)
|
|
</code></pre></li>
|
|
|
|
<li><p>Generate <span class="math inline">\(\alpha \in^R \mathbb{Z}_p\)</span>, and <span class="math inline">\(r_i \in^R \mathbb{Z}_p\)</span>, for <span class="math inline">\(i \in \{1, 2, \ldots, n \}\)</span>, with <span class="math inline">\(i \neq \pi\)</span></p>
|
|
|
|
<ul>
|
|
<li><p><span class="math inline">\(r_i\)</span> is used for the fake responses</p>
|
|
|
|
<pre><code class="language-python">a = F.random_element()
|
|
r = [None] * len(R)
|
|
for i in range(0, len(R)):
|
|
if i==pi:
|
|
continue
|
|
|
|
|
|
r[i] = mod(F.random_element(), p)
|
|
</code></pre></li>
|
|
</ul></li>
|
|
|
|
<li><p>Compute <span class="math inline">\(c_{\pi + 1} = \mathcal{H}_n ( m, [\alpha G], [\alpha \mathcal{H}_p(K_{\pi})])\)</span></p>
|
|
|
|
<pre><code class="language-python">c[pi1] = hash(R, m, a * g, hashToPoint(R[pi]) * a, p)
|
|
</code></pre></li>
|
|
|
|
<li><p>for <span class="math inline">\(i=\pi + 1, \pi +2, \ldots, n, 1, 2, \ldots, \pi -1\)</span>, calculate, replacing <span class="math inline">\(n+1 \rightarrow 1\)</span>
|
|
$<span class="math inline">\(
|
|
c_{i+1} = \mathcal{H}_n (m, [r_i G + c_i K_i], [r_i \mathcal{H}_p (K_i) + c_i \tilde{K}])
|
|
\)</span>$</p>
|
|
|
|
<ul>
|
|
<li>Notice that (from step 3 & 4):<br>
|
|
<span class="math inline">\(\alpha \mathcal{H}_p (K_{\pi}) = r_{\pi} \mathcal{H}_p (K_{\pi}) + c_{\pi} \cdot (\tilde{K})\)</span>,<br>
|
|
where <span class="math inline">\(\tilde{K}= k_{\pi} \mathcal{H_p} ( K_{\pi})\)</span>, so:<br>
|
|
<span class="math inline">\(\alpha \mathcal{H}_p (K_{\pi}) = r_{\pi} \mathcal{H}_p (K_{\pi}) + c_{\pi} \cdot (k_{\pi} \mathcal{H}_p(K_{\pi}))\)</span><br>
|
|
which is equal to,<br>
|
|
<span class="math inline">\(\alpha \cdot \mathcal{H}_p (K_{\pi}) = (r_{\pi} + c_{\pi} \cdot k_{\pi}) \cdot \mathcal{H}_p(K_{\pi})\)</span><br>
|
|
From where we can see: <span class="math inline">\(\alpha = r_{\pi} + c_{\pi} \cdot k_{\pi}\)</span><br>
|
|
which we can rearrange to
|
|
<span class="math inline">\(r_{\pi} = \alpha - c_{\pi} \cdot k_{\pi}\)</span>.<br><br></li>
|
|
</ul>
|
|
|
|
<pre><code class="language-python">for j in range(0, len(R)-1):
|
|
i = mod(pi1+j, len(R))
|
|
i1 = mod(pi1+j +1, len(R))
|
|
|
|
|
|
c[i1] = hash(R, m, r[i] * g + c[i] * R[i],
|
|
r[i] * hashToPoint(R[i]) + c[i] * key_image, p)
|
|
</code></pre></li>
|
|
|
|
<li><p>Define <span class="math inline">\(r_{\pi} = \alpha - c_{\pi} k_{\pi} \mod{p}\)</span></p></li>
|
|
</ol>
|
|
|
|
<pre><code class="language-python">r[pi] = mod(a - c[pi] * k, p)
|
|
</code></pre>
|
|
|
|
<p>Signature: <span class="math inline">\(\sigma(m) = (c_1, r_1, \ldots, r_n)\)</span>, with key image <span class="math inline">\(\tilde{K}\)</span> and ring <span class="math inline">\(\mathcal{R}\)</span>.
|
|
- <span class="math inline">\(len(\sigma(m)) = 1+n\)</span></p>
|
|
|
|
<pre><code class="language-python">return [c[0], r]
|
|
</code></pre>
|
|
|
|
<p><br><br><br></p>
|
|
|
|
<h4>Step by step (simplified):</h4>
|
|
|
|
<div style="overflow:auto;">
|
|
<div style="width: 60%; float:left; height: 360px; overflow-y:scroll;">
|
|
|
|
<img src="img/posts/ring-sig/step00.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step00.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step01.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step02.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step03.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step04.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step05.png" style="width:100%;" />
|
|
<img src="img/posts/ring-sig/step06.png" style="width:100%;" />
|
|
|
|
</div>
|
|
|
|
<div style="width: 40%; float:right; margin-top:80px;">
|
|
|
|
<ul>
|
|
<li>Generate $r_i \in^R \mathbb{Z_p}$</li>
|
|
<li>Compute $c_{i+1}$ from $r_i$</li>
|
|
<li>Link $r_{\pi}$ with $c_{\pi}$</li>
|
|
</ul>
|
|
|
|
</div>
|
|
</div>
|
|
|
|
<p><em>You can scroll down the images through the step-by-step diagrams.</em></p>
|
|
|
|
<p><br></p>
|
|
|
|
<p>It reminds in some way to the approach to close a box like the one in the picture:
|
|
<img src="img//posts/ring-sig/box-closed.png" alt="" /></p>
|
|
|
|
<p><br><br><br></p>
|
|
|
|
<h3>Verification</h3>
|
|
|
|
<ol>
|
|
<li><p>check <span class="math inline">\(p \tilde{K} \stackrel{?}{=} 0\)</span></p>
|
|
|
|
<ul>
|
|
<li>to ensure that <span class="math inline">\(\tilde{K} \in G\)</span> (and not in a cofactor group of <span class="math inline">\(G\)</span>)</li>
|
|
</ul></li>
|
|
|
|
<li><p>for <span class="math inline">\(i = 1, 2, \ldots, n\)</span>, replacing <span class="math inline">\(n+1 \rightarrow 1\)</span>
|
|
$<span class="math inline">\(
|
|
c'_{i+1} = \mathcal{H}_n (m, [r_i G + c_i K_i], [r_i \mathcal{H}_p (K_i) + c_i \tilde{K}])
|
|
\)</span>$</p></li>
|
|
|
|
<li><p>check <span class="math inline">\(c_1 \stackrel{?}{=} c'_i\)</span></p>
|
|
|
|
<pre><code class="language-python">c[0] = c1
|
|
for j in range(0, len(R)):
|
|
i = mod(j, len(R))
|
|
i1 = mod(j+1, len(R))
|
|
c[i1] = hash(R, m, r[i] * g + c[i] * R[i],
|
|
r[i] * hashToPoint(R[i]) + c[i] * key_image, p)
|
|
|
|
|
|
assert c1 == c[0]
|
|
</code></pre></li>
|
|
</ol>
|
|
|
|
<p><br><br></p>
|
|
|
|
<h2>Links</h2>
|
|
|
|
<p>Toy implementation:</p>
|
|
|
|
<ul>
|
|
<li>Sage: <a href="https://github.com/arnaucube/math/blob/master/ring-signatures.sage">https://github.com/arnaucube/math/blob/master/ring-signatures.sage</a></li>
|
|
<li>Rust: <a href="https://github.com/arnaucube/ring-signatures-rs">https://github.com/arnaucube/ring-signatures-rs</a></li>
|
|
</ul>
|
|
|
|
<p>Resources:</p>
|
|
|
|
<ul>
|
|
<li><em>“Zero to Monero”</em> - <a href="https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf">https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf</a>
|
|
(section <em>“3.4 Back’s Linkable Spontaneous Anonymous Group (bLSAG) signatures”</em>)</li>
|
|
</ul>
|
|
|
|
</div>
|
|
|
|
<footer style="text-align:center; margin-top:100px;margin-bottom:50px;">
|
|
<div class="container">
|
|
<br>
|
|
<a href="/blog">Go to main</a>
|
|
<br><br>
|
|
<div class="row">
|
|
<ul class="list-inline">
|
|
<li><a href="https://twitter.com/arnaucube"
|
|
style="color:gray;text-decoration:none;"
|
|
target="_blank">twitter.com/arnaucube</a>
|
|
</li>
|
|
<li><a href="https://github.com/arnaucube"
|
|
style="color:gray;text-decoration:none;"
|
|
target="_blank">github.com/arnaucube</a>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
<div class="row" style="display:inline-block;">
|
|
Blog made with <a href="http://github.com/arnaucube/blogo/"
|
|
target="_blank" style="color: gray;text-decoration:none;">Blogo</a>
|
|
</div>
|
|
</div>
|
|
</footer>
|
|
|
|
<script>
|
|
</script>
|
|
<script src="js/external-links.js"></script>
|
|
<script>hljs.initHighlightingOnLoad();</script>
|
|
<script defer src="js/katex/katex.min.js"></script>
|
|
<script defer src="js/katex/auto-render.min.js"></script>
|
|
<script>
|
|
document.addEventListener("DOMContentLoaded", function() {
|
|
renderMathInElement(document.body, {
|
|
displayMode: false,
|
|
// customised options
|
|
// • auto-render specific keys, e.g.:
|
|
delimiters: [
|
|
{left: '$$', right: '$$', display: true},
|
|
{left: '$', right: '$', display: false},
|
|
{left: "\\[", right: "\\]", display: true},
|
|
{left: "\\(", right: "\\)", display: false},
|
|
],
|
|
// • rendering keys, e.g.:
|
|
throwOnError : true
|
|
});
|
|
});
|
|
|
|
///
|
|
let theme = localStorage.getItem("theme");
|
|
if ((theme === "light-theme")||(theme==null)) {
|
|
theme = "light-theme";
|
|
document.getElementById("themeSwitcher").checked = false;
|
|
} else if (theme === "dark-theme") {
|
|
theme = "dark-theme";
|
|
document.getElementById("themeSwitcher").checked = true;
|
|
}
|
|
document.body.className = theme;
|
|
localStorage.setItem("theme", theme);
|
|
|
|
function switchTheme() {
|
|
theme = localStorage.getItem("theme");
|
|
if (theme === "light-theme") {
|
|
theme = "dark-theme";
|
|
document.getElementById("themeSwitcher").checked = true;
|
|
} else {
|
|
theme = "light-theme";
|
|
document.getElementById("themeSwitcher").checked = false;
|
|
}
|
|
document.body.className = theme;
|
|
localStorage.setItem("theme", theme);
|
|
|
|
console.log(theme);
|
|
}
|
|
</script>
|
|
<script>
|
|
function tagLinks(tagName) {
|
|
var tags = document.getElementsByTagName(tagName);
|
|
for (var i=0, hElem; hElem = tags[i]; i++) {
|
|
if (hElem.parentNode.className=="row postThumb") {
|
|
continue;
|
|
}
|
|
hElem.id = hElem.innerHTML.toLowerCase().replace(" ", "-");
|
|
hElem.innerHTML = "<a style='text-decoration:none;color:black;' href='#"+hElem.id+"'>"+hElem.innerHTML+"</a>";
|
|
}
|
|
}
|
|
tagLinks("h2");
|
|
tagLinks("h3");
|
|
tagLinks("h4");
|
|
tagLinks("h5");
|
|
</script>
|
|
<script src="js/mermaid.min.js"></script>
|
|
|
|
|
|
</body>
|
|
</html>
|
|
|