You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
/*
Binary Sum ==========
This component creates a binary sum componet of ops operands and n bits each operand.
e is Number of carries: Depends on the number of operands in the input.
Main Constraint: in[0][0] * 2^0 + in[0][1] * 2^1 + ..... + in[0][n-1] * 2^(n-1) + + in[1][0] * 2^0 + in[1][1] * 2^1 + ..... + in[1][n-1] * 2^(n-1) + + .. + in[ops-1][0] * 2^0 + in[ops-1][1] * 2^1 + ..... + in[ops-1][n-1] * 2^(n-1) + === out[0] * 2^0 + out[1] * 2^1 + + out[n+e-1] *2(n+e-1)
To waranty binary outputs:
out[0] * (out[0] - 1) === 0 out[1] * (out[0] - 1) === 0 . . . out[n+e-1] * (out[n+e-1] - 1) == 0
*/
/* This function calculates the number of extra bits in the output to do the full sum. */
function nbits(a) { var n = 1; var r = 0; while (n-1<a) { r++; n *= 2; } return r; }
template BinSum(n, ops) { var nout = nbits((2**n -1)*ops); signal input in[ops][n]; signal output out[nout];
var lin = 0; var lout = 0;
var k; var j;
for (k=0; k<n; k++) { for (j=0; j<ops; j++) { lin += in[j][k] * 2**k; } }
for (k=0; k<nout; k++) { out[k] <-- (lin >> k) & 1;
// Ensure out is binary out[k] * (out[k] - 1) === 0;
lout += out[k] * 2**k; }
// Ensure the sum;
lin === lout; }
|