#include #include #include #include #include #include #include #include #include #include "calcwit.h" #include "utils.h" Circom_CalcWit::Circom_CalcWit(Circom_Circuit *aCircuit) { circuit = aCircuit; #ifdef SANITY_CHECK signalAssigned = new bool[circuit->NSignals]; signalAssigned[0] = true; #endif mutexes = new std::mutex[NMUTEXES]; cvs = new std::condition_variable[NMUTEXES]; inputSignalsToTrigger = new int[circuit->NComponents]; signalValues = new FrElement[circuit->NSignals]; // Set one signal Fr_copy(&signalValues[0], circuit->constants + 1); reset(); } Circom_CalcWit::~Circom_CalcWit() { #ifdef SANITY_CHECK delete signalAssigned; #endif delete[] cvs; delete[] mutexes; delete[] signalValues; delete[] inputSignalsToTrigger; } void Circom_CalcWit::syncPrintf(const char *format, ...) { va_list args; va_start(args, format); printf_mutex.lock(); vprintf(format, args); printf_mutex.unlock(); va_end(args); } void Circom_CalcWit::reset() { #ifdef SANITY_CHECK for (int i=1; iNComponents; i++) signalAssigned[i] = false; #endif for (int i=0; iNComponents; i++) { inputSignalsToTrigger[i] = circuit->components[i].inputSignals; } for (int i=0; iNComponents; i++) { if (inputSignalsToTrigger[i] == 0) triggerComponent(i); } } int Circom_CalcWit::getSubComponentOffset(int cIdx, u64 hash) { int hIdx; for(hIdx = int(hash & 0xFF); hash!=circuit->components[cIdx].hashTable[hIdx].hash; hIdx++) { if (!circuit->components[cIdx].hashTable[hIdx].hash) throw std::runtime_error("hash not found: " + int_to_hex(hash)); } int entryPos = circuit->components[cIdx].hashTable[hIdx].pos; if (circuit->components[cIdx].entries[entryPos].type != _typeComponent) { throw std::runtime_error("invalid type"); } return circuit->components[cIdx].entries[entryPos].offset; } Circom_Sizes Circom_CalcWit::getSubComponentSizes(int cIdx, u64 hash) { int hIdx; for(hIdx = int(hash & 0xFF); hash!=circuit->components[cIdx].hashTable[hIdx].hash; hIdx++) { if (!circuit->components[cIdx].hashTable[hIdx].hash) throw std::runtime_error("hash not found: " + int_to_hex(hash)); } int entryPos = circuit->components[cIdx].hashTable[hIdx].pos; if (circuit->components[cIdx].entries[entryPos].type != _typeComponent) { throw std::runtime_error("invalid type"); } return circuit->components[cIdx].entries[entryPos].sizes; } int Circom_CalcWit::getSignalOffset(int cIdx, u64 hash) { int hIdx; for(hIdx = int(hash & 0xFF); hash!=circuit->components[cIdx].hashTable[hIdx].hash; hIdx++) { if (!circuit->components[cIdx].hashTable[hIdx].hash) throw std::runtime_error("hash not found: " + int_to_hex(hash)); } int entryPos = circuit->components[cIdx].hashTable[hIdx].pos; if (circuit->components[cIdx].entries[entryPos].type != _typeSignal) { throw std::runtime_error("invalid type"); } return circuit->components[cIdx].entries[entryPos].offset; } Circom_Sizes Circom_CalcWit::getSignalSizes(int cIdx, u64 hash) { int hIdx; for(hIdx = int(hash & 0xFF); hash!=circuit->components[cIdx].hashTable[hIdx].hash; hIdx++) { if (!circuit->components[cIdx].hashTable[hIdx].hash) throw std::runtime_error("hash not found: " + int_to_hex(hash)); } int entryPos = circuit->components[cIdx].hashTable[hIdx].pos; if (circuit->components[cIdx].entries[entryPos].type != _typeSignal) { throw std::runtime_error("invalid type"); } return circuit->components[cIdx].entries[entryPos].sizes; } void Circom_CalcWit::getSignal(int currentComponentIdx, int cIdx, int sIdx, PFrElement value) { // syncPrintf("getSignal: %d\n", sIdx); if ((circuit->components[cIdx].newThread)&&(currentComponentIdx != cIdx)) { std::unique_lock lk(mutexes[cIdx % NMUTEXES]); while (inputSignalsToTrigger[cIdx] != -1) { cvs[cIdx % NMUTEXES].wait(lk); } // cvs[cIdx % NMUTEXES].wait(lk, [&]{return inputSignalsToTrigger[cIdx] == -1;}); lk.unlock(); } #ifdef SANITY_CHECK if (signalAssigned[sIdx] == false) { fprintf(stderr, "Accessing a not assigned signal: %d\n", sIdx); assert(false); } #endif Fr_copy(value, signalValues + sIdx); /* char *valueStr = mpz_get_str(0, 10, *value); syncPrintf("%d, Get %d --> %s\n", currentComponentIdx, sIdx, valueStr); free(valueStr); */ } void Circom_CalcWit::finished(int cIdx) { { std::lock_guard lk(mutexes[cIdx % NMUTEXES]); inputSignalsToTrigger[cIdx] = -1; } // syncPrintf("Finished: %d\n", cIdx); cvs[cIdx % NMUTEXES].notify_all(); } void Circom_CalcWit::setSignal(int currentComponentIdx, int cIdx, int sIdx, PFrElement value) { // syncPrintf("setSignal: %d\n", sIdx); #ifdef SANITY_CHECK if (signalAssigned[sIdx] == true) { fprintf(stderr, "Signal assigned twice: %d\n", sIdx); assert(false); } signalAssigned[sIdx] = true; #endif // Log assignement /* char *valueStr = mpz_get_str(0, 10, *value); syncPrintf("%d, Set %d --> %s\n", currentComponentIdx, sIdx, valueStr); free(valueStr); */ Fr_copy(signalValues + sIdx, value); if ( BITMAP_ISSET(circuit->mapIsInput, sIdx) ) { if (inputSignalsToTrigger[cIdx]>0) { inputSignalsToTrigger[cIdx]--; if (inputSignalsToTrigger[cIdx] == 0) triggerComponent(cIdx); } else { fprintf(stderr, "Input signals does not match with map: %d\n", sIdx); assert(false); } } } void Circom_CalcWit::checkConstraint(int currentComponentIdx, PFrElement value1, PFrElement value2, char const *err) { #ifdef SANITY_CHECK FrElement tmp; Fr_eq(&tmp, value1, value2); if (!Fr_isTrue(&tmp)) { char *pcV1 = Fr_element2str(value1); char *pcV2 = Fr_element2str(value2); // throw std::runtime_error(std::to_string(currentComponentIdx) + std::string(", Constraint doesn't match, ") + err + ". " + sV1 + " != " + sV2 ); fprintf(stderr, "Constraint doesn't match, %s: %s != %s", err, pcV1, pcV2); free(pcV1); free(pcV2); assert(false); } #endif } void Circom_CalcWit::triggerComponent(int newCIdx) { //int oldCIdx = cIdx; // cIdx = newCIdx; if (circuit->components[newCIdx].newThread) { // syncPrintf("Triggered: %d\n", newCIdx); std::thread t(circuit->components[newCIdx].fn, this, newCIdx); // t.join(); t.detach(); } else { (*(circuit->components[newCIdx].fn))(this, newCIdx); } // cIdx = oldCIdx; } void Circom_CalcWit::log(PFrElement value) { char *pcV = Fr_element2str(value); syncPrintf("Log: %s\n", pcV); free(pcV); } void Circom_CalcWit::join() { for (int i=0; iNComponents; i++) { std::unique_lock lk(mutexes[i % NMUTEXES]); while (inputSignalsToTrigger[i] != -1) { cvs[i % NMUTEXES].wait(lk); } // cvs[i % NMUTEXES].wait(lk, [&]{return inputSignalsToTrigger[i] == -1;}); lk.unlock(); // syncPrintf("Joined: %d\n", i); } }