You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

416 lines
12 KiB

/*
Copyright 2018 0KIMS association.
This file is part of circom (Zero Knowledge Circuit Compiler).
circom is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
circom is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with circom. If not, see <https://www.gnu.org/licenses/>.
*/
const fs = require("fs");
const path = require("path");
const bigInt = require("big-integer");
const __P__ = new bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617");
const __MASK__ = new bigInt(2).pow(253).minus(1);
const assert = require("assert");
const gen = require("./gencode");
const exec = require("./exec");
const lc = require("./lcalgebra");
module.exports = compile;
const parser = require("../parser/jaz.js").parser;
const timeout = ms => new Promise(res => setTimeout(res, ms));
async function compile(srcFile, options) {
if (!options) {
options = {};
}
if (typeof options.reduceConstraints === "undefined") {
options.reduceConstraints = true;
}
const fullFileName = srcFile;
const fullFilePath = path.dirname(fullFileName);
const src = fs.readFileSync(fullFileName, "utf8");
const ast = parser.parse(src);
assert(ast.type == "BLOCK");
const ctx = {
scopes: [{}],
signals: {
one: {
fullName: "one",
value: bigInt(1),
equivalence: "",
direction: ""
}
},
currentComponent: "",
constraints: [],
components: {},
templates: {},
functions: {},
functionParams: {},
filePath: fullFilePath,
fileName: fullFileName
};
exec(ctx, ast);
if (!ctx.components["main"]) {
throw new Error("A main component must be defined");
}
classifySignals(ctx);
if (options.reduceConstraints) {
reduceConstants(ctx);
// Repeat while reductions are performed
let oldNConstrains = -1;
while (ctx.constraints.length != oldNConstrains) {
oldNConstrains = ctx.constraints.length;
reduceConstrains(ctx);
}
}
generateWitnessNames(ctx);
if (ctx.error) {
throw(ctx.error);
}
ctx.scopes = [{}];
const mainCode = gen(ctx,ast);
if (ctx.error) throw(ctx.error);
const def = buildCircuitDef(ctx, mainCode);
return def;
}
function classifySignals(ctx) {
function priorize(t1, t2) {
if ((t1 == "error") || (t2=="error")) return "error";
if (t1 == "internal") {
return t2;
} else if (t2=="internal") {
return t1;
}
if ((t1 == "one") || (t2 == "one")) return "one";
if ((t1 == "constant") || (t2 == "constant")) return "constant";
if (t1!=t2) return "error";
return t1;
}
// First classify the signals
for (let s in ctx.signals) {
const signal = ctx.signals[s];
let tAll = "internal";
let lSignal = signal;
let end = false;
while (!end) {
let t = lSignal.category || "internal";
if (s == "one") {
t = "one";
} else if (lSignal.value) {
t = "constant";
} else if (lSignal.component=="main") {
if (lSignal.direction == "IN") {
if (lSignal.private) {
t = "prvInput";
} else {
t = "pubInput";
}
} else if (lSignal.direction == "OUT") {
t = "output";
}
}
tAll = priorize(t,tAll);
if (lSignal.equivalence) {
lSignal = ctx.signals[lSignal.equivalence];
} else {
end=true;
}
}
if (tAll == "error") {
throw new Error("Incompatible types in signal: " + s);
}
lSignal.category = tAll;
}
}
function generateWitnessNames(ctx) {
const totals = {
"output": 0,
"pubInput": 0,
"one": 0,
"prvInput": 0,
"internal": 0,
"constant": 0,
};
const ids = {};
const counted = {};
// First classify the signals
for (let s in ctx.signals) {
const signal = ctx.signals[s];
let lSignal = signal;
while (lSignal.equivalence) lSignal = ctx.signals[lSignal.equivalence];
if (!counted[lSignal.fullName]) {
counted[lSignal.fullName] = true;
totals[lSignal.category] ++;
}
}
ids["one"] = 0;
ids["output"] = 1;
ids["pubInput"] = ids["output"] + totals["output"];
ids["prvInput"] = ids["pubInput"] + totals["pubInput"];
ids["internal"] = ids["prvInput"] + totals["prvInput"];
ids["constant"] = ids["internal"] + totals["internal"];
const nSignals = ids["constant"] + totals["constant"];
ctx.signalNames = new Array(nSignals);
for (let i=0; i< nSignals; i++) ctx.signalNames[i] = [];
ctx.signalName2Idx = {};
for (let s in ctx.signals) {
const signal = ctx.signals[s];
let lSignal = signal;
while (lSignal.equivalence) {
lSignal = ctx.signals[lSignal.equivalence];
}
if ( typeof(lSignal.id) === "undefined" ) {
lSignal.id = ids[lSignal.category] ++;
}
signal.id = lSignal.id;
ctx.signalNames[signal.id].push(signal.fullName);
ctx.signalName2Idx[signal.fullName] = signal.id;
}
ctx.totals = totals;
}
function reduceConstants(ctx) {
const newConstraints = [];
for (let i=0; i<ctx.constraints.length; i++) {
const c = lc.canonize(ctx, ctx.constraints[i]);
if (!lc.isZero(c)) {
newConstraints.push(c);
}
}
ctx.constraints = newConstraints;
}
function reduceConstrains(ctx) {
const newConstraints = [];
for (let i=0; i<ctx.constraints.length; i++) {
const c = ctx.constraints[i];
// Swap a and b if b has more variables.
if (Object.keys(c.b).length > Object.keys(c.a).length) {
const aux = c.a;
c.a=c.b;
c.b=aux;
}
// Mov to C if possible.
if (isConstant(c.a)) {
const ct = {type: "NUMBER", value: c.a.values["one"]};
c.c = lc.add(lc.mul(c.b, ct), c.c);
c.a = { type: "LINEARCOMBINATION", values: {} };
c.b = { type: "LINEARCOMBINATION", values: {} };
}
if (isConstant(c.b)) {
const ct = {type: "NUMBER", value: c.b.values["one"]};
c.c = lc.add(lc.mul(c.a, ct), c.c);
c.a = { type: "LINEARCOMBINATION", values: {} };
c.b = { type: "LINEARCOMBINATION", values: {} };
}
if (lc.isZero(c.a) || lc.isZero(c.b)) {
const isolatedSignal = getFirstInternalSignal(ctx, c.c);
if (isolatedSignal) {
const isolatedSignalEquivalence = {
type: "LINEARCOMBINATION",
values: {}
};
const invCoef = c.c.values[isolatedSignal].modInv(__P__);
for (const s in c.c.values) {
if (s != isolatedSignal) {
const v = __P__.minus(c.c.values[s]).times(invCoef).mod(__P__);
if (!v.isZero()) {
isolatedSignalEquivalence.values[s] = v;
}
}
}
for (let j=0; j<newConstraints.length; j++) {
newConstraints[j] = lc.substitute(newConstraints[j], isolatedSignal, isolatedSignalEquivalence);
}
for (let j=i+1; j<ctx.constraints.length; j++ ) {
ctx.constraints[j] = lc.substitute(ctx.constraints[j], isolatedSignal, isolatedSignalEquivalence);
}
c.a={ type: "LINEARCOMBINATION", values: {} };
c.b={ type: "LINEARCOMBINATION", values: {} };
c.c={ type: "LINEARCOMBINATION", values: {} };
isolatedSignal.category = "constant";
}
}
if (!lc.isZero(c)) {
newConstraints.push(c);
}
}
ctx.constraints = newConstraints;
function getFirstInternalSignal(ctx, l) {
for (let k in l.values) {
const signal = ctx.signals[k];
if (signal.category == "internal") return k;
}
return null;
}
function isConstant(l) {
for (let k in l.values) {
if ((k != "one") && (!l.values[k].isZero())) return false;
}
if (!l.values["one"] || l.values["one"].isZero()) return false;
return true;
}
}
function buildCircuitDef(ctx, mainCode) {
const res = {
mainCode: mainCode
};
res.signalName2Idx = ctx.signalName2Idx;
res.components = [];
res.componentName2Idx = {};
for (let c in ctx.components) {
const idCoponent = res.components.length;
res.components.push({
name: c,
params: ctx.components[c].params,
template: ctx.components[c].template,
inputSignals: 0
});
res.componentName2Idx[c] = idCoponent;
}
res.signals = new Array(ctx.signalNames.length);
for (let i=0; i<ctx.signalNames.length; i++) {
res.signals[i] = {
names: ctx.signalNames[i],
triggerComponents: []
};
ctx.signalNames[i].map( (fullName) => {
const idComponet = res.componentName2Idx[ctx.signals[fullName].component];
if (ctx.signals[fullName].direction == "IN") {
res.signals[i].triggerComponents.push(idComponet);
res.components[idComponet].inputSignals++;
}
});
}
res.constraints = buildConstraints(ctx);
res.templates = ctx.templates;
res.functions = {};
for (let f in ctx.functions) {
res.functions[f] = {
params: ctx.functionParams[f],
func: ctx.functions[f]
};
}
res.nPrvInputs = ctx.totals.prvInput;
res.nPubInputs = ctx.totals.pubInput;
res.nInputs = res.nPrvInputs + res.nPubInputs;
res.nOutputs = ctx.totals.output;
res.nVars = res.nInputs + res.nOutputs + ctx.totals.one + ctx.totals.internal;
res.nConstants = ctx.totals.constant;
res.nSignals = res.nVars + res.nConstants;
return res;
}
/*
Build constraints
A constraint like this
[s1 + 2*s2 + 3*s3] * [ s2 + 5*s4] - [s0 ] = 0
[ 5*s2 + 6*s3] * [ s2 + ] - [s0 + 2* s2] = 0
[s1 + s3] * [ s2 + 5*s3] - [s4 ] = 0
is converted to
[
[{"1":"1","2":"2","3":"3"} , {"2":"1","4":"5"} , {"0":"1" }],
[{ "2":"5","3":"6"} , {"2":"1" } , {"0":"1", "2":"2"}],
[{"1":"1", "3":"1"} , {"2":"1","3":"5"} , {"4":"1" }]
]
^ ^ ^
| | |
A B C
*/
function buildConstraints(ctx) {
const res = [];
function fillLC(dst, src) {
if (src.type != "LINEARCOMBINATION") throw new Error("Constraint is not a LINEARCOMBINATION");
for (let s in src.values) {
const v = src.values[s].toString();
const id = ctx.signalName2Idx[s];
dst[id] = v;
}
}
for (let i=0; i<ctx.constraints.length; i++) {
const A = {};
const B = {};
const C = {};
fillLC(A, ctx.constraints[i].a);
fillLC(B, ctx.constraints[i].b);
fillLC(C, lc.negate(ctx.constraints[i].c));
res.push([A,B,C]);
}
return res;
}