|
|
include "constants.jaz";
|
|
include "t1.jaz";
|
|
include "t2.jaz";
|
|
include "binsum.jaz";
|
|
include "sigmaplus.jaz";
|
|
|
|
template sha256compression() {
|
|
signal input inp[512];
|
|
signal output out[256];
|
|
signal a[64][32];
|
|
signal b[64][32];
|
|
signal c[64][32];
|
|
signal d[64][32];
|
|
signal e[64][32];
|
|
signal f[64][32];
|
|
signal g[64][32];
|
|
signal h[64][32];
|
|
signal w[64][512];
|
|
|
|
var i;
|
|
|
|
component sigmaPlus[48] = SigmaPlus();
|
|
|
|
component k[64];
|
|
for (i=0; i<64; i++) k[i] = K(i);
|
|
|
|
component ha0 = H0(0);
|
|
component hb0 = H0(1);
|
|
component hc0 = H0(2);
|
|
component hd0 = H0(3);
|
|
component he0 = H0(4);
|
|
component hf0 = H0(5);
|
|
component hg0 = H0(6);
|
|
component hh0 = H0(7);
|
|
|
|
component t1[64] = T1();
|
|
component t2[64] = T2();
|
|
|
|
component suma[64] = Sum2(32);
|
|
component sume[64] = Sum2(32);
|
|
component fsum[8] = Sum2(32);
|
|
|
|
var k;
|
|
var t;
|
|
|
|
for (t=0; t<64; t++) {
|
|
if (t<16) {
|
|
for (k=0; k<256; k++) {
|
|
w[t][k] <== inp[k];
|
|
}
|
|
} else {
|
|
for (k=0; k<256; k++) {
|
|
sigmaPlus[t-16].in2[k] <== w[t-2][k];
|
|
sigmaPlus[t-16].in7[k] <== w[t-2][k];
|
|
sigmaPlus[t-16].in15[k] <== w[t-15][k];
|
|
sigmaPlus[t-16].in16[k] <== w[t-16][k];
|
|
w[t][k] <== sigmaPlus[t-16].out[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (k=0; k<32; k++ ) {
|
|
a[0][k] <== ha0.out[k]
|
|
b[0][k] <== hb0.out[k]
|
|
c[0][k] <== hc0.out[k]
|
|
d[0][k] <== hd0.out[k]
|
|
e[0][k] <== he0.out[k]
|
|
f[0][k] <== hf0.out[k]
|
|
g[0][k] <== hg0.out[k]
|
|
h[0][k] <== hh0.out[k]
|
|
}
|
|
|
|
for (t = 0; t<63; t++) {
|
|
for (k=0; k<32; k++) {
|
|
t1[t].h[k] <== h[k];
|
|
t1[t].e[k] <== e[k];
|
|
t1[t].f[k] <== f[k];
|
|
t1[t].g[k] <== g[k];
|
|
if (t<20) {
|
|
t1[t].g[k] <== K0.out[k];
|
|
} else if (t<40) {
|
|
t1[t].g[k] <== K20.out[k];
|
|
} else if (t<60) {
|
|
t1[t].g[k] <== K40.out[k];
|
|
} else {
|
|
t1[t].g[k] <== K60.out[k];
|
|
}
|
|
t1[t].w[k] <== w[t][k];
|
|
|
|
t2[t].a[k] <== a[k];
|
|
t2[t].b[k] <== a[k];
|
|
t2[t].c[k] <== a[k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
sume[t].a[k] <== d[k];
|
|
sume[t].b[k] <== t1[t].out[k];
|
|
|
|
suma[t].a[k] <== t1[t].out[k];
|
|
suma[t].b[k] <== t2[t].out[k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
h[t+1] <== g[t];
|
|
g[t+1] <== f[t];
|
|
f[t+1] <== e[t];
|
|
e[t+1] <== sume[t].out[k];
|
|
d[t+1] <== c[t];
|
|
c[t+1] <== b[t];
|
|
b[t+1] <== a[t];
|
|
a[t+1] <== suma[t].out[k];
|
|
}
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
fsum[0].a[k] <== ha0.out[k];
|
|
fsum[0].b[k] <== a[64][k];
|
|
fsum[1].a[k] <== hb0.out[k];
|
|
fsum[1].b[k] <== b[64][k];
|
|
fsum[2].a[k] <== hc0.out[k];
|
|
fsum[2].b[k] <== c[64][k];
|
|
fsum[3].a[k] <== hd0.out[k];
|
|
fsum[3].b[k] <== d[64][k];
|
|
fsum[4].a[k] <== he0.out[k];
|
|
fsum[4].b[k] <== e[64][k];
|
|
fsum[5].a[k] <== hf0.out[k];
|
|
fsum[5].b[k] <== f[64][k];
|
|
fsum[6].a[k] <== hg0.out[k];
|
|
fsum[6].b[k] <== g[64][k];
|
|
fsum[7].a[k] <== hh0.out[k];
|
|
fsum[7].b[k] <== h[64][k];
|
|
}
|
|
|
|
for (k=0; k<32; k++) {
|
|
out[k] <== fsum[0].out[k];
|
|
out[32+k] <== fsum[1].out[k];
|
|
out[64+k] <== fsum[2].out[k];
|
|
out[96+k] <== fsum[2].out[k];
|
|
out[128+k] <== fsum[2].out[k];
|
|
out[160+k] <== fsum[2].out[k];
|
|
out[192+k] <== fsum[2].out[k];
|
|
out[224+k] <== fsum[2].out[k];
|
|
}
|
|
}
|