|
|
/* Copyright 2018 0KIMS association.
This file is part of circom (Zero Knowledge Circuit Compiler).
circom is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
circom is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with circom. If not, see <https://www.gnu.org/licenses/>. */
include "constants.circom"; include "t1.circom"; include "t2.circom"; include "../binsum.circom"; include "sigmaplus.circom"; include "sha256compression_function.circom";
template Sha256compression() { signal input hin[256]; signal input inp[512]; signal output out[256]; signal a[65][32]; signal b[65][32]; signal c[65][32]; signal d[65][32]; signal e[65][32]; signal f[65][32]; signal g[65][32]; signal h[65][32]; signal w[64][32];
var outCalc[256] = sha256compression(hin, inp);
var i; for (i=0; i<256; i++) out[i] <-- outCalc[i];
component sigmaPlus[48]; for (i=0; i<48; i++) sigmaPlus[i] = SigmaPlus();
component ct_k[64]; for (i=0; i<64; i++) ct_k[i] = K(i);
component t1[64]; for (i=0; i<64; i++) t1[i] = T1();
component t2[64]; for (i=0; i<64; i++) t2[i] = T2();
component suma[64]; for (i=0; i<64; i++) suma[i] = BinSum(32, 2);
component sume[64]; for (i=0; i<64; i++) sume[i] = BinSum(32, 2);
component fsum[8]; for (i=0; i<8; i++) fsum[i] = BinSum(32, 2);
var k; var t;
for (t=0; t<64; t++) { if (t<16) { for (k=0; k<32; k++) { w[t][k] <== inp[t*32+31-k]; } } else { for (k=0; k<32; k++) { sigmaPlus[t-16].in2[k] <== w[t-2][k]; sigmaPlus[t-16].in7[k] <== w[t-7][k]; sigmaPlus[t-16].in15[k] <== w[t-15][k]; sigmaPlus[t-16].in16[k] <== w[t-16][k]; }
for (k=0; k<32; k++) { w[t][k] <== sigmaPlus[t-16].out[k]; } } }
for (k=0; k<32; k++ ) { a[0][k] <== hin[k]; b[0][k] <== hin[32*1 + k]; c[0][k] <== hin[32*2 + k]; d[0][k] <== hin[32*3 + k]; e[0][k] <== hin[32*4 + k]; f[0][k] <== hin[32*5 + k]; g[0][k] <== hin[32*6 + k]; h[0][k] <== hin[32*7 + k]; }
for (t = 0; t<64; t++) { for (k=0; k<32; k++) { t1[t].h[k] <== h[t][k]; t1[t].e[k] <== e[t][k]; t1[t].f[k] <== f[t][k]; t1[t].g[k] <== g[t][k]; t1[t].k[k] <== ct_k[t].out[k]; t1[t].w[k] <== w[t][k];
t2[t].a[k] <== a[t][k]; t2[t].b[k] <== b[t][k]; t2[t].c[k] <== c[t][k]; }
for (k=0; k<32; k++) { sume[t].in[0][k] <== d[t][k]; sume[t].in[1][k] <== t1[t].out[k];
suma[t].in[0][k] <== t1[t].out[k]; suma[t].in[1][k] <== t2[t].out[k]; }
for (k=0; k<32; k++) { h[t+1][k] <== g[t][k]; g[t+1][k] <== f[t][k]; f[t+1][k] <== e[t][k]; e[t+1][k] <== sume[t].out[k]; d[t+1][k] <== c[t][k]; c[t+1][k] <== b[t][k]; b[t+1][k] <== a[t][k]; a[t+1][k] <== suma[t].out[k]; } }
for (k=0; k<32; k++) { fsum[0].in[0][k] <== hin[32*0+k]; fsum[0].in[1][k] <== a[64][k]; fsum[1].in[0][k] <== hin[32*1+k]; fsum[1].in[1][k] <== b[64][k]; fsum[2].in[0][k] <== hin[32*2+k]; fsum[2].in[1][k] <== c[64][k]; fsum[3].in[0][k] <== hin[32*3+k]; fsum[3].in[1][k] <== d[64][k]; fsum[4].in[0][k] <== hin[32*4+k]; fsum[4].in[1][k] <== e[64][k]; fsum[5].in[0][k] <== hin[32*5+k]; fsum[5].in[1][k] <== f[64][k]; fsum[6].in[0][k] <== hin[32*6+k]; fsum[6].in[1][k] <== g[64][k]; fsum[7].in[0][k] <== hin[32*7+k]; fsum[7].in[1][k] <== h[64][k]; }
for (k=0; k<32; k++) { out[31-k] === fsum[0].out[k]; out[32+31-k] === fsum[1].out[k]; out[64+31-k] === fsum[2].out[k]; out[96+31-k] === fsum[3].out[k]; out[128+31-k] === fsum[4].out[k]; out[160+31-k] === fsum[5].out[k]; out[192+31-k] === fsum[6].out[k]; out[224+31-k] === fsum[7].out[k]; } }
|