mirror of
https://github.com/arnaucube/circomlib.git
synced 2026-02-07 03:06:44 +01:00
Merge other basic circuits here
This commit is contained in:
93
circuits/binsum.circom
Normal file
93
circuits/binsum.circom
Normal file
@@ -0,0 +1,93 @@
|
||||
/*
|
||||
Copyright 2018 0KIMS association.
|
||||
|
||||
This file is part of circom (Zero Knowledge Circuit Compiler).
|
||||
|
||||
circom is a free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
circom is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with circom. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
Binary Sum
|
||||
==========
|
||||
|
||||
This component creates a binary sum componet of ops operands and n bits each operand.
|
||||
|
||||
e is Number of carries: Depends on the number of operands in the input.
|
||||
|
||||
Main Constraint:
|
||||
in[0][0] * 2^0 + in[0][1] * 2^1 + ..... + in[0][n-1] * 2^(n-1) +
|
||||
+ in[1][0] * 2^0 + in[1][1] * 2^1 + ..... + in[1][n-1] * 2^(n-1) +
|
||||
+ ..
|
||||
+ in[ops-1][0] * 2^0 + in[ops-1][1] * 2^1 + ..... + in[ops-1][n-1] * 2^(n-1) +
|
||||
===
|
||||
out[0] * 2^0 + out[1] * 2^1 + + out[n+e-1] *2(n+e-1)
|
||||
|
||||
To waranty binary outputs:
|
||||
|
||||
out[0] * (out[0] - 1) === 0
|
||||
out[1] * (out[0] - 1) === 0
|
||||
.
|
||||
.
|
||||
.
|
||||
out[n+e-1] * (out[n+e-1] - 1) == 0
|
||||
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
This function calculates the number of extra bits in the output to do the full sum.
|
||||
*/
|
||||
|
||||
function nbits(a) {
|
||||
var n = 1;
|
||||
var r = 0;
|
||||
while (n-1<a) {
|
||||
r++;
|
||||
n *= 2;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
template BinSum(n, ops) {
|
||||
var nout = nbits((2**n -1)*ops);
|
||||
signal input in[ops][n];
|
||||
signal output out[nout];
|
||||
|
||||
var lin = 0;
|
||||
var lout = 0;
|
||||
|
||||
var k;
|
||||
var j;
|
||||
|
||||
for (k=0; k<n; k++) {
|
||||
for (j=0; j<ops; j++) {
|
||||
lin += in[j][k] * 2**k;
|
||||
}
|
||||
}
|
||||
|
||||
for (k=0; k<nout; k++) {
|
||||
out[k] <-- (lin >> k) & 1;
|
||||
|
||||
// Ensure out is binary
|
||||
out[k] * (out[k] - 1) === 0;
|
||||
|
||||
lout += out[k] * 2**k;
|
||||
}
|
||||
|
||||
// Ensure the sum;
|
||||
|
||||
lin === lout;
|
||||
}
|
||||
Reference in New Issue
Block a user