include "../node_modules/circom/circuits/compconstant.circom";
|
|
include "pointbits.circom";
|
|
include "pedersen.circom";
|
|
include "escalarmulany.circom";
|
|
include "escalarmulfix.circom";
|
|
|
|
/*
|
|
include "../node_modules/circom/circuits/bitify.circom";
|
|
include "babyjub.circom";
|
|
*/
|
|
|
|
template EdDSAVerifier(n) {
|
|
signal input msg[n];
|
|
|
|
signal input A[256];
|
|
signal input R8[256];
|
|
signal input S[256];
|
|
|
|
signal Ax;
|
|
signal Ay;
|
|
|
|
signal R8x;
|
|
signal R8y;
|
|
|
|
var i;
|
|
|
|
// Ensure S<Subgroup Order
|
|
|
|
component compConstant = CompConstant(2736030358979909402780800718157159386076813972158567259200215660948447373040);
|
|
|
|
for (i=0; i<254; i++) {
|
|
S[i] ==> compConstant.in[i];
|
|
}
|
|
compConstant.out === 0;
|
|
S[254] === 0;
|
|
S[255] === 0;
|
|
|
|
// Convert A to Field elements (And verify A)
|
|
|
|
component bits2pointA = Bits2Point_Strict();
|
|
|
|
for (i=0; i<256; i++) {
|
|
bits2pointA.in[i] <== A[i];
|
|
}
|
|
Ax <== bits2pointA.out[0];
|
|
Ay <== bits2pointA.out[1];
|
|
|
|
// Convert R8 to Field elements (And verify R8)
|
|
|
|
component bits2pointR8 = Bits2Point_Strict();
|
|
|
|
for (i=0; i<256; i++) {
|
|
bits2pointR8.in[i] <== R8[i];
|
|
}
|
|
R8x <== bits2pointR8.out[0];
|
|
R8y <== bits2pointR8.out[1];
|
|
|
|
// Calculate the h = H(R,A, msg)
|
|
|
|
component hash = Pedersen(512+n);
|
|
|
|
for (i=0; i<256; i++) {
|
|
hash.in[i] <== R8[i];
|
|
hash.in[256+i] <== A[i];
|
|
}
|
|
for (i=0; i<n; i++) {
|
|
hash.in[512+i] <== msg[i];
|
|
}
|
|
|
|
component point2bitsH = Point2Bits_Strict();
|
|
point2bitsH.in[0] <== hash.out[0];
|
|
point2bitsH.in[1] <== hash.out[1];
|
|
|
|
// Calculate second part of the right side: right2 = h*8*A
|
|
|
|
// Multiply by 8 by adding it 3 times. This also ensure that the result is in
|
|
// the subgroup.
|
|
component dbl1 = BabyDbl();
|
|
dbl1.x <== Ax;
|
|
dbl1.y <== Ay;
|
|
component dbl2 = BabyDbl();
|
|
dbl2.x <== dbl1.xout;
|
|
dbl2.y <== dbl1.yout;
|
|
component dbl3 = BabyDbl();
|
|
dbl3.x <== dbl2.xout;
|
|
dbl3.y <== dbl2.yout;
|
|
|
|
// We check that A is not zero.
|
|
component isZero = IsZero();
|
|
isZero.in <== dbl3.x;
|
|
isZero.out === 0;
|
|
|
|
component mulAny = EscalarMulAny(256);
|
|
for (i=0; i<256; i++) {
|
|
mulAny.e[i] <== point2bitsH.out[i];
|
|
}
|
|
mulAny.p[0] <== dbl3.xout;
|
|
mulAny.p[1] <== dbl3.yout;
|
|
|
|
|
|
// Compute the right side: right = R8 + right2
|
|
|
|
component addRight = BabyAdd();
|
|
addRight.x1 <== R8x;
|
|
addRight.y1 <== R8y;
|
|
addRight.x2 <== mulAny.out[0];
|
|
addRight.y2 <== mulAny.out[1];
|
|
|
|
// Calculate left side of equation left = S*B8
|
|
|
|
var BASE8 = [
|
|
17777552123799933955779906779655732241715742912184938656739573121738514868268,
|
|
2626589144620713026669568689430873010625803728049924121243784502389097019475
|
|
];
|
|
component mulFix = EscalarMulFix(256, BASE8);
|
|
for (i=0; i<256; i++) {
|
|
mulFix.e[i] <== S[i];
|
|
}
|
|
|
|
// Do the comparation left == right
|
|
|
|
mulFix.out[0] === addRight.xout;
|
|
mulFix.out[1] === addRight.yout;
|
|
}
|